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Abstract—The present study explores dispersion characteristics of thermal, viscoelastic and mechanical 
waves in graphene sheets subjected to uniform thermal loading and supported by the visco-Pasternak founda-
tion. Kinematic relations for graphene sheets are deduced within two-variable refined higher-order plate the-
ory. Damping effects of the viscoelastic medium are modeled using the Kelvin–Voigt model. The research 
extensively investigates the size-dependent behavior of graphene sheets by incorporating nonlocal strain gra-
dient theory. Nonlocal governing equations are formulated under Hamilton’s principle and solved analytical-
ly to determine wave frequency values. To validate the results, a comparative analysis is conducted, and the 
outcomes are tabulated to confirm the effectiveness of the approach. Finally, graphical representations are 
employed to depict the influence of each parameter on the wave propagation responses of graphene sheets. 
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1. INTRODUCTION 

In recent years, the enhanced quality properties of 
nanomaterials have caught the attention of numerous 
researchers. The significance of size effects becomes 
pronounced as structures reach very small dimen-
sions, as evidenced by atomistic modeling and expe-
rimental studies. Consequently, the size effect plays a 
crucial role in shaping the mechanical behavior of 
micro- and nanostructures. There is a notable current 
trend within the scientific community towards ex-
ploring the mechanical behavior of structures using 
nanoscale elements. Given the substantial interest of 
a growing number of researchers in employing nano-
scale beams and plates, it becomes imperative to ac-
quire comprehensive knowledge about the size-de-
pendent behavior of these diminutive elements. As a 
result, nonlocal continuum theories were developed 
to elucidate small-scale effects when investigating 
the mechanical characteristics of nanodevices. Erin-
gen [1] proposed the first nonlocal theory, called 
nonlocal elasticity theory, which relates the stress 
state in a desired point not only to the strain of this  
 

particular point but also to the strain of all adjacent 
points. This theory was employed by an abundant 
range of authors, and it is worth demonstrating some 
of the previous works gaining nonlocal elasticity du-
ring their study on the mechanical response of nano-
beams or nanoplates. Evaluations of the contact prob-
lem of functionally graded materials via various ana-
lytical and numerical methods were exposed by Yay-
lacı et al. [2–14]. Wang et al. [15] analyzed the wave 
dispersion characteristics of nanoplates within nonlo-
cal elasticity. The studies conducted by Ebrahimi 
et al. [16–19] are notable for the dynamic analysis of 
nanomaterials via size effects. Eltaher et al. [20] de-
scribed the vibrational properties of nanobeams in 
the framework of the finite element method and Eu-
ler–Bernoulli beam theory. The bending vibration 
analysis of nanobeams was performed by Ghadiri 
and Shafiei [21] using the differential quadrature me-
thod. A few years later, researchers figured out that 
nonlocal elasticity theory was not powerful enough 
to completely estimate the behavior of small structu-
res [22]. In other words, the stiffness-hardening be-
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havior of nanostructures was neglected in nonlocal 
elasticity and only the stiffness-softening effect was 
included. This stimulated the development of a new 
nonlocal theory, called nonlocal strain gradient the-
ory, to rectify the mentioned deficiency. Li and Hu 
[23] presented nonlocal strain gradient theory to 
highlight size effects while studying the buckling res-
ponse of nanobeams. Examination of the thermome-
chanical buckling properties of orthotropic nano-
plates was performed by Farajpour et al. [24] in the 
framework of nonlocal strain gradient theory. The 
constitutive equation of classical continuum mecha-
nics does not consider size effects [25–34]. This 
makes it difficult to accurately describe thermal and 
mechanical engineering properties of nanomaterials. 
Continuum mechanics was used to address this issue 
as an alternative to small-scale investigations and 
molecular dynamics simulations. Narendar and Go-
palakrishnan [35] dealt with surface effects on the 
wave propagation behavior of a nanoplate. Impact 
and reaction of thermal stresses on various functio-
nally graded materials were discussed by Tounsi 
et al. [36–45] within different computational theories. 

Graphene sheets possess some advantageous over 
other small structures made of different materials, 
such as higher elastic potential [46] and larger ther-
mal conductivity [47]. According to the above infor-
mation, it is necessary to obtain detailed results on 
the mechanical response of these types of nanostruc-
tures. Thus, Murmu and Pradhan [48] tried to show 
the dynamic response of embedded monolayer gra-
phene sheets employing Eringen’s nonlocal theory. 
Ansari and Rouhi [49] presented an atomistic finite 
element model for vibration and axial buckling ana-
lysis of monolayer graphene sheets. Size-dependent 
mechanical characteristics of propagating waves in 
graphene sheets were exactly studied by Arash et al. 
[50] within nonlocal elasticity. Furthermore, magne-
tomechanical vibration and stability analysis of mo-
nolayer graphene sheets rested on the viscoelastic fo-
undation is the issue of another research performed 
by Ghorbanpour Arani et al. [51]. Xiao et al. [52] 
presented nonlocal strain gradient theory to examine 
the wave propagation behavior of viscoelastic mono-
layer graphene sheets. 

The literature survey reveals that wave propaga-
tion characteristics of a graphene sheet on the visco-
elastic medium under thermal loading has not yet 
been investigated. Henceforward, it is found neces-
sary to survey this problem here for the first time. 
The graphene sheet is considered to rest on the visco-
Pasternak substrate including a linear constant 

(Winkler coefficient), a nonlinear constant (Pasternak 
coefficient) and a damping constant. Shear deforma-
tion is taken into account using a higher-order two-
variable shear deformation plate theory. Moreover, 
nonlocal strain gradient theory is utilized to consider 
small-scale effects. Once the nonlocal differential 
equations are completely derived, they will be solved 
analytically using an exponential function. The influ-
ence of each parameter is precisely explained at the 
end of the paper. 

2. THEORY AND FORMULATION 

2.1. Kinematic Relations 

The present section is devoted to the description 
of the kinematic behavior of graphene sheets. The 
schematic of an embedded monolayer graphene sheet 
can be seen in Fig. 1. In order to consider shear de-
formation effects, a refined higher-order plate theory 
is utilized. Thus, displacement fields can be written 
as [16] 
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where wb and ws are the bending and shear deflec-
tions in the thickness direction, respectively, and f (z) 
is the shape function that estimates shear stress and 
shear strain. In the present theory, a trigonometric 
function is used as follows: 

 ( ) sin .
h z

f z z
h

      
 (4) 

Here, h is the plate thickness, and, for shear stress 
and shear strain estimation, the shape functions are 
often associated with the deformation of the material 
within an element. Now, nonzero strains can be writ-
ten as follows: 

 

 

Fig. 1. Geometry of a monolayer graphene sheet rested 
on the viscoelastic medium. 
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where g(z) can be stated as 
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Moreover, Hamilton’s principle can be defined as 
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in which U is the strain energy, T is the kinetic ener-
gy, and V is the work done by external loads. The va-
riation of strain energy can be calculated as 
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Substituting Eq. (5) in Eq. (8) gives 
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In Eq. (9), the unknown parameters can be defined in 
the following form: 
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Furthermore, the variation in work done by exter-
nal forces can be shown as follows: 
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where 0 0 0, ,x y xyN N N  are the in-plane applied loads, 
kW is the Winkler coefficient, kP is the Pasternak co-
efficient, and Cd is the damping coefficient. The va-
riation in kinetic energy should be written as 
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in which 
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By substituting Eqs. (9), (11), and (12) in Eq. (7) 
and setting the coefficients δwb and δws to zero, the 
Euler–Lagrange equations of graphene sheets can be 
rewritten as 
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x y xyN N N N    and thermal loading 

can be formulated as 
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where E, ν, α, and ΔT are Young’s modulus, Pois-
son’s ratio, thermal expansion coefficient, and tem-
perature gradient, respectively. 

2.2. Nonlocal Strain Gradient Elasticity 

According to nonlocal strain gradient theory, the 
stress field takes into account the effects of the non-
local elastic stress field, along with the strain gradi-
ent stress field. Therefore, for elastic solids, the the-
ory can be expressed as follows [18]: 
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where Cijkl is the elastic coefficient, e0a and e1a 
are introduced to take account of nonlocal ef-
fects, and l takes account of strain gradient effects. 
Once the nonlocal kernel functions α0(x, x′, e0a) and 
α1(x, x′, e1a) satisfy the developed conditions, the 
constitutive relation of nonlocal strain gradient the-
ory can be expressed as 
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where 2  is the Laplacian operator. If e1 = e0 = e, the 
general constitutive relation in Eq. (19) becomes 
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Finally, the simplified constitutive relation can be 
written as follows: 
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In the above equation, 
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where μ = e0a and η = l. Substituting Eq. (10) in 
Eq. (21) and considering the Kelvin–Voigt viscoelas-
tic model gives 
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In Eqs. (23) to (25), the cross-sectional rigidities can 
be formulated as follows: 
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By substituting Eqs. (23) to (25) in Eqs. (14) and 
(15), the nonlocal governing equations of monolayer 
graphene sheets can be directly derived in terms of 
displacements as follows: 
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3. SOLUTION PROCEDURE 

In this section, the derived nonlocal governing 
equations will be solved analytically. The displace-
ment fields are assumed to be exponential and can be 
defined as follows: 
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 (30) 

where Wb and Ws are the unknown coefficients, β1 
and β2 are the wave numbers of wave propagation 
along the x and y directions, respectively, and   is 
the angular frequency of a wave. Substituting 
Eq. (30) in Eqs. (28) and (29) yields 

 2
2 2 2 2([ ] [ ] ){ } {0},K M     (31) 

where the corresponding kij and mij are defined in 
Appendix A. The unknown parameters of Eq. (31) 
can be noted as follows: 

 b s{ } { , } .TW W   (32) 
In order to derive the angular frequency, the de-

terminant of the left-hand side of Eq. (32) should be 
set to zero: 
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Fig. 2. Wave frequency versus wave number for various length scale parameters at μ = 1 (a) and 3 nm (b). kW = kP = 0, Cd = 0, 
g = 0, and ΔT = 0. 

 
 2

2 2 2 2[ ] [ ] 0.K M    (33) 

In the above equation, by setting β1 = β2 = β and solv-
ing the obtained equation for ω, the angular frequ-
ency of a wave in the embedded monolayer graphene 
sheet can be calculated. 

4. RESULTS AND DISCUSSION 

Here, the wave propagation responses of mono-
layer graphene sheets are supposed to be changed de-
pending on various parameters. The thermomechani-
cal properties of graphene sheets are E = 1 TPa, ν = 

0.19, ρ = 2300 kg/m3, and α = 1.6 × 10–6
 1/K. The 

thickness is presumed to be h = 0.34 nm. In the dia-
grams, wave frequencies are calculated by dividing 
the angular frequency of a wave by 2π ( (2 )).f     
Figure 2 is plotted to describe the small-scale effects 
while changing the wave frequency. It is seen that at 
a lower nonlocal parameter the slope of the curve is 
steeper, which means that at the constant wave num-
ber the wave frequency grows easier when the non-
local parameter is smaller. Indeed, this phenomenon 
suggests a softening impact which is attributed to the 
nonlocal parameter introduced by Eringen. Converse-
ly, the length scale parameter operates in a manner 
that increases the wave frequency. To put it different-
ly, elevating the length scale parameter evidently 
leads to higher wave frequencies. In essence, the 
length scale parameter accommodates the stiffness-
hardening effect observed in nanoscale structures, 

which is not taken into account by the nonlocal para-
meter. 

The damping effect becomes more powerful with 
increasing structural damping coefficient. Even 
though the curve shape is similar for all nonzero 
structural damping coefficients, the wave number at 
which the wave frequency is maximum is not equal 
for various values of this coefficient. In other words, 
the peak of the curve moves to the left as the structu-
ral damping coefficient increases. On the other hand, 
Fig. 3 is plotted to magnify the combined influence 
of the small size and damping coefficient. From the 
given figures it is obvious that there are two size-de-
pendent ways for increasing the wave frequency of 
graphene sheets. The first approach is to use smaller 
nonlocal parameters, and the second one is to choose 
higher values for the length scale parameter. Judging 
from the diagrams, the wave frequency shows a 
damping behavior. As a matter of fact, the wave fre-
quency can be smaller whatever the damping coeffi-
cient value is. It should be also noted that, at the final 
damping coefficient which is about 12 in this case, 
the wave frequency reaches a unit value which is ex-
actly zero. Now, we turn to the investigation of the 
effect of the Winkler and Pasternak coefficients by 
plotting the wave frequency versus damping coeffi-
cients in Fig. 4. It is clearly seen that both the Wink-
ler (linear) and Pasternak (nonlinear) coefficients 
have enough potential to amplify wave frequency va-
lues. Moreover, the strongest change in the wave fre-
quency response can be observed when the Winkler  
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Fig. 3. Wave frequency versus damping coefficient for different length scale parameters at μ = 1 (a) and 3 nm (b). kW = kP = 0, 
ΔT = 0, q = 0, and β = 0.15 × 109

 m. 

 
coefficient varies from kW = 0 to kW = 2.5. In other 
words, the initial shift in the Winkler or Pasternak 
coefficient from zero to their first nonzero value has 
the most significant impact on the wave frequency. 
Next we analyze the variation in the wave frequency 
by plotting the wave frequency against the Pasternak 
and Winkler coefficients at various temperature gra-
dients in Fig. 5. It becomes apparent that higher tem-
perature gradients result in lower wave frequencies. 
Furthermore, comparison shows that the Winkler  
 

foundation model yields higher wave frequency va-
lues. 

5. CONCLUSIONS 

The present work was devoted to the investigation 
of the thermally affected wave propagation behavior 
of monolayer isotropic graphene sheets embedded on 
the viscoelastic substrate. The small-scale effects 
were estimated by using nonlocal strain gradient the-
ory. Final governing equations were derived within  

 

 

Fig. 4. Wave frequency versus damping coefficient for different Winkler (kP = 0) (a) and Pasternak coefficients (kW = 0) (b). 
μ = η = 1 nm, g = 1, ΔT = 0, and β = 0.1 × 109

 m. 
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Fig. 5. Wave frequency versus Pasternak (a) and Winkler coefficients (b) for different temperature gradients. μ = η = 1 nm, 
Cd = 0, g = 1, and β = 0.3 × 109

 m. 

 
the Hamiltonian approach, and the obtained eigen-
value equation was solved by means of an exponen-
tial function to determine wave frequency values. 
The performed calculations reveal that 

(i) adding the length scale parameter increases 
wave frequency; 

(ii) reducing the nonlocal parameter may result in 
the wave frequency increase; 

(iii) amplifying the temperature gradient reduces 
wave frequency values. 

These results may be useful in the design of ther-
moviscoelastic structural components of nanoelectro-
mechanical systems (NEMS) operating in different 
environments, and the derived numerical results may 
serve as benchmarks for future damping analysis of 
structures containing graphene sheets. 

APPENDIX A 

In Eq. (31), kij and mij (i, j = 1, 2) are defined as 
follows: 
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