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1 1. INTRODUCTION

Symmetry plays a considerable role in appreciation
of natural and (to a great extent) artificial objects.
Lately, in the analysis of forms of digitized objects,
considerable effort has been spent in revealing the
symmetry of 2D and 3D objects [1], [2], [3]. The
information about symmetry is used effectively in
numerous applications, viz., compact description of
models [3], processing of scanned images [4], image
segmentation [5], forms matching [1], etc. As a rule,
on the “atomic” level the methods are reduced to the
study of symmetrical properties of the so�called char�
acteristic points, which are problem specific.

Below, we propose a number of methods that are
capable of refining the positions of characteristic
points (describing some objects on an image) based
from the a priori information about their symmetri�
cal position. The essence of the problem is that
localization of points on an image is always done
with some error, whose magnitude depends on many
factors: the localization algorithm, the overall image
quality, the noise level in the region containing a
point to be localized, etc. As a consequence, the
coordinates of detected points, from which one
knows a priori that they are symmetrical, fail to sat�
isfy this condition in reality. Hence, it is expedient to
use the known a priori information on the symmetric
property of points to refine their position. In doing

1 This paper uses the materials of a report that was submitted at
the 11th International Conference Pattern Recognition and
Image Analysis: New Information Technologies that was held in
Samara, Russia on September 23–28, 2013.

so, the refinement should be performed in the best
(in a sense) possible way. For example, the symmet�
ric property should be achieved by minimal variation
of their positions.

One class of the most typical problems that are
amenable to such methods of refinement in terms of
“symmetry” includes the problems of biometric rec�
ognition, in which correct determination of the char�
acteristic points is critical for the success of the solu�
tion. Here, it suffices to point out that the accuracy of
detection and facial recognition substantially depends
on the accuracy in the determination of the centers of
pupil in a face [6]. To say more, person identification,
which is also based on the positions of characteristic
points, depends a fortiori on the symmetry factor due
to the symmetrical form of the frontal view of a face
[7]. In these methods one determines, as a rule, several
dozens (depending on a method) of characteristic
points, of which the largest part consists of pairs of
points that are reflectively symmetric with respect to
the vertical axis or points lying directly on the symme�
try axis.

2. STATEMENT AND SOLUTION
OF THE PROBLEM WITH VERTICAL

AXIAL SYMMETRY

Let P = {p1, …, pn} be the set of all characteristic
points and pk = (xk, yk) be the coordinates of the kth
point. Assume first that the symmetry axis coincides
with the axis of ordinates in the Cartesian system of
coordinates. By convention, we label the characteris�
tic points so that the PR = {p1, …, pm} will lie on the
right half�plane, the points PL = {pm + 1, …, p2m} will lie
on the left half�plane, and the points PO = {p2m + 1, …,
pn} will lie on the symmetry axis. It is also assumed that
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the points pi and pm + i, i = 1, …, m, are a priori symmet�
ric relative the axis of ordinates (Fig. 1). With the thus�
ordered set of characteristic points P we associate a
vector of size 2n:

(p1, p2, …, pn)  (x1, …, xn, y1, …, yn)T = X.

The vectors X may be looked upon as elements of
the linear space �2n. Note that if all the characteristic
points are precisely determined, then, in view of the
partition into the classes PR, PL, PO, the following con�
ditions should be satisfied:

The set of vectors that satisfy these conditions
forms the n�dimensional subspace RSym in the space
�2. We note that “symmetrization” of a vector X of
characteristic points means finding a vector Xs in RSym

with the least deviation from X in the Euclidean norm:

Thus, the problem amounts to finding the orthog�
onal projection Xs of the vector X to the subspace RSym.

Let Q be a matrix that corresponds to the operator
of the orthogonal projection onto the subspace RSym

and let A be a matrix whose columns are the basis vec�
tors of the subspace RSym. It is known (see [8], p. 165
of the Russian translation) that

xi xm i+– , i 1 … m;, ,= =

yi ym 1+ , i 1 … m;, ,= =

xi 0, i 2m 1+ … n., ,= =

Xs Z X– .
Z RSym∈

minarg=

Q AA+ A ATA( )
1–
AT

,= =

where A+ is the pseudoinverse of the matrix A. To find
Q we note that the matrix A has the following block
structure:

where I and 0 are, respectively, the unit and the zero
matrices of respective sizes. A direct calculation shows
that

where S is the following n × n�matrix:

Thus, in general the solution of the problem has the
form Xs = QX.

It is easily seen that the operation of orthogonal
projection of a vector induces fairly simple operations
on the coordinates of characteristic points: as an ordi�
nate of symmetrical points one needs to take the arith�
metical mean of their ordinates, while the absolute
values of abscissas are the arithmetical mean of their
absolute values. For “axial” points their ordinates
remain unchanged, while the abscissas become zero.

The result of symmetrization by the above method
of a system of points with respect to the vertical sym�
metry axis is shown in Fig. 2. The left part of the figure
depicts the front of a face with indicated characteristic
points, which may be taken, for example, from some
database. The middle part of the figure shows the char�
acteristic points, whose positions are given by some
algorithm (for example, using that from [6]). It is eas�
ily seen that the symmetry of points is violated, which
aggravates the pattern�identification problem. On the
right part of the figure, we show the result of symme�
trization of the system of characteristic points using
the above method.

3. SYMMETRIZATION UNDER ARBITRARY 
AXIAL SYMMETRY

We assume now that the symmetry axis is given by
the equation y = ax + b, where a ≠ 0 (Fig. 3). In this
case, the problem is reduced to the above problem by
changing the coordinates. Namely, let us construct a
new coordinate system (O'x'y') assuming that the O'y'�
axis coincides with the symmetry axis, the origin of O'
coincides with the intersection point of the symmetry
axis and the Oy�axis, and the O'x'�axis is orthogonal to

AT
Im Im– 0 0 0 0

0 0 0 Im Im 0

0 0 0 0 0 In 2m–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

Q 1
2
��I2n

1
2
�� S– 0

0 S⎝ ⎠
⎜ ⎟
⎛ ⎞

,+=

S
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Im 0 0
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞
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Fig. 1. Symmetry with respect to the vertical axis.
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the O'y'�axis to form the right�handed coordinate sys�
tem. In other words, the system (O'x'y') is obtained
from (Oxy) by rotating by some angle ϕ (see Fig. 3).
Here, the angular coefficient of the symmetry axis is

a =  = – cotϕ; its equation for ϕ ≠ 0 may

be written as y = b – xcotϕ.

Let

be a matrix that corresponds to a rotation through
angle –ϕ; its entries cosϕ and sinϕ are found from the
condition cotϕ = –a ≠ 0; that is,

Hence, the coordinates (x, y) and (x', y') of an arbi�
trary points in the old and new systems of coordinates
are related by (x', y')T = ℜ(x, y – b)T, or equivalently,

We consider, as in the previous section, the vector
X = (x1, …, xn, y1, …, yn)T ∈ �2n composed of coordi�
nates of characteristic points in the system (Oxy) with
due account for the partition into classes PR, PL, PO.
We assume that the vector X' consists of the coordi�
nates of the same points in the system (O'x'y'). In order
to establish the relationship between the vectors X and
X', we consider the matrix

π
2
�� ϕ+⎝ ⎠
⎛ ⎞tan

ℜ ϕcos ϕsin

ϕsin– ϕcos⎝ ⎠
⎜ ⎟
⎛ ⎞

=

ϕsin 1

a2 1+
���������������, ϕcos a

a2 1+
��������������� .–= =

x ' x ϕcos y b–( ) ϕ,sin+=

y ' x ϕsin y b–( ) ϕ.cos+–=

RT ℜ In⊗ ϕcos In⋅ ϕsin In⋅

ϕsin In⋅– ϕcos In⋅⎝ ⎠
⎜ ⎟
⎛ ⎞

,= =

where ⊗ denotes the Kronecker product and In is a
unit matrix of size n × n. From the properties of the
Kronecker product it is readily seen that the matrix R
is orthogonal, R–1 = RT. Hence,

X ' = RT(X – bK), so that X = RX ' + bK,

where K = (0, …, 0, 1, …, 1)T. This transformation
reduces the problem to the one that was just solved.
Symmetrizing the vector X ' and then changing to the
old system of coordinates, we see that

and so,

Xs = GX + bHK, where G = RQRT

and H = I – RQRT.

Xs RXs' bK+ R QRT X bK–( )( ) bK,+= =
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Fig. 2. An example of symmetrization with respect to the vertical axis.

ϕ

x'

y'

O' (0, b)

O x

y

y = ax + b

Fig. 3. Symmetry with respect to an arbitrary axis.
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Direct calculations show that

where the matrix S is defined above. For b = 0 and ϕ =
0 we get the above solution for the vertical symmetry
axis.

4. SYMMETRIZATION WITH UNKNOWN 
PARAMETERS OF THE SYMMETRY AXIS

The method that was considered above is capable of
not only performing symmetrization with the given
parameters a and b, but also can determine the param�
eters of an axis for which the symmetrization will be
achieved through minimal variation of the positions of
points.

We assume, as before, that P = {p1, …, pn} be the set
of all characteristic points with coordinates pk = (xk,
yk). We assume that from some a priori information
this set may be partitioned into the disjoint classes

PR = {p1, …, pm}, PL = {pm + 1, …, p2m},

and PO = {p2m + 1, …, pn},

so that the corresponding points pi ∈ PR and pm + 1 ∈ PL

of the first two classes are symmetrical relative to some
a priory unknown symmetry axis, while the points of
the class PO lie on this axis. Having this partition at our
disposal, we associated, as above, the vector X = (x1,
…, xn, y1, …, yn)T ∈ �2n of the original coordinates of
characteristic points with the set P = PR ∪ PL ∪ PO. As
well, it is convenient to adopt the following notation:

We shall assume that the symmetry axis is given by
the equation y = ax + b (the parameters a and b are as
yet unknown), where a = – cotϕ ≠ 0. We consider the
vector

where the rotation matrix RT(ϕ), which depends on
the rotation angle ϕ, is defined in the previous section.
Now, the optimization problem may be stated as fol�
lows:

  min;

where the matrix A is defined in the first section, Y ∈
�2 is a variable vector, and AY = Z is the sought�for
symmetrized vector of coordinates of characteristic
points. In other words, finding the optimal symmetri�
zation requires finding ϕs, bs, and a vector Ys to mini�

G 1
2
��I2n

1
2
�� 2ϕcos S⋅– 2ϕsin S⋅

2ϕsin S⋅ 2ϕcos S⋅⎝ ⎠
⎜ ⎟
⎛ ⎞

,+=

σ 1…1 1…1( )T
, σ0

1 1…1 0…0( )T
,= =

⎧ ⎨ ⎩ ⎧ ⎨ ⎩ ⎧ ⎨ ⎩ ⎧ ⎨ ⎩

n n n n

σ1
0 0…0 1…1( )T

.=

⎧ ⎨ ⎩ ⎧ ⎨ ⎩

n n

X ' ϕ b,( ) R
T ϕ( ) X nσ1

0–( ),=

AY RT ϕ( ) X bσ1
0–( )–

2 Y, ϕ, b

mize the left�hand side of the previous expression, and
next to return the thus�obtained vector Ys in the origi�

nal system of coordinates: Xs = RT(ϕs)Ys + bs . The
so�constructed vector Xs will give the optimal symme�
trization of a given set of characteristic points.

For convenience, we denote the expression to be
minimized by

and express it in detail in the matrix form

To solve the optimization problem, one needs to
solve the system of equations

After calculating the derivatives and making the
necessary transformations, we obtain

From the first (matrix) equation we obtain the
expression for the symmetrized vector Y as a function
of ϕ and b. The second and third equations are scalar
and may be used to find the unknown parameters of
the symmetry axis ϕ and b. We write these equations
separately, expressing AY in terms of ϕ and b using the
first equation

σ1
0

F Y ϕ b, ,( ) AY RT ϕ( ) X bσ1
0–( )–

2
=

F Y ϕ b, ,( ) AY RT ϕ( )X– bRT ϕ( )σ1
0 AY,+(=

– RT ϕ( )X bRT ϕ( )σ1
0 )+

=  AY RT ϕ( )X– bRT ϕ( )σ1
0+( )

T

× AY RT ϕ( )X– bRT ϕ( )σ1
0+( )

=  YTATAY 2YTATRT ϕ( )X– 2bYTATRT ϕ( )σ1
0+

+ XTX 2bXTσ1
0– b2 σ1

0( )
T
σ1

0
.+

F Y ϕ b, ,( )∂
Y∂

���������������������� 0,= F Y ϕ b, ,( )∂
ϕ∂

���������������������� 0,= F Y ϕ b, ,( )∂
b∂

���������������������� 0.=

AY QRT ϕ( ) X bσ1
0–( ),=

X bσ1
0–( )

TdR ϕ( )
dϕ

�������������AY 0,=

σ1
0( )

T
R ϕ( )AY σ1

0( )
T

X bσ1
0–( ).=⎩

⎪
⎪
⎨
⎪
⎪
⎧

X bσ1
0–( )

TdR ϕ( )
dϕ

�������������A ATA( )
1–
ATRT ϕ( ) X bσ1

0–( ) 0,=

σ1
0( )

T
R ϕ( )A ATA( )

1–
ATRT ϕ( ) X bσ1

0–( )

=  σ1
0( )

T
X bσ1

0–( ).⎩
⎪
⎪
⎨
⎪
⎪
⎧
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We have  =  and note that

R(ϕ)QRT(ϕ) = G =  +  using our notation. Hence,

we may rewrite the system in a simpler form

It is easily verified that  =

0; hence

To determine ϕ and b we first consider the second
equation of the system. We shall need the quantities

and

which are, respectively, the averaged abscissa and ordi�
nate of the already obtained characteristic points.
Hence, as one may easily verify,

Considering the left�hand side of the second equa�
tion, we see that

From the above expressions, we find that

The meaning of this relation is quite transparent
from Fig. 4.

dR ϕ( )
dϕ

������������� R π
2
��⎝ ⎠
⎛ ⎞R ϕ( )

1
2
��I G̃

X bσ1
0–( )

T
R π

2
��⎝ ⎠
⎛ ⎞ 1

2
��I G̃+⎝ ⎠
⎛ ⎞ X bσ1

0–( ) 0,=

σ1
0( )

T
G̃ X bσ1

0–( ) 1
2
�� σ1

0( )
T

X bσ1
0–( ).=

⎩
⎪
⎪
⎨
⎪
⎪
⎧

X bσ1
0–( )

T
R π

2
��⎝ ⎠
⎛ ⎞ X bσ1

0–( )

X bσ1
0–( )

T
R π

2
��⎝ ⎠
⎛ ⎞ G̃ X bσ1

0–( ) 0,=

σ1
0( )

T
G̃ X bσ1

0–( ) 1
2
�� σ1

0( )
T

X bσ1
0–( ).=

⎩
⎪
⎪
⎨
⎪
⎪
⎧

xav
1
n
�� xi

i 1=

n

∑= yav
1
n
�� yi,

i 1=

n

∑=

σ1
0( )

T
G X bσ1

0–( ) n yav b–( ).=

2 σ1
0( )

T
G̃ X bσ1

0–( ) 2ϕcos σ1
0( )

T
X⋅=

⎧ ⎨ ⎩

nyav

– 2ϕsin σ0
1( )

T
X b 2ϕsin σ0

1( )
T
σ1

0( )⋅+⋅

⎧ ⎨ ⎩ ⎧ ⎪ ⎨ ⎪ ⎩

nxav n

– 2ϕcos σ1
0( )

T
σ1

0( )⋅

⎧ ⎪ ⎨ ⎪ ⎩

n

=  n yav b–( ) 2ϕcos xav 2ϕsin–[ ].

b yav xav ϕ.cot+=

Now, we consider the first equation of the last sys�
tem. To do so, we write this equation in more detail

and calculate each term in this expression in sequence.

The first term. We represent the vector X in the
block form

where

are the vectors in the x� and y �coordinates of the char�
acteristic points that lie, respectively, to the right of, to
the left of, and on the symmetry axis. Taking this into
account, this gives:

XTR π
2
��⎝ ⎠
⎛ ⎞ G̃X b XTR π

2
��⎝ ⎠
⎛ ⎞ G̃ σ1

0( ) σ1
0( )

T
+ R π

2
��⎝ ⎠
⎛ ⎞ G̃X–

+ b2 σ1
0( )

T
R π

2
��⎝ ⎠
⎛ ⎞ G̃ σ1

0( ) 0.=

⎧ ⎪ ⎨ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

1 2

3

X x1 x2 … xn y1 y2 … yn, , , , , , ,( )=

=  x1
Tx2

Tx3
Ty1

Ty2
Ty3

T( ),

x1 x1 x2 … xm, , ,( )= , x2 xm 1+ xm 2+ … x2m, , ,( ),=

x3 x2m 1+ x2m 2+ … xn, , ,( ),=

y1 y1 y2 … ym, , ,( )= , y2 ym 1+ ym 2+ … y2m, , ,( ),=

y3 y2m 1+ y2m 2+ … yn, , ,( ),=

y

x

yav

y = ax + b

(0, b)

ϕ
ϕ

π

2
��+

xav O

Fig. 4. Finding the parameter.
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The second term. Since the matrix  is symmetric

and RT( ) = –R( ), we write the second term in the

form . Next, direct calcula�

tion shows that

The third term. Direct calculation shows

Thus, the second equation assumes the form:

Since b = yav + xavcotϕ, we have, after the transfor�
mation,

hence,

This expression may be written more conveniently
in centered coordinates:

where e is a vector of corresponding dimension that is
composed of units. It is easily seen that this transfor�
mation consists in moving the origin to the point with
coordinates (xav, yav). After transformations, we obtain
the solution of the optimization problem:

bs = yav + xavcotϕs.

Figure 5 shows the result of symmetrization that
was obtained by the above method. In the upper left
part we show the system of characteristic points that
are symmetric with respect to the marked symmetry
axis. In the upper right part we show the same points

after noise, which resulted in a loss of symmetry.
The bottom left part depicts the points after symme�
trization. The original and recovered symmetry axes
are superimposed in the bottom right part of the fig�
ure.

5. CONCLUSIONS

The problem of the symmetrization of characteris�
tic points relative to the axial symmetry is known to
have numerous applications, as it features the simplest
and most widespread form of symmetry. At the same
time, problems of image processing may involve dif�
ferent types of symmetry (rotational symmetry, dihe�
dral symmetry, translation symmetry, etc.). Symmetri�
zation under conditions of affine distortions, which
are found in the majority of actual designs is of partic�

XTR π
2
��⎝ ⎠
⎛ ⎞ G̃X y1

Ty2
Ty3

T x1
T x2

T x3
T–––( ) 1

2
��⋅=

⎧ ⎪ ⎨ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

1 XTR(π/2)

×

x2 2ϕcos y2 2ϕsin––

x1 2ϕcos y1 2ϕsin––

x3 2ϕcos y3 2ϕsin––

x2 2ϕsin y2 2ϕcos+–

x1 2ϕsin y1 2ϕcos+–

x3 2ϕsin y3 2ϕcos+–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=  x1 y2,( ) x2 y1,( ) x3 y3,( )+ +[ ]– 2ϕcos

– y1 y2,( ) x1 x2,( )– 1
2
�� x3 x3,( )– 1

2
�� y3 y3,( )+ 2ϕ.sin

G̃
π
2
�� π

2
��

σ1
0( )

T
R π

2
��⎝ ⎠
⎛ ⎞ G̃ G̃R π

2
��⎝ ⎠
⎛ ⎞– X

2ϕcos σ0
1( )

T
⋅ 2ϕsin σ1

0( )
T

⋅+[ ]X

=  nxav 2ϕcos nyav 2ϕ.sin+

2 σ1
0( )

T
R π

2
��⎝ ⎠
⎛ ⎞ G̃ σ1

0( )

=  σ0
1( )

T

σ1
0( )

T
R π

2
��⎝ ⎠
⎛ ⎞

2ϕcos σ1
0⋅ 2ϕ σ0

1⋅sin–

G̃σ1
0

⋅ n 2ϕ.sin–=

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

3

x1 y2,( ) x2 y1,( ) x3 y3,( )+ +[ ] 2ϕcos

+ y1 y2,( ) x1 x2,( ) 1
2
�� x3 x3,( )– 1

2
�� y3 y3,( )–+ 2ϕsin

– bn xav 2ϕcos yav 2ϕsin+( ) n
2
��b2 2ϕsin+ 0.=

x1 y2,( ) x2 y1,( ) x3 y3,( ) nxavyav–+ +[ ] 2ϕcos

+ y1 y2,( ) x1 x2,( )– 1
2
�� x3 x3,( )– 1

2
�� y3 y3,( )+

+ 1
2
��n xav

2 yav
2+( ) 2ϕsin 0,=

2ϕtan
x1 y2,( ) x2 y1,( ) x3 y3,( ) nxavyav–+ +

x1 x2,( ) y1 y2,( )– 1
2
�� x3 x3,( ) 1

2
�� y3 y3,( ) 1

2
��n xav

2 yav
2+( )––+

�������������������������������������������������������������������������������������������������������������.=

x· i xi xave, y· i yi yave, i–=– 1 2 3,, ,= =

2ϕstan
x· 1 y· 2,( ) x· 2 y· 1,( ) x· 3 y· 3,( )+ +

x· 1 x· 2,( ) y· 1 y· 2,( )– 1
2
�� x· 3 x· 3,( ) 1

2
�� y· 3 y· 3,( )–+
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ular interest. Although the strict mathematical solu�
tion of these problems may present a certain chal�
lenge, it provides additional possibilities for qualitative
image processing.
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