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Abstract– This paper discusses the main aspects of geomagnetic data processing using the wavelet trans-
form. The wavelet transform is shown to be efficient for automatic extraction of unperturbed level of the
horizontal component of the Earth’s magnetic field. As a result, it becomes possible to significantly
reduce the errors arising during automatic calculations of the local geomagnetic activity index (local K-
index) in comparison with adaptive smoothing (KAsm is Adaptative Smoothing method) recommended
by INTERMAGNET. It has been found that prior to magnetic storms, we can observe a weak rise of geo-
magnetic activity in different frequency bands connected with the development of an approaching storm.
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1. INTRODUCTION
During the periods of magnetic storms, geomag-

netic data contain variations distributed over different
frequency bands. Local features formed in these peri-
ods are determined by the field disturbance and these
features provide information about the intensity and
type of a magnetic storm [1]. The complex structure of
geomagnetic variations puts certain restrictions on
spectral analysis techniques since their application
does not make it possible to obtain information about
local changes in a physical process nor the scaling
characteristics of these processes [2–9].

The authors suggest the wavelet transform as a
mathematical tool for geomagnetic variation analysis
[10, 11]. Currently the wavelet transform is widely
exploited for the following tasks:

• analysis of local features arising in the geomag-
netic field during strong solar f lares [5, 8];

• search for periods of the initial phase of a mag-
netic storm [9];

• signal denoising;
• extraction of the periodic component caused by

the Earth’s rotation [6, 7].

1 The article is published in the original.

The authors applied the wavelet transform for
automatic extraction of unperturbed level of the hori-
zontal component of the Earth’s magnetic field [2, 3].
As a result, it has become possible to dramatically
reduce the errors arising during the automatic calcula-
tion of the local geomagnetic activity index (local
K-index) in comparison with adaptive smoothing
(KAsm is Adaptative Smoothing method) recom-
mended by INTERMAGNET.

The new technology is now used by the magnetic
observatories “Paratunka” (Institute of Cosmo-
physical Research and Radio Wave Propagation of
the Russian Academy of Sciences, Paratunka vil-
lage, Kamchatka region, Russian Far East) and
“Yakutsk” (Shafer Institute of Cosmophysical
Research and Aeronomy of the Russian Academy of
Sciences, Yakutsk, Russian Federation). This paper
familiarizes us with spatiotemporal analysis of mag-
netic storms using the magnetic field data, this
analysis being based on the wavelet transform. The
new method includes extracting components of the
registered variations of the magnetic field in differ-
ent frequency ranges, estimating the perturbation
intensity, and constructing a dynamic spectrum of
variations. This method also allows us to discover
the time points when geomagnetic activity starts
growing prior to and during the periods of extreme
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solar events and to localize activation areas. The
suggested algorithms can be performed in the auto-
matic mode (close to real time) and adapted for var-
ious magnetic observatories.

The suggested mathematical tools have been
used for processing data from magnetic observato-
ries in the north-eastern region of Russia. Local
increases of perturbation intensity have been
extracted in the geomagnetic field; these perturba-
tions arise in different frequency bands during and
prior to the development of the main phase of a
magnetic storm.

2. GEOMAGNETIC FIELD VARIATION 
ANALYSIS BASED ON WAVELETS

Consider  as the time variation of the horizon-
tal component of the geomagnetic field. We will
assume , i.e.,  for the
original data [10, 11]. The wavelet-packet transform
can be used to obtain the following presentation of

 [2, 3]:

(1)

where  is the set of indices.
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increased geomagnetic activity. The component e(t) =

 characterizes noise. The measure of

magnetic disturbance of the component  on the

scale j is determined as  [3, 4]. The

extracted components of a wavelet tree characterize
variations of the geomagnetic field in the wavelet
domain and are shown in Fig. 1.
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CHARACTERISTIC VARIABILITY 
AND EXTRACTION OF PERIODS 
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The continuous wavelet transform is expressed by

the following formula [11, 12]:
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Fig. 1. Variation components of the geomagnetic field (the first digit denotes the level of the wavelet decomposition, the second
digit denotes the number of the component). The grey color indicates the quiet component ftrend, the black color indicates the
perturbed component gj.
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terize the properties of  in the vicinity of . This
property allows us to obtain detailed information on
local properties of the function . The time-frequency
window of the wavelet transform is [12]:

 

 

where wint is the time window, winω is the frequency

window, 〈t〉 = , ΔΨ =

,  is the norm

in the space L2(R).
The connection between the discrete and continu-

ous wavelet transforms [10, 12] and the suggested mea-
sure of the magnetic disturbance make it possible to
estimate the intensity of geomagnetic perturbations at
the time point  and scale a:

. (3)
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cients and find time-frequency intervals that contain
weak and strong geomagnetic perturbations:

(4)

where the threshold  makes it possible to find weak
and strong perturbations and the threshold  is used
for finding strong perturbations. The perturbation
intensity  at time point  can be estimated as

(5)

4. EXPERIMENTAL RESEARCH 
AND DISCUSSION

The authors performed the analysis of data from a
number of magnetic observatories located in the
north-eastern region of Russia (the data were regis-
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Fig. 2. Perturbed components of the geomagnetic field variations (minute values of the horizontal component).
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tered by the Institute of Cosmophysical research and
Aeronomy of the Siberian Branch of the Russian
Academy of Sciences and the Institute of Cosmophys-
ical Research and Radio Wave Propagation of the Far-
eastern Branch of the Russian Academy of Sciences;
both institutes are mentioned above) shown in Fig. 1
(upper plot). The analysis was compared to the data of

interplanet magnetic field and solar wind parameters
(the data are available at ACE Science Center,
http://www.srl.caltech.edu/ACE/ASC). The decom-
position was based on the Daubechies wavelet of the
3rd order [11] determined by minimizing the error in
the class of orthonormal functions (we used the crite-
rion suggested in [12]).

Fig. 3. (a) Location of the analyzed magnetic observatories in the north-eastern region of Russia; (b) estimation of geomagnetic
perturbation intensity in the range of Pc3 pulsations (oscillation periods 10–45 s) on April 5, 2010. The processing was performed
using second values of the horizontal component.
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Fig. 4. (a) Estimation of geomagnetic perturbation intensity in the range of Pc4 pulsations (oscillation periods 45–120 s) on
April 5, 2010. (b) Estimation of geomagnetic perturbation intensity in the range of Pc5 pulsations (oscillation periods 120–600 s)
on April 5, 2010. The processing was performed using second values of the horizontal component.
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The magnetic storm we are analyzing occurred on
April 5, 2010 and was registered on the Earth at 08:26
UT. The extracted perturbed components of the geo-
magnetic field variations  (see (1)) are repre-
sented in Fig. 2. The amplitudes of the components

 at the analyzed stations reached maximum val-
ues at the initial phase of the magnetic storm in the
period from 8:55 UT till 9:08 UT.

Estimation of geomagnetic perturbation inten-
sity using (5) shows substantial local intensity rise at
the storm onset at 08:26 UT in “Magadan,” “Para-
tunka,” and “Khabarovsk” observatories (Figs. 3,
4). Nearly half an hour later there was an intensive
sub-storm in the Earth’s magnetosphere. During
the development of the sub-storm (approximately at

pert( )f t

pert( )f t

09:00 UT) the intensity of geomagnetic perturba-
tions increases dramatically in all the observatories
under study.

The wavelet spectrum of the intensity of geo-
magnetic perturbations (Fig. 5) ref lects the dynam-
ics of the event and allows us to localize the concen-
tration areas and perturbation distribution of the
geomagnetic field in the analyzed domain. During
the rise of the solar wind speed (from 7:22 UT till
8:03 UT the speed of the solar wind reached 750–
800 km/s according to the information from
http://www.srl.caltech.edu/ACE/ASC) we can find
large-scale negative anomalies at high-latitude sta-
tions (Kotelnyi island, village Chokurdakh). These
anomalies are shown in blue in Fig. 5 and they illus-
trate gradual increase of negative perturbations. It is
possible to notice abrupt spectrum non-stationarity
of these perturbations and spectrum spreading in

Fig. 5. Dynamic wavelet spectrum of the magnetic storm on April 5, 2010.
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the high-frequency domain. At 8:10 UT at the sta-
tion on the Kotelniy island and at 8:20 UT at the
station in Chokurdah we can observe perturbation
transfer in the positive area (positive perturbations
are shown in Fig. 5 in black) and spectrum spread-
ing towards the high-frequency domain (spectrum
spreading took place towards the activity periods at
these stations). The observatories closer to the
north (Fig. 5, Kotelnyi island, Chokurdakh, Tiksi,
and Zyryanka) have the strongest perturbations at
09:00 UT. The multiscale local feature coincides
with the onset of a sub-storm. The observatories
closer to the south (Fig. 5, Magadan, Paratunka,
Khabarovsk) have a clearly visible local feature at
the moment of a storm onset at 08:26 UT, which
agrees with the results of geomagnetic pulsation
processing (Figs. 3b, 4).

Cosmic array data help us obtain important
information about the condition of circumterres-
trial cosmic space in the periods of extreme solar

events [13, 14]. Figure 6 demonstrates data process-
ing results for the geomagnetic field together with
the processing results of cosmic rays. Cosmic ray
processing was performed using the algorithm sug-
gested in [15] and based on the wavelet transform.
The analysis of Fig. 6 shows that nearly 1 day prior
to the onset of a magnetic storm there was a local
increase of cosmic rays lasting nearly 1 day (Fig. 6b;
in black) and there are weak perturbations in this
period in the geomagnetic field (September 4 –
04:35–04:41 UT, 06:55–07:15 UT, 19:37–
19:47 UT, 22:38–23:06 UT). At the initial phase of
the storm the level of cosmic rays decreased
(Fig. 6b; in white) and there were the greatest per-
turbations of the geomagnetic field. These results
confirm the efficiency of the suggested computa-
tional solutions and the possibility of their use for
fast estimation of the disturbance degree of the geo-
magnetic field.

Fig. 6. Data processing results for the period from April 3 till April 7, 2010; (a) data of a neural monitor of the station Cape Shmidt;
(b) local increases (black colour) and decreases (white colour) of cosmic rays; (c) resulting intensity of increases and decreases of
cosmic rays; (d) H-component of the geomagnetic field, Paratunka station (see (3)); (e) estimation of geomagnetic perturbation
intensity (see (3)); (f) periods of increased geomagnetic activity (see (4)).
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CONCLUSION

The analysis provided in this paper has shown
that during the periods of increased geomagnetic
activity the suggested mathematical tools allow us to
determine time points when geomagnetic perturba-
tions arise and to obtain estimates of the distur-
bance degree of the geomagnetic field. It has been
found that prior to magnetic storms we can observe
a weak rise of geomagnetic activity in different fre-
quency bands connected with the development of
an approaching storm. Our comparison with cosmic
ray data confirmed the fact that there are weak per-
turbations of circumterrestrial space in the geomag-
netic field prior to the arrival of a shock wave (time
point SSC).
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