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Abstract—Nowadays, with the increased use of digital images, almost all of which are in color format. Con-
ventional methods process color images by converting them into gray scale, which is definitely not effective
in representing and which may lose some significant color information. Recently, a novel method of the
Color Angular Radial Transform (CART) is presented. This transform combines the information by consid-
ering the shape information inherent in the color. However, ART is adapted on the MPEG-7 standard is only
limited to binary images and gray-scale images has many properties: invariant to rotation, Translation and
scaling, ability to describe complex objects, so it cannot handle color images directly. To solve this problem
we proposed in this article to generalize ART from complex domain to hypercomplex domain using quater-
nion algebras to achieve the Quaternion Angular Radial Transform (QART) to describe finally two dimen-
sional color images and to insure these properties robustness to all possible rotations and translation and scal-
ing. The performance of QART is then evaluated with large database of color image as an example. We first
provide a general formula of ART from which we derive a set of quaternion-valued QART properties trans-
formations by eliminating the influence of transformation parameters. The experimental results show that the
QART performs better than the commonly used Quaternion form Zernike Moment (QZM) in terms of image
representation capability and numerical stability.
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1. INTRODUCTION

Nowadays, ease of accessibility of digital photo-
graphic devices gives rise to the use of color images. Color
images contain more appearance information and pro-
vide more accurate descriptions of real-world objects
than grey-scaled images [1, 2]. The inefficient conven-
tional methods for image processing typically involve the
conversion of color images to gray scale images, causing
loss in significant color information. To address this
problem, quaternion theory have been presented into
color image processing such as image watermarking [3],
sparse representation [4], image quality assessment [5],
and image authentication [6]. Quaternion-based
moment functions have also recently been applied for
image processing of color images [7–9] and [10].

Quaternion model have gained popularity for appli-
cation in color image processing to represent color
images by decomposing three channels into the imagi-
nary parts of quaternion numbers [11]. This can be
viewed as the generation of traditional complex number
which was introduced by Hamilton in 1843 [12].

1The article is published in the original.

Quaternion representation advantageously treats
color images holistically as a vector field [13], as proposed
by Sangwine [14, 15], where it involves combination of a
color 3-tuple (RGB) into a single hypercomplex number.
Examples include the application of Quaternion Gabor
Filter (QGF) [16] and quaternion Fourier transforms
[17] to estimate motion and color image registration [18],
dual-tree quaternion wavelets for multiscale image pro-
cessing [19], wavelet transform [20], independent com-
ponent analysis, singular value decomposition, and Clif-
ford-Fourier transform for color image processing [21],
and polar harmonic transform [22].

Orthogonal moments/transforms have been widely
used in image analysis, such as data hiding [23], visual
quality assessment [24] and vision computer, where
the Angular Radial Transform (ART) is a moment
based image description method adopted in MPEG-7
as a region based shape descriptor [25]. It gives a com-
pact and efficient way to express pixel distribution
within a 2D object region; it can describe both con-
nected and disconnected region shapes.

This paper reports the extension of conventional
ART to allow the handling of color images in a holistic
manner. To accomplish this, algebra of quaternions,
which have gained popularity for applications in color
image processing in recent years, will be utilized.
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The RGB image can be represented by decompos-
ing three channels red, green and blue components of
the pixel.

The advantage this provides is it encodes three
channels into the imaginary parts of quaternion num-
bers of color images. The algebra of quaternions has
been proposed in color image processing by Ell and
Sangwine [26]. Ell introduced the quaternion Fourier
transforms (QFTs) in 1992 [27]. Later Sangwine
applied QFTs for use in color images.

In this paper we focus on properties under Angular
Radial Transform to extend the conventional
moments to color image processing and we introduce
a generalization of the ART for color images using
Quaternion algebra.

Quaternion Angular Radial Transform (QART)
with respect to properties transformations is pre-
sented. The performance of QART was then evaluated
with large database of Wang’s color images. QART was
also compared to Quaternion form Zernike Moment
(QZM) for its efficiency, precision and recall.

There meaning of this paper is organized as follows.
Preliminaries of the quaternions will be recalled and
its color representation will be defined in Section 2.
The derivation of coefficients of ART with respect to
transformations of properties such as invariant to rota-
tion, scale and translation of QART will be shown in
Section 3. Experimental results are provided in Sec-
tion 4 to illustrate the performance of the proposed
descriptor and Section 5 concludes the paper.

2. QUATERNION ANGULAR RADIAL 
TRANSFORM

2.1. Quaternion Color Representation
Quaternions, introduced by the mathematician

Hamilton [28] in 1843, are generalizations of complex
numbers. A quaternion has one real part and three
imaginary parts given by

(1)
where a, b, c, d are real numbers, and i, j, k are three
imaginary units obeying the following rules

(2)
(3)

If the real part a = 0, q is called a pure quaternion.
The conjugate and modulus of a quaternion are
respectively defined by

(4)

(5)
Let f(x, y) be an RGB image function with the qua-

ternion representation. Each pixel can be represented
as a pure quaternion

(6)

= + + + ,q a bi cj dk
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where fR(x, y), fG(x, y), and fB(x, y) are respectively the
red, green and blue components of the pixel.

2.2. Angular Radial Transform
ART is a complex orthogonal unitary transform

defined on a unit disk based on complex orthogonal sinu-
soidal basis functions in polar co-ordinates [29–31]. The
ART coefficients, Fnm of order n and m, are defined by:

(7)

where f(r, θ) is an image intensity function in polar co-
ordinates and (r, θ) is a basis function, which is
complex conjugate of Vnm(r, θ) defined in polar coor-
dinates over a unit disk. These are expressed in a sepa-
rable form of both radial and angular parts as follows:

(8)
The indices n and m are non-negative integers. The

real valued radial polynomial and the angular basis
function are defines as:

(9)

(10)

Where j =  the important characteristics of ART is
the rotational invariance. The original image is repre-
sented by the intensity image function f(r, θ) having
ART is rotated counterclockwise by angle α; the trans-
formed image function is

(11)
The ART coefficients of original and rotated

images are Fnm and  = e–jmθFnm, the magnitude val-
ues are identical, where ||e–jmθ|| = 1.

In [35] shows that if ART coefficients are calcu-
lated in the polar coordinate system eliminates the
geometric and integral error.

The standard MPEG-7 recommends using 12 fea-
tures angular and 3 radial functions (n = 3 and m = 12).
The distance measure between two shapes described
by ART is obtained by using the L1 norm:

(12)

2.3. Quaternion Angular Radial Transform 
and Their Properties

In this section, we first define the general formula
of QART for color images before constructing a set of
quaternion-value of properties (rotation, scale, and
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translation (RST) transformations). At last we propose
an efficient algorithm that implements QART.

According to the general definition of Angular
Radial Transform, and to quaternion algebra, the gen-
eral formula of the QART of a color image f(r, θ) an
RGB image defined in polar coordinates, the right-side
QART of order n with repetition m is introduced as:

(13)

where μ is a unit pure quaternion chosen as

(14)

2.3.1. Formula of quaternion angular radial trans-
form. We add the Eq. (6) of quaternion to the Eq. (13)
of coefficients becomes ART

According to Euler, we should regard the complex
exponential as related to the trigonometric functions
cos(mθ) and sin(mθ) via the following inspired defini-
tion:

The coefficients ART becomes:
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The terms of its real and imaginary parts

Finally, the quaternion Angular radial Transform is
follow:

(15)

where

(16)

where Fn,m(fR), Fn,m(fG) and Fn,m(fB) are respectively the
conventional Coefficients ART for the red channel,
green channel and blue channel, Re(x) represents the
real part of conventional complex number x, and
Im(x) the imaginary part.
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We can define the Left-side QART of order n with
repetition m as

(17)

where

(18)

2.4. Properties of Quaternion Angular Radial Transform
2.4.1. Rotation invariants. The original image is

represented by the intensity image function f(r, θ) hav-
ing ART is rotated counter clockwise by angle α; the
transformed image function is g(r, θ) = f(r, θ – α).

(19)

The ART coefficients of original and rotated
images are  and (f') = e–imα (f), the magni-
tude values are identical, where ||e–imα|| = 1.

According in the Eq. (32), we can obtain the fol-
lowing relationship for the left-side QART.
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n and m.
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Proof. Let f ' be the rotated image of f with rotation
angle

(22)

The proof has been completed.

2.4.2. Translation invariants. The translation invari-
ance is achieved by considering the center of the polar
coordinate system, which is defined as the center of
mass of the object, acquired by the geometric moments
as follows:

(23)

where m00(fR), m01(fR), and m10(fR) are respectively the
zero-order and first-order geometric moment for R
channel; m00(fR), m01(fG) and m10(fB) are respectively the
zero-order and first-order geometric moment for G
channel; m00(fR), m01(fD), and m10(fB) are respectively
the zero-order and first-order geometric moment for B
channel. For discrete channel fR, fG, and fB. The central
QART, which are invariant to image translation, can be
obtained using the origin of the coordinate system be
located at (X, Y) defined as follows

(24)

where f( , ) the image pixel coordinate representa-
tion in polar pixel with mapping transformation using
the coordinate ( , ).

2.4.3. Scaling invariants. For scale invariance, the
coefficients of ART are divided by the magnitude of
the first coefficient of order (n = 0, m = 0), i.e., by 
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We can construct scale invariants as follows:

(27)

When image scaling is concerned, the normaliza-
tion process is required.

Corollary 1. The original image is represented by the
intensity image function f(r, θ) having ART is rotated
counter clockwise by angle α; the transformed image
function is g(r, θ) = f(r, θ – α).

The proof of Corollary 1 is verified.
Corollary 2.

(28)

The proof of Corollary 2 is very similar to that of
Theorem 1.

Corollary 3.

(29)

where  is the scaling invariant.

3. CONTENT-BASED COLOR IMAGE 
RETRIEVAL

3.1. QART Feature Extraction
From the previous calculations, we can obtain

rotation, scaling, and translation invariant of QART
modulus coefficients. However, the first step in this
methodology is to extract the query image features and
database of color images. The extraction of different
features by descriptor of shape based region ART
(angular radial transform) is one of the major stages in
designing a reliable image retrieval system.
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3.2. Similarity Measure Based on QART Features
Similarity-Based retrieval of images is an import-

ant task I many image database applications. After
extracting the feature vector, a similarity measurement
function is used that measure the similarity between
the feature vector of query image and the feature vec-
tor of database images.

Euclidean distance (L1 norm) is a straight line distance
between any two points and used as a similarity metric.

(30)

when retrieving color images, we firstly compute the
similarity between the query color image and each tar-
get color image in the database images using any sim-
ilarity metrics, and then sort the retrieval results
according to the similarity value.

4. EXPERIMENTAL RESULTS
This section is intended to verify the performance

of our color image descriptors and the effectiveness of
the proposed QART.

The original color image we used is selected from
the Columbia University Image Library (COIL-100)
and Wang’s database.

The experiments have been carried out on a Dual
Core PC with 2 GHz CPU and 4 GB memory, within
MATLAB 8.1 in Windows. However, the order (n) and
repetition (m) we worked with were n = 3 and m = 3.

4.1. Test the Properties of Proposed Method
4.1.1. Test of rotation invariance. We first test the per-

formance of the QART invariants under rotation trans-
form. The original color image we used was selected from
the Columbia University Image Library (COIL-100).

−

=

= −∑
1

2

0

( [ ] [ ]) ,
N

E

i

D A i B i

Fig. 1. The original color image and rotation invariance tests. 

α = 0° α = 35° α = 60° α = 180° α = 235° α = 270°

Table 1. QART invariants rotation of color image

Rotated φ1,1 φ2,1 φ3,1 φ1,2 φ2,2 φ3,3

α = 0° 0.1227 0.2338 0.0125 0.1431 0.1912 0.0134
α = 35° 0.1252 0.2366 0.0328 0.1421 0.1931 0.0132
α = 60° 0.1242 0.2352 0.0218 0.1462 0.1898 0.0124
α = 180° 0.1328 0.2128 0.1513 0.0532 0.0933 0.1214
α = 235° 0.1298 0.2336 0.0212 0.1422 0.1942 0.0135
α = 270° 0.1244 0.2341 0.0233 0.1487 0.1910 0.0104
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4.1.2. Test of translation invariance. This subsection carried to evaluate the effectiveness of the
QART invariants under translation transform. The original color image we used is selected from
the Columbia University Image Library (COIL-100).

4.1.3. Test of scale invariance. In this subsection is to evaluate the performance of the QART invariants under scale
transform. The original color image we used is selected from the Columbia University Image Library (COIL-100). 

Table 3. QART invariants scaling of color image
Scaling φ1,1 φ2,1 φ3,1 φ1,2 φ2,2 φ3,3

S0 0.1912 0.3216 0.1533 0.0023 0.2223 0.1351
S1 0.1952 0.3232 0.1548 0.0061 0.2212 0.1354
S2 0.1841 0.2241 0.1523 0.0043 0.2240 0.1316
S3 0.1945 0.3912 0.0410 0.1204 0.1845 0.0313
S4 0.1987 0.3940 0.1593 0.0015 0.2812 0.1252
S5 0.1981 0.3890 0.1525 0.0017 0.2919 0.1315
S6 0.1931 0.3345 0.1594 0.0116 0.2213 0.1356

Fig. 2. Translation invariance tests. 

t0 t1 t2 t3 t4 t5

Table 2. QART invariants translation of color image

Translate φ1,1 φ2,1 φ3,1 φ1,2 φ2,2 φ3,3

t0 0.0889 0.0738 0.0445 0.0504 0.0902 0.0213
t1 0.0817 0.0808 0.0098 0.0604 0.0911 0.0211
t2 0.0762 0.0532 0.0530 0.0341 0.0878 0.0250
t3 0.0602 0.0436 0.0360 0.0890 0.0931 0.0024
t4 0.0120 0.0130 0.0603 0.0431 0.0523 0.0621
t5 0.0501 0.0425 0.0730 0.0132 0.19001 0.0291

Fig. 3. Scale invariance tests for (COIL-100) image. 

S0(128 ×128) S1(40 × 40) S2(81 × 81) S3(101 × 101)

S4(161 × 161) S5(205 × 205) S6(256 × 256)
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4.2. The Performance of QART in Large Database
To evaluate the performance of the proposed QART in a larger database, the sizes of images are 101 × 101

and selected from Wang’s color images.
In this section, precision-recall diagrams of Quaternion Angular Radial Transform (QART) and Quaternion

Polar complex Exponential Transform (QZM), were constructed.
For high retrieval accuracy, the system needs to have both high precision and high recall rates.
For high retrieval accuracy, the system needs to have both high precision and high recall rates.

Recall = (Total no. of Retrieval Relevant image)/(Total no. of Relevantimage)
Precision = (Total no. of Retrieval Relevantimage)/(Total no. of Retrieval image).

According to Fig. 6 we found that QART performs better than QZM in image retrieval.

Fig. 4. Examples of color images selected from Wang’s database.

Fig. 5. The color image retrieval results (Africa) from Wang’s database.

Fig. 6. Precision-recall diagrams of comparison performance between QART and Quaternion form Zernike Moment (QZM).
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CONCLUSIONS
Angular Radial Transform (ART) is adapted on

binary and gray-scale images, therefore restricting its
ability to handle color images directly. To solve this prob-
lem, this paper generalizes ART from complex domain to
hypercomplex domain using quaternion algebras, pro-
ducing the Quaternion Angular Radial Transform
(QART) for describing color images, and thus the invari-
ance and robustness property of QART was investigated.
The results showed that QART perform consistently bet-
ter in terms of reconstruction error and color image rep-
resentation capability when examined by Wang’s color
images, demonstrating that QART is more applicable for
processing of color images than conventional ART meth-
ods. Precision-recall diagrams of QART and QZM also
showed that QART very perform in image retrieval per-
formance when compared to QZM.
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