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Abstract—This study presents the flexural analysis of Ti-6A1-4V/ZrO2 functionally graded (FG) sandwich 
plates under combined thermal and mechanical loading via exponential-cubic-sinusoidal integral shear defor-
mation theory. The current formulation used in the modeling provides a parabolic distribution of transverse shear 
stresses without requiring additional factors in the formulation. Various sandwich plate models with different 
layer thicknesses and material types are considered. The FG layers vary continuously and smoothly according to 
exponential and power-law functions. The governing differential equations of the system are derived and solved 
analytically using the virtual work principle and Navier’s approach. Benchmark comparisons are performed to va-
lidate and show the accuracy of the proposed model. Various parametric examples are presented to illustrate the ef-
fect of the geometry, dimensions, FG sandwich type and material gradient on the static flexural response of the stu-
died structure. 
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1. INTRODUCTION 

Sandwich structures occupy an important place in 
the manufacture of composite parts. They are present 
in practically all fields of application. These struc-
tures are fabricated by gluing or welding two thin 
skins on a lighter-weight core with weaker mechani-
cal characteristics, which maintains spacing between 
the skins and transfers mechanical loads by shear 
from one skin to the other. Such a structure has very 
high strength/mass and stiffness/mass ratios in bend-
ing. There are various models of sandwich structures. 
The most recognized and widely used one is a sand-
wich structure with three homogeneous layers (core 
and face sheets). A growing trend is the introduction 
 

of advanced composite materials in the manufacture 
of sandwich plates. The incorporation of FG and 
sandwich structures in the construction sectors has 
increased considerably to overcome the problem of 
conventional structures and materials related to their 
low resistance to high temperatures [1–3]. We find in 
the literature sandwich plates with faces made of 
functionally graded material (FGM) and an isotropic 
core [4–6] or with homogeneous face sheets and an 
FG core [6–9]. 

Numerous studies of sandwich panels with FGM 
face sheets have been made with regard to their use 
in the design of engineered structures. Analysis of the 
thermal buckling response of sandwich plates with 
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two FGM faces and a homogeneous central core was 
presented in [5] using the theory of sinusoidal shear 
strain. Natarajan and Ganapathi [10] analyzed the 
static bending and vibrational response of two types 
of FGM sandwich plates composed of homogeneous 
face sheets with an FGM core and FGM face sheets 
with a homogeneous hard core. The analysis was per-
formed using a model of higher-order shear deforma-
tion theory (HSDT) and a QUAD-8 shear flexible 
element. A higher-order theory of shear deformation 
by thickness stretching was applied by Neves et al. 
[11] to analyze various behaviors of two FG sand-
wich models. An analytical model for the response 
analysis of FG sandwich structures with an isotropic 
middle layer was proposed by Thai et al. [12] with 
taking into account the boundary conditions. The dy-
namic and static behaviors of 2D FG and isotropic 
sandwich structures were studied by Nguyen et al. 
[13] for fully FG plates and two sandwich models, 
one with an FG core and the other with FGM skins. 
Akavci [14] presented a new theory of quasi-3D 
shear and normal deformation of plates with a hyper-
bolic warping function for various responses (stabil-
ity, static, dynamic) using FG sandwich plates with 
an FG core or FG face sheets. 

Thermomechanical behavior is due to the combi-
nation of mechanical and thermal loads simultane-
ously. This type of loading is common in structures 
used in the aircraft, ship building, marine industries, 
automotive and civil engineering, and it is necessary 
to examine their responses under such loading condi-
tions. There are few works that study the bending be-
havior of graded sandwich structures under various 
types of load (mechanical/thermal). Zenkour and Al-
ghamdi [15] investigated the flexural behavior of 2D 
graded sandwich structures with a ceramic core and 
FG skins subjected to thermomechanical loads. 
Wang and Shen [16] studied the nonlinear behavior 
(buckling, vibration, bending) of an FG sandwich 
subjected to thermal environment and resting on an 
elastic foundation. 

Some authors are also interested in crack and frac-
ture problems in the structures. For example, Hiran-
naiah et al. [17] investigated the thermomechanical 
dynamic response and stability of imperfect FG sand-
wich plates with geometric discontinuity and physi-
cal neutral surface. Kanu et al. [18] discussed the ef-
fect of fracture on the mechanical behavior of FG 
structures and materials. Based on the finite element 
method, Abbas and Razavi [19] examined the ther-
moelastic response of a fiber-reinforced anisotropic 
material by considering a crack problem. Petrova and 

Schmauder [20] modeled and studied the thermome-
chanical fracture of an FG structure taking into ac-
count multiple crack interaction. Abouelregal et al. 
[21] proposed a generalized heat equation for a tem-
perature-dependent nonsimple thermoelastic cylinder 
with including the Caputo–Fabrizio fractional deriva-
tive. Based on an extension of the Fourier approach, 
the Atangana–Baleanu operator, and a novel nonlocal 
single core, Atta [22] investigated a thermoelastic 
medium with a spherical cavity within the framework 
of partial elastic thermal diffusion theory. Based on 
the Hermite–Ritz method and classical beam theory, 
Jena et al. [23] studied the effect of the presence of 
an elastic substrate on the vibrational characteristics 
of an imperfect FG beam, taking into account the 
small scale effect via bi-Helmholtz nonlocal elasti-
city. Many studies are devoted to the investigation of 
the thermal and thermomechanical response [24, 25]. 

The development of different theories to predict 
the behavior of FG structures has increased because 
of their wide use in the field of engineering struc-
tures. There are several plate theories developed to 
analyze FG materials. The classical model (classical 
plate theory (CPT)) is an extension of the Kirchhoff–
Love hypothesis for slender and thin isotropic struc-
tures [26–28]. However, it cannot be applied for short 
and thick FG structures as it takes no account of the 
shear effect. The second model proposed by Reiss-
ner–Mindlin is called the first-order shear deforma-
tion theory (FSDT). The accuracy of its solutions de-
pends heavily on the prediction of the best estimates 
for the shear correction factors to correct uniform 
shear stresses across the entire thickness of the struc-
ture [29–32]. The CPT and FSDT theories were 
shown to be inadequate for computing accurate solu-
tions of FG plates. Another option is the refined hi-
gher-order shear deformation theory (HSDT) [33–
40]. This model does not need any correction factors 
and can more accurately predict the behavior of mo-
derate and thick FG plates. However, a larger number 
of unknown variables in the displacement field in 
HSDT leads to higher computational costs. 

Here we develop a combined four-variable inte-
gral model with the aim to reduce the number of un-
known variables and computational cost, to obtain 
accurate results, and to process several types of FG 
sandwich plates. The thermomechanical bending re-
sponse of 2D FG sandwich structures is investigated 
analytically using the model. 

The proposed combined exponential-cubic-sinu-
soidal integral shear deformation theory contains  
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only four variable functions, and therefore its govern-
ing equations are reduced compared to other similar 
solutions. The model takes into account the trans-
verse shear deformation effect in a parabolic manner 
along the thickness direction and satisfies the stress-
free boundary conditions on nonplate surfaces with-
out any requirement for shear correction factors. The 
equations of stability are derived from the virtual 
work principle. Navier’s technique is applied to ob-
tain the closed form. The numerical values of dis-
placements and stresses obtained with the current 
theory are verified and compared with various exist-
ing solutions. Finally, the effects of certain parame-
ters, such as the load type (transversal and thermal), 
volume fraction, thermal load, layer-to-thickness ra-
tio and other dimensions, on the sandwich structure 
response are studied. 

2. MATHEMATICAL MODELING 

2.1. FG Sandwich Geometry 

In this work, various uniform sandwich plates are 
considered. The geometry and dimensions are pre-
sented in Fig. 1. The plate is made of Ti-6A1-4V/ 
ZrO2 (metal/ceramic) and contains three layers, 
which are either homogeneous or functionally grad-
ed, as presented in Sect. 5. 

2.1.1. FG Face Sheets 

The properties (E, ν and α) of the face sheet layers 
are calculated as [41, 42]: 
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Fig. 1. Geometry of a three-layered FG sandwich plate. 
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The subscripts c and m correspond to the used ce-
ramic or metal material. The exponent pfs is the gra-
dient index, and V(1,3) is the volume fraction of the 1st 
and 3rd layers. 

2.1.2. FG Core 

In contrast to the face sheet properties, the proper-
ties of the FG core vary as exponential function: 
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where pcore is the core gradient index.
 
 

The thickness ratios of the three layers of FG 
sandwich plates are summarized in Table 1. 

2.2. Kinematics 

It is assumed that the straight section is perpendi-
cular to the neutral axis, but loses its perpendicularity 
and flatness after deformation according to the con-
ventional HSDT theories. The displacement field of 
HSDT contains five unknown variables and is given 
as follows [43]: 

0
0

( , )
( , , ) ( , ) ( ) ( , ),x

w x y
u x y z u x y z f z x y

x


   


 

 
0

0
( , )

( , , ) ( , )

( ) ( , ),y

w x y
x y z x y z

y

f z x y


 


 

v v
 (4) 

0( , , ) ( , ),w x y z w x y  
where u0, v0, w0, φx, φy are the five unknown dis-
placement functions of the mid-plane of the plate. 

Unlike the analytical theory used for thin struc-
tures which neglects the transverse shear effect as the 

 
Table 1. Estimates of parameters h0, h1, h2 and h3  
for different FG sandwich plates 

Layer thickness ratio h0 h1 h2 h3 

1-1-1 2h  6h  6h  2h  

1-2-1 2h  4h  4h  2h  

2-1-2 2h  10h  10h  2h  
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classical theory and unlike the FSDT that assumes 
constant shear stresses across the thickness and the 
HSDT theories containing a larger number of variab-
les, the developed model based on the section that 
loses its perpendicularity and flatness after deforma-
tion gives a parabolic variation of transverse shear 
stresses through the thickness, ensures their equality 
to zero on the upper and lower surfaces without re-
quiring any correction factors, and contains only four 
unknown variables. By changing  

1 ( , ) dx x y x     and 2 ( , ) d ,y x y y     

the integral displacement fields can be simplified as 
follows: 
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The constants ζ1 and ζ2 depend on the geometry. 
In the current study, the shape functions f (z) take 

a combined form (exponential-cubic-trigonometric) 
and satisfy the stress-free boundary conditions, with 
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By deriving the displacement field, we obtain the 
strain field as 
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and g(z) is given as follows: 
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The integrals appearing in the above expressions 
must be solved by a Navier-type solution and can be 
expressed as 

 

2 2

d , d ,

d , d ,

x y
y x y x x y

x y
x y

     
    

     
 

    
 

 

 
 (10) 

with 

 2 2
1 22 2

1 1
, , , .           

 
 (11) 

2.3. Constitutive Equations 

The stress–strain relationships can be expressed as 
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where εx, εy, γxy, γxz, γyz and σx, σy, τxy, τxz, τyz are the 
strain and stress components, respectively. 

The elastic constants of the nth layer are 
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3. GOVERNING EQUATIONS 

The virtual work principle [44–46] is applied for a 
static thermomechanical problem of an FG sandwich 
plate: 

 0.U V     (14) 
After replacing the virtual strain energy δU and 

the virtual work δV done by applied forces in the 
above equation, the principle of virtual work takes 
the following form: 
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where the stress resultants N, M and S are defined as 
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where the top and bottom z coordinates of the nth 
layer are hn and hn–1, and Ω is the top surface. 

The static governing equations of the system can 
be obtained based on the virtual work cited in the 
above equation as 
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The resultants N, M and S can be computed by 
substituting Eqs. (8), (9) and (13) into Eqs. (17) as 
follows: 
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and 
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The stress and moment resultants due to thermal 
loading b b s( , , , ,T T T T T

x y x y xN N M M M  and s )T
yM  are de-

fined by 
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The through-thickness variation of temperature 
T(x, y, z) [30–33] can be expressed in a generalized 
form as 

 1 2 3
( )

( , , ) ( , ) ( , ) ( , ),
z f z

T x y z T x y T x y T x y
h h

   (23) 

where T1, 2 ,z hT  and 3( )f z hT  are the uniform, li-
near and nonlinear variation of temperature load 
through the thickness, with 
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4. CLOSED-FORM SOLUTIONS 

The analytical solution used here to solve Eq. (17) 
is the Navier solution given by [47–51]: 
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with m a    and .n b    
The chosen solution ensures the boundary condi-

tion 
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The bi-sinusoidal load can be given as 
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q x y q
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 (27) 

The final solution of the system can be obtained 
by substituting Eqs. (19), (20) and (22) into Eqs. (18) 
and the subsequent results into Eqs. (17): 
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where [ ], {Δ} and {P} are the stiffness matrix, dis-
placement and force vectors given by 
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5. NUMERICAL RESULTS 

In this section, the materials used in the FG sand-
wich plate are ZrO2 ceramics: Young’s modulus Ec = 

117.0 GPa, thermal expansion coefficient αc = 7.11 × 

10 
–6/K and Poison’s ratio ν = 0.3, and Ti-6A1-4V me-

tal: Young’s modulus Em = 66.2 GPa, thermal expan-
sion coefficient αm = 10.3 × 10 

–6/K and Poison’s ratio 
ν = 0.3. In order to verify the proposed model, vari-
ous results are presented, discussed and compared 
with those found in the published literature. The di-
mensionless form of the deflection and stresses is gi-
ven by 
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Table 2. Validation of the dimensionless central transverse displacement and axial stresses  
of an FG sandwich plate with an isotropic core under thermomechanical loading 

x  w  
pfs Model 

1-1-1 2-1-2 1-1-1 2-1-2 

Present –2.661842 –2.539439 1.010811 1.035752 

SSDPT* –2.659816 –2.537365 1.011263 1.036213 1 

FSDPT* –3.756017 –3.618476 1.132449 1.160568 

Present –2.383481 –2.245982 1.067617 1.095612 

SSDPT* –2.381343 –2.2438 1.068091 1.096094 2 

FSDPT* –3.446485 –3.289757 1.195703 1.227765 

Present –2.264682 –2.129695 1.091832 1.119306 

SSDPT* –2.262512 –2.127487 1.092312 1.119793 3 

FSDPT* –3.311823 –3.156414 1.223232 1.255041 

Present –2.202201 –2.07257 1.104559 1.130939 

SSDPT* –2.20002 –2.070352 1.105041 1.131428 4 

FSDPT* –3.239941 –3.089733 1.237931 1.268689 

Present –2.16478 –2.040332 1.112177 1.137502 

SSDPT* –2.162596 –2.038109 1.11266 1.137993 5 

FSDPT* –3.196423 –3.051612 1.246833 1.276497 

* Taken from [15]. 
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where q0 = 100 Pa, a h = 10, t1 = 0, and t2 = t3 = 100 K, 
E0 = 1 GPa, α0 = 10–6/K. 

For the validation of the current model based on 
undetermined integral HSDT theory, the obtained re-
sults for the axial stress and central deflection are 
checked and compared with the existing model [15] 
based on sinusoidal and first-order shear deformation 
theory. The validation results in Table 2 are obtained 
for layer thickness ratios of 1-1-1 and 2-1-2 and the 
face sheet gradient indices 1, 2, 3, 4 and 5. It is clear-
ly seen that the model results are in excellent agree-
ment with the results obtained in [15] with the model 
of sinusoidal shear deformation plate theory. The dif-
ference between the FSDT theory (Reissner–Mindlin 
model) and the current model is due to the uniform 
shear stress distribution across the thickness assumed 
by the FSDT model. We can also conclude that the  
1-1-1 sandwich plate gives smaller values of the cen-
tral deflection because the core layer is most rigid 
and occupies a third of the total thickness of the 
structure. 

Table 3 presents the results for the dimensionless 
central deflection and stresses along the x axis as 
functions of the layer thickness and the face sheet 

 
Table 3. Nondimensional central transverse displacement  
and axial stresses of a sandwich structure with three FG layers 
under thermomechanical loading 

pfs 
Layer thickness 

ratio w  x  

1-1-1 1.015543 –2.639647 

1-2-1 0.984386 –2.792744 1 

2-1-2 1.036949 –2.534229 

1-1-1 1.073225 –2.357006 

1-2-1 1.034491 –2.547521 2 

2-1-2 1.097021 –2.239752 

1-1-1 1.097852 –2.236173 

1-2-1 1.057294 –2.435772 3 

2-1-2 1.120807 –2.123015 

1-1-1 1.110805 –2.172569 

1-2-1 1.070000 –2.373454 4 

2-1-2 1.132487 –2.065657 

1-1-1 1.118562 –2.134458 

1-2-1 1.077988 –2.334258 5 

2-1-2 1.139079 –2.033284 
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Fig. 2. Effect of the core gradient index pcore on the flexural characteristics of a sandwich structure with identical layer thicknes-
ses under thermomechanical loading, pfs = 0 (color online). 

 
gradient index pfs. Three models considered are 1-1-1, 
1-2-1, and 2-1-2. The results indicate that the lower 
value of nondimensional transverse displacement w  
is observed for the 1-2-1 sandwich structure, because 
the core is rich in ceramics (pcore = 1) and its thickness 
is twice as much as that of the face sheet. It is also 
seen that the nondimensional axial stress is in inverse 
relation to the face sheet gradient index, because the 
structure becomes rich in metal while the central de-
flection increases. The most rigid sandwich plate is 
1-1-1 with a smaller value of central deflection. A hi-
gher value of nondimensional axial stress is obtained 
for the 1-2-1 FG sandwich plate. 

Figure 2 plots the distribution of the dimension-
less central transverse displacement along the x axis 
and the dimensionless axial, in-plane and shear stres-
ses across the plate thickness. The plate has homoge-

neous upper and lower face sheets and an FGM core. 
Since the FGM core is symmetrical, the axial and in-
plane stresses become zero at the center line, while 
the value of transverse shear stress xz  is maximum 
at this point. It can be seen from the plotted curves 
that an increase in the core gradient index leads to an 
increase in the dimensionless axial ,x  transverse 

xz  and in-plane xy  shear stresses in the intermedi-
ate core layer. It is remarkable that the results are al-
most the same for the homogeneous face sheets inde-
pendently of the pcore values. The dimensionless de-
flection is slightly influenced by the core material 
index because the face sheets are more rigid with a 
thickness twice as much as that of the core (1-1-1). 

Figure 3 plots the transverse central displacement 
and stress variations versus the face sheet gradient in-
dex of the FG sandwich structure subjected to both 
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Fig. 3. Effect of the face sheet gradient index pfs on the displacement w  and stresses ,x xy   and xz  of the 1-1-1 sandwich 
structure subjected to thermomechanical loading, pcore = 1 (color online). 

 
thermal and mechanical loading. The results indicate 
that the nondimensional central deflection increases 
with increasing face sheet gradient index pfs, because 
the face sheets become rich in metal. The transverse 

xz  and in-plane xy  shear stresses increase with in-
creasing face sheet gradient index at the surface and 
at the center line, respectively. Contrariwise, the axi-
al stress is in inverse relation to the gradient index pfs 
at the upper and lower faces of the FG structure. The 
present model gives a parabolic form of transverse 
shear stresses along the thickness direction. It can be 
concluded that the transverse xz , axial x  and in-
plane xy  stresses are symmetrical about the center 
line because the scheme of the structure is symmetri-
cal. 

Figure 4 illustrates the effect of thermal load on 
the displacement w  and stress ,x xy   and xz  distri-
bution along the transverse direction of the FG sand-
wich structure under thermomechanical loading. It 
can be seen from the graphic results that all stress 
curves show a nonlinear distribution along the z axis 
(material gradient direction). An increase in tempera-
ture t3 leads to an increase in the dimensionless va-
lues of axial x  and in-plane xy  stresses. However, 
the distribution of the transverse shear stress xz  is in 
direct relation to the nonlinear thermal parameter t3, 
indicating that the temperature rise has an impact on 
the flexural characteristics of the 1-1-1 FG sandwich 
plates. We can conclude again that the stresses are 
symmetrical because the material properties vary 
symmetrically about the center line. 
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Fig. 4. Influence of the nonlinear thermal parameter t3 on the displacement w  and stresses ,x xy   and xz  of the 1-1-1 sand-
wich structure under thermomechanical loading, q0 = 100, t2 = 100 (color online). 

 
6. CONCLUSIONS 

The bending response of a uniform FG sandwich 
plate subjected to combined thermomechanical load-
ing was investigated using a combined analytical ex-
ponential-cubic-sinusoidal integral HSDT theory. 
The flexural characteristics such as displacements 
and stresses were determined by solving governing 
differential equations derived from Hamilton’s prin-
ciple. The validity of the proposed model was check-
ed, and an excellent accuracy of the results and re-
duced computational time were achieved. The ob-
tained results led to some important conclusions: 

– The central deflection value is in direct relation 
to the face sheet gradient index because the index in-
creases as the structure becomes rich in metal. 

– The stresses along the thickness direction are 
nonlinear. 

– The dimensionless axial and in-plane stresses 
are in inverse relation to the temperature parameter. 

– An increase in the ceramic core thickness leads 
to a decrease in the deflection values because cera-
mics is more rigid. 

Finally, it is necessary to account for the trans-
verse shear effect, thermal load, material gradient va-
riation and layer thickness in the sandwich structure 
calculation in order to correctly predict the structure 
dimensions in civil and mechanical engineering. To 
overcome the limitations of the current model, we 
can extend and improve the current formulation by 
including the thickness stretching effect in the calcu- 
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lation. The model can also be used for others materi-
als, as shown in [51–59]. 
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