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Abstract—Statistical distributions of the elastic strain and stress tensor components in the grains of poly-
crystalline materials are necessary to calculate the probabilities of various local critical events, such as da-
mage and others, which are of random origin due to the stochastic grain structure. Many experimental and 
computational studies suggest that these distributions can be approximated by a normal distribution. The nor-
mal distribution parameters are determined from histogram-like plots obtained experimentally or by compu-
ter simulation. Most published histogram distributions are highly skewed, in contrast to the normal distribu-
tion. Here we present a new direct calculation method for the probability densities of the elastic strain tensor 
components. The method uses an integral equation for strains in heterogeneous solids, which reduces the so-
lution of the boundary value problem of polycrystal deformation to the sum of solutions of some problems 
for neighboring grains. The focus is on the influence of random grain interactions on the strain distribution. 
Calculations are carried out for polycrystals with different elastic symmetries and degrees of grain aniso-
tropy. All probability densities are finite, asymmetric, and noticeably different from Gaussian ones. It is 
shown that very few particularly located neighboring grains (of dozens) have a much greater effect on the 
distribution pattern and limiting values of the strain tensor components than all the others. 
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1. INTRODUCTION 

Polycrystalline materials are the most common 
structural materials. They have a stochastic grain 
structure, i.e. the shape and size of grains as well as 
the orientation of their crystallographic axes are ran-
dom. As a result, the strain fields as a function of co-
ordinates in polycrystalline solids are highly nonuni-
form both in neighboring grains and inside individual 
grains. They are also stochastic due to random grain 
structures in polycrystals. These fields can be studied 
either as random functions of coordinates in a speci-
fic macroscopic specimen, or as random variables at 
a fixed point using an ensemble of grain structure 
configurations. Within the ergodic hypothesis, these 
approaches are equivalent. In this work, the method 
of statistical ensembles is used. 

The macroscopic mechanical response of a poly-
crystalline solid to external action is the result of the 
cooperative behavior of a very large number of gra-
ins that constitute the polycrystal. It is generally ac-
cepted that the nonuniformity of mechanical fields on  
 

the scale of individual grains (mesoscale) during de-
formation is the driving force behind local damage, 
damage accumulation, and subsequent macrofracture. 
Knowledge of the behavior of polycrystalline materi-
als on the mesoscale and its dependence on various 
structural factors is needed for a fundamental under-
standing of the stochastic processes of deformation 
and fracture of polycrystalline solids. Knowledge of 
the distribution functions of the components of the 
fluctuating strain and stress fields is basic, for exam-
ple, to the calculation of damage probabilities, which 
occur in grains with the maximum strain and stress 
tensor component or their combinations in accor-
dance with certain criteria. 

The statistical characteristics of nonuniform strain 
fields in polycrystalline materials can be studied both 
experimentally and numerically. An experimental 
study of intragranular strain inhomogeneity can be 
carried out by the high-resolution digital image cor-
relation method [1, 2] for surface grains and by the 
synchrotron X-ray diffraction method and X-ray mic-
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rotomography for subsurface grains of a polycrystal-
line solid [3–8]. 

The most common computational investigation 
includes development of a three-dimensional geo-
metric model of the polycrystalline structure and nu-
merical solution of the corresponding boundary value 
problem. Methods of reproducing real grain structu-
res in this or that models (of shapes, equilibrium ang-
les of triple junctions, crystallographic orientation of 
grains, etc.) have been intensively developed in re-
cent decades. Early and relatively recent methods 
were reviewed in [9, 10]. New methods are based on 
step-by-step packing of a representative volume [11], 
consideration for the experimental data to optimize 
the synthesized grain structures of polycrystals [12], 
etc. Boundary-value problems of deformation of the 
built structures are most often solved by the finite 
element method. For this purpose, geometric models 
are integrated into any computational package (for 
example, ABAQUS/Explicit) [13, 14], or special 
software is developed for them (for example, [15]). 
Another computational approach to studying the de-
formation of polycrystalline materials is based on the 
method of internal variables. This method provides 
no explicit description of the grain structure geome-
try, but introduces new phenomenological variables, 
which are given by evolution relations. The method 
is multilevel and is applicable to scale levels from the 
macroscopic to dislocation one. The method and its 
applications are detailed in [16]. 

The experimental and computational approaches 
study random strain fields on discrete statistical sam-
ples (dataset) of strain tensor components measured 
in polycrystal grains or taken at the finite element in-
tersections from the solution of a boundary value 
problem for model polycrystals. Statistical distribu-
tions are plotted based on the frequency of falling of 
random values of the samples into the specified inter-
vals of random variables. The distributions thus ob-
tained have a histogram form [17–21]. For a continu-
ous representation, such densities are interpolated by 
some model distributions. For elastic strains, the nor-
mal distribution is usually used, which is symmetric 
with respect to the average random variable. How-
ever, histogram distributions published so far often 
have noticeable visual asymmetries [17–21]. This pa-
per proposes an alternative method for calculating 
distributions, which establishes the causes of devia-
tions from the Gaussian distribution. 

The randomness of strains is due to the random-
ness of shapes and crystallographic orientations of  
 

grains, as well as due to their random interactions. It 
was experimentally established that the interaction of 
neighboring grains has a strong influence on the 
strain in individual grains in terms of its inhomoge-
neity and stochasticity [22]. Among all factors, the 
mutual orientation of the crystallographic axes of the 
interacting grains has a decisive influence on meso-
strain. This work focuses on this stochastic factor, i.e. 
random interactions of grains caused by the random 
orientation of their crystallographic axes. Other ran-
dom factors, such as foreign inclusions, inhomoge-
neities in the chemical composition (for alloys), dif-
ferent modifications of grains, residual stresses, and 
other features of commercial polycrystalline materi-
als are given no consideration. We deal only with 
single-phase polycrystals consisting of grains of the 
same type. All strains are assumed to be low, so that 
no irreversible changes occur in the structure during 
deformation. The statistical strain distribution is cal-
culated by the method of integral equations for the 
strain tensor in heterogeneous solids modified for the 
case of polycrystals. The specific structure of the 
equations for a polycrystalline solid made it possible 
to develop an effective method for solving these 
equations and to process a large number of imple-
mentations of random structures for the statistical 
analysis of random strains. 

The work shows that the statistical strain distribu-
tions are non-Gaussian, that the influence of the in-
teraction on the strain tensor components in any grain 
of a polycrystal is significantly different for the 
neighboring grains, and that this causes the deviation 
of the studied distributions from the normal distribu-
tion. 

2. INTEGRAL EQUATION FOR MESOSTRAINS 
IN GRAINS 

The integral equation for the strain tensor εmn(r) in 
large heterogeneous macroscopically isotropic solids 
(for which the surface integral usually present in such 
equations tends to 0) was differently written [23–25, 
etc.] and has the form 

*( ) ( )mn mn  r r  

 3( )[ ( ) ] ( )d ,mnij ijkl ijkl kl
V

g C C         r r r r r  (1) 

where Cijkl(r) is the coordinate-dependent elastic mo-
dulus tensor determined over the entire volume of the 
solid, and Cijkl is the isotropic elastic modulus ten-
sor averaged over the solid volume V: 

1 ( )d ,ijkl ijklV
C V C    r r  
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gmnij(r) is Green’s tensor of an isotropic averaged me-
dium with the elastic modulus tensor Cijkl, and 

* ( )mn r  is the macrostrain tensor components obtain-
ed from the solution of the boundary value problem 
for an averaged homogeneous solid, which is assum-
ed to be known. Summation is performed over re-
peated subscripts in (1). 

Integral Eq. (1) is derived from differential equa-
tions for the two boundary value problems in dis-
placements: a boundary value problem for a solid 
with the averaged elastic modulus tensor and a boun-
dary value problem for a heterogeneous solid. The 
transition from differential to integral equations is 
implemented by introducing Green’s tensor [24]. 
Both solids are of the same shape and size. External 
loads are specified by assigning displacements to all 
boundary points. Consequently, the boundary condi-
tions for both problems are chosen to be kinematic: 
displacements ( ) ( )i iu   r r  are specified on the ex- 

ternal surfaces of the solids, where φi(r) is the speci-
fied functions that are the same for both solids, and Γ 
is the solid surface. Below we consider only the case 
of macroscopically uniform deformation of both so-
lids. For an averaged solid, this means that * ( )mn r  is 
the coordinate-independent constant * .mn  It corre-
sponds to homogeneous displacement boundary con-
ditions, where xn is the projections of the radius-vec-
tor r on the coordinate axes. In this particular case, 
there is no need to solve the problem for a homoge-
neous solid. The components are found immediately 
from the boundary conditions. For a heterogeneous 
solid under the same boundary conditions, the strain 
averaged over the solid volume is given by [24] 

*1 ( )d .mn mn mn
V

V      r r  

For a macroscopically homogeneous polycrystalline 
solid under uniform deformation, the strain tensor 
averaged over the representative volume coincides 
with that averaged over the solid volume. The intro-
duction of a solid with averaged properties (reference 
solid) is a mathematical technique that makes it pos-
sible to separate the influence of boundary conditions 
(only *

mn  depend on them) and heterogeneities (the 
term with the volume integral, which is independent 
of the boundary conditions) on the solution of 
Eq. (1). Equation (1), its variables, as well as all the 
following expressions and variables refer to the sin-
gle laboratory coordinate system of the solid. Green’s 
tensor has the known form [24] 

3

1 2
( ) (1 ) 1 ( )

3 5

( )
,

| |

ijkl ijkl ijkl

ijkl

g V D

f

             




r r

r

r

 

where (3 ) (3 4 )K K           is the material 
parameter, K and μ are the averaged bulk modulus 
and shear modulus of the homogenized medium, δij is 
the Kronecker delta symbol, Vijkl and Dijkl are the 
spherical and deviatoric parts of the unit tensor 

1 2( ),ijkl ik jl il jkI        and δ(r) the Dirac delta 
function. The function fijkl(r) depends only on the 
angles between the radius-vector r and the coordinate 
axes: 

1
( ) [3( )

8
2 ( )

3 (

5 )],

ijkl i l jk j l ik

ijkl ijkl ikjl iljk

i j kl i k jl i l jk j k il

j l ik k l ij i j k l

f n n n n

I I I I

n n n n n n n n

n n n n n n n n

   


    

        

    

r

 

where | |i in x r
 
is the direction cosines of the ra-

dius-vector r (xi is the projection of the radius-vector 
on the ith coordinate axis). The variables without 
superscripts and referring to the whole solid are 
called global variables. 

Equation (1) is applicable to any type of heteroge-
neous solids. In polycrystalline solids, the compo-
nents of the global elastic modulus tensor Cijkl(r) are 
rapidly oscillating functions of coordinates. They are 
constant inside a grain and change abruptly in transi-
tion to another grain due to rotation of the crystallo-
graphic axes of the grains or different grain types (in 
multiphase polycrystals). Below, we study only sin-
gle-phase polycrystals consisting of grains of the 
same type. With this in mind, it is convenient to de-
compose global field variables into the sums of local 
(mesoscopic) fields using the indicator functions 
λξ(r) (equal to 1 in the ξth grain and 0 in other cases). 
For the global elastic modulus and strain tensors, we 
have 

 ( )

1
( ) ( ) ( ),

N

ijmn ijmnC C 



 r r r  (2) 

 ( )

1
( ) ( ) ( ).

N

ij ij





   r r r  (3) 

Hereinafter, Greek superscripts and subscripts (ξ, η, 
etc.) number grains of the polycrystal, N is the total 
number of grains in the polycrystal (macroscopically 

large number), ( ) ( )ijmnC  r  and ( ) ( )ij
 r  are the tensors 

of elastic moduli and strains of the ξth grain in the la-
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boratory coordinate system, the domain of which is 
the volume of the ξth grain. The superscript distin-
guishes local variables from global ones. 

Using Eqs. (2) and (3) for polycrystalline solids, 
Eq. (1) is transformed into the system of equations 

for local strain tensors ( ) ( )ij


 r  in each grain [26] 

( ) *

( ) ( )

( )

( )

d ( )( ( ) ) ( )

d ( )( ( )

ij ij

ijkl klmn mnklmn

N

ijkl klmn

g C C

g C








 
    




   



  

        

   



 

r

r r r r r

r r r r

 

 ( )) ( ),klmn mnC 
    r  (4) 

where ωξ, and ωη are the volumes of the ξth and ηth 
grains. The subscript of the radius-vector rξ indicates 
that it varies only within the ξth grain. 

System (4) consists of a huge number of equations 
equal to the number of grains in the solid. It can be 
interpreted in terms of the interaction of strains at 
different points of the solid. The first integral on the 
right-hand side of (4) describes the influence of 
strains at all points inside the ξth grain on the strain 
at a given point rξ of this grain. One can say that this 
integral represents the intragranular strain interaction. 
Each integral under the summation sign in (4) repre-
sents the influence of strains at all points inside the 
ηth grain on the strain of the studied grain (the ξth 
one) at a given point rξ. The entire sum represents the 
effect of intergranular interactions of all grains in a 
polycrystalline solid with the studied grain. Thus, a 
polycrystalline solid is represented as a system of in-
teracting grains. 

Solving the system of integral Eqs. (4) is a diffi-
cult task. An approximate solution can be derived by 
using a piecewise constant approximation for the 

( ) ( )ij
 r  fields. To do this, we divide each grain into a 

sufficiently large number of small subregions so that 
strains within each subregion can be considered ap-
proximately constant and change in steps in transi-
tion to the neighboring subregion. For brevity, these 
subregions are called subgrains. Within the same 
grain, they are physically no different, i.e. they have 
the same elastic moduli and crystallographic orien-
tations. Let us decompose intragranular strains 

( ) ( )ij


 r  in all grains into the sums of subgrain stra-

ins ( )( )a
ij

  using the indicator functions: 

( ) ( )( )

1
( ) ( ) ,

n
a

ij a ij
a

 
 


   r r  

 ( ) ( )( )

1
( ) ( ) ,

n
e

ij e ij
e

 
 


   r r  (5) 

where λa(rξ) is the indicator function of the ath sub-
grain in the ξth grain (equal to 1 inside the subgrain 
and 0 otherwise), λe(rη) is the indicator function of 
the eth subgrain in the ηth grain, and n is the number 
of subgrains in each grain. Hereinafter, Latin super-
scripts and subscripts number subgrains in the grain, 
and Greek ones, as mentioned above, number grains. 

Strains ( )( ) ( )a
ij


 r  and ( )( ) ( )e

ij


 r  are constant within 

the corresponding subgrains. This procedure trans-
forms the system of integral Eqs. (4) into the system 
of linear algebraic equations for subgrain strains 

( )( )a
ij

 in all polycrystal grains [27] 

( )( ) ( )( ) ( )( ) ( )( )*[ ]
n

aa a ab b
ijmn ijmn ij ij ijmn mn

b a
I B B   


       

 ( )( ) ( )( )

1
,

N n
ae e

ijmn mn
e

B  

 
    (6) 

where the dimensionless tensor coefficients 

 

( )( ) ( )

( )( ) ( )

d ( ) ,

d ( )

b

e

ab
ijmn b ijkl a b klmn

ae
ijmn e ijkl a e klmn

B g C

B g C

 



 



    

    





r r r

r r r
 (7) 

characterize the intensity of subgrain interactions. In 
(6) and (7), the subscripts a and b number subgrains 
of the ξth grain, the subscript e numbers subgrains of 
the ηth grain, ωb(ξ) and ωe(η) are the subgrain volumes. 
The first coefficient describes the interaction of sub-
grains in the same grain, and the second one de-
scribes the interaction of subgrains in different 
grains. 

System (6) consists of n × N equations, being 
much larger than system (4). It is solved using pertur-
bation theory. All subgrain interactions, i.e. both 
terms with the summation signs in (6) are considered 
as a perturbation. The solution is represented as an 
infinite sum of corrections of all orders 

( , , )( , ) (0)( , , )( , )( ) ( )a b e a b e
ij ij

     r r  

 (1)( , , )( , ) (2)( , , )( , )( ) ( ) ...,a b e a b e
ij ij

       r r  (8) 

and the corrections satisfy an infinite chain of the 
coupled subsystems of equations 

(0)( )( ) ( )( ) (0)( )( ) * ,a aa a
ij ijijkl klB        

(1)( )( ) ( )( ) (1)( )( )a aa a
ij mnijklB      

 ( )( ) (0)( )( ) ( )( ) (0)( )( )

1
,

n n
ab b ae e

ijkl kl ijkl kl
b a e

B B   

  
       (9) 
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(2)( )( ) ( )( ) (2)( )( )

( )( ) (1)( )( ) ( )( ) (1)( )( )

1
etc.

a aa a
ij mnijkl

n n
ab b ae e

ijkl kl ijkl kl
b a e

B

B B

  

   

  

  

     
 

For most real polycrystals, all ( )( )| |ab
ijmnB   and 

( )( )| |ae
ijmnB   are of the order 10–2 or less, and 
( )( ) ( )( )| | | | .ae ab

ijmn ijmnB B   In the first-order approxima-

tion for the subgrain interaction ( )( )ab
ijmnB   and 

( )( )ae
ijmnB  , the solution is reduced to the sum of the 

zero-order and first-order corrections: (details in 
[27]): 

 ( )( ) (0) ( )( ) (1) ( )( ) ,a a a
ij ij ij

        (10) 

and the corrections satisfy the equations 

 

(0)( )( ) ( )( ) (0)( )( )*

(1)( )( ) ( ) *

,

,

a aa a
ij ij ijkl kl

a a
ij klijkl

B

B

  

 



    

 
   

 
 

 (11) 

where the new coefficient 

 ( ) ( )d ( ) ( )a
ijmn ijkl a klmnklmnB g C C



 
 



       r r r  (12) 

determines the intensity of interaction of the ath sub-
grain in the ξth grain with the entire ηth grain inte-
grally. The solution of (11) depends on the polycrys-

tal structure through ( )( )aa
ijklB   and the entire sum in 

the brackets of (11). 

3. ADDITIVITY OF INTERACTIONS AND 
LARGE RANDOM SAMPLES OF GRAIN 

STRUCTURE IMPLEMENTATIONS 

A particular polycrystalline specimen has a fixed 
grain structure. Consequently, Eqs. (11) give a de-
terministic mesostrain value at any given point inside 
the solid. To trace the mesostrain randomness de-
pending on the coordinates, we use the ergodic hypo-
thesis. According to this hypothesis, it is necessary to 
fix the point ra, to generate a large number of random 
implementations of the grain structure for the entire 
polycrystal, and to solve system (11) for each imple-
mentation. The obtained solutions constitute a set of 
possible random mesostrains for the entire polycrys-
tal. This value set can be used to build the mesostrain 
distribution. Since the set of possible structure imple-
mentations is continuously large, the number of im-
plementations must be very large to be statistically 
sufficient. 

Random factors in system (11) are the coefficients 
( )( )aa
ijklB   and ( ).a

ijmnB   They determine the stochastic 

nature of the problem of determining random meso-
strains. The summands of (11) determine the influ-
ence of each individual polycrystal grain on the solu-
tion in the studied ξth grain and make it independent-
ly. Mathematically, the influence of grain interac-
tions on the solution is additive. Moreover, the solu-
tion does not depend on the boundary conditions for 
a polycrystalline solid. Boundary conditions deter-

mine only the macrostrain in the averaged solid * .ij  

The second equation in (11) shows that we deal with 
a multiplicative expansion of two factors influencing 
the solution: boundary conditions and polycrystalline 
structure. Only the first factor (the sum in the paren-
theses) is random. If a sufficiently large number of 

the coefficients ( )a
ijmnB   is calculated, the model calcu-

lations correspond to a macroscopic polycrystalline 
specimen. It turns out that these coefficients decrease 
very quickly with distance between grains, so the 
sum in Eq. (11) can be limited to a finite number of 
neighboring grains. 

Solution of (10) gives a strain value at any point 
of any grain provided that the subgrain volume 
around the point tends to 0. 

Equations (11) have one important feature. The 

equation for (0)( )( )a
ij

  in (11) includes the parameters 

only of the ξth grain. The equation for (1)( )( )a
ij

  con-

tains the parameters of all other ηth grains and has no 
parameters of the ξth grain. Thus, the zero- and first-

order corrections (0)( )( )a
ij

  and (1)( )( )a
ij

  are statisti-

cally independent. The same is true for any two coef-

ficients ( )a
ijklB   in the sum on the right-hand side of 

(11). 

The product ( ) *a
klijklB    represents the contribution 

of the interaction with the ηth grain, which is denoted 
by 

 (1)( )( ) ( ) * .a a
ij klijklB 


    (13) 

We rewrite the solution of (10) in the form of the 
sum of contributions: 

 ( )( ) (0)( )( ) (1) ( )( ) ,a a a
ij ij ij

  


      (14) 

in which all terms on the right-hand side are statisti-
cally independent. Consequently, we can build sepa-
rate distributions for (0)( )( )a

ij
  and all contributions  
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Fig. 1. Grain shape, vertical (left) and three horizontal sections of a model polycrystal. 
 

(1) ( )( ) |a
ij


  as well as the total distribution for 

( )( ) ( )a
ij a

 r  as the sum of independent random variab-

les. This is a great computational advantage of the in-
tegral equation method. 

4. NUMERICAL EXAMPLES OF MESOSTRAIN 
DISTRIBUTIONS 

The approach described above is applicable to 
single-phase model polycrystals with grains in the 
form of truncated octahedra of equal volumes. Trun-
cated octahedra continuously fill the space, closely 
resemble natural grains, simplify the construction of 
grain structure geometry, and are often used in nume-
rical simulation. Perfect contact is specified at grain 
boundaries (continuity of the displacement vector, 
which is used in deducing integral Eq. (1) for the 
strain tensor). The grain boundary thickness is consi-
dered to be zero. Each grain has 18 nearest neigh-
bors. Figure 1 shows the grain shape, a vertical and 
three characteristic horizontal sections of a 19 grain 
cluster (the central ξth grain is the grain to be studi-
ed) in the coordinate system, and numbers of the 
neighboring grains. 

Consideration is given to an untextured polycrys-
tal. Crystallographic axes of the grains are distributed 
randomly and uniformly in space. The latter means 
that all directions of the crystallographic axes (which 
are parallel to the axes of elastic symmetry of each 
grain) are equally probable. The crystallographic ori-
entations of different grains are uncorrelated. Thus, a 
sufficiently large polycrystal is elastically isotropic 
on the macroscale. The summation in (11) is made 
over all grains in the polycrystal. The sum contains a 
very large number of terms. However, the coeffici-

ents ( )a
ijmnB   quickly decrease with distance between 

grains, because Green's tensor decreases in inverse 
proportion to the cube of the distance |ra – rη|

–3. 
Therefore, as a first approximation, the sum is limit-
ed to the 18 nearest neighbors. The influence of more 
distant grains can easily be taken into account. 

In numerical examples, a model polycrystal is 
loaded by uniaxial tension along the vertical X3 axis. 
Uniaxial tension with the stress tensor component σ33 
(the rest are equal to 0) corresponds to the kinematic 

boundary conditions *( )m mn nu x  r  with the normal  

strain tensor components equal to *
33 33 ,E    

* * *
11 22 33      and shear ones equal to 0, where E 

and ν are Young’s modulus and Poisson’s ratio of a 
macroscopically isotropic polycrystal. 

Let us set the task of calculating the probability 
density of the longitudinal (in the loading direction) 

mesostrain tensor component (0)( )( )( )( )
33 33

aa      
(1) ( )( )
33

a   in the laboratory coordinate system of a po-

lycrystal. 
The analysis of the first equation in (11) shows 

that, for spherical grains, the zero-order correction is 
exactly homogeneous inside the grain [27]. For gra-
ins in the form of a truncated octahedron, the numeri-
cal calculation gives a homogeneous solution for 
zero-order corrections for all subgrains within 90% 
of the grain volume, being inhomogeneous only near 
the faces and edges (where elastic unphysical diver-
gences and plastic shear strains arise). First-order 

corrections (1)( )( )a
ij

  are inhomogeneous over the 

grain volume. We consider strains only in the bulk of 
grains. 
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Fig. 2. Probability density of strains for zero-order corrections (0) ( )( )
33 .a   The horizontal axis is the relative strain (0)( )( ) *

3333
a    

(color online). 

 
In the used model, the randomness of the grain 

structure of polycrystals is reduced to random equal-
ly probable orientations of crystallographic axes of 
all grains. The crystallographic orientation is speci-
fied by Euler angles. The equally probable distribu-
tion of the axes corresponds to the joint probability 
density of the Euler angles φ, ψ, and θ in the form 

( , , ) 1 (8 ) sin ,f        where φ, ψ, and θ are the 
angles of proper rotation, precession, and nutation, 
respectively [28]. The sets of random Euler angles 
are specified using a random number generator. 

With 106 random crystallographic orientations for 
each grain, the dataset includes 106 elements for the 

zero-order correction (0)( )( )a
ij

  and for 18 contributi-

ons (1)( )( ) |a
ij


  from the nearest neighbor interac-

tions. All these variables are statistically independ-
ent. First, the distribution functions for these random 
contributions are derived separately. Since the data-
sets are discrete, the distribution functions are nonde-
creasing piecewise constant functions. Then, the pro-
bability densities for these 19 random variables are 
calculated by finite-difference differentiation of the 
distribution functions. The total probability density 

for ( )( )
33
a   is found by the laws of probability for the 

sum of these 19 statistically independent densities. 

Calculations were performed for single-phase po-
lycrystals with hexagonal and cubic elastic symmet-
ries as well as with low and high anisotropy of gra-
ins: zinc (strong anisotropy with the lattice parameter 
ratio 1.856),c a   titanium (weak anisotropy with 

1.587),c a   copper (strong anisotropy with the 
Zener factor 3.277), and molybdenum (weak aniso-
tropy with the Zener factor 0.707). The elastic cons-
tants of single crystals and polycrystals are taken 
from [29, 30]. All figures below correspond to the 
central point of the ξth grain. For the rest points wi-
thin 90% of the ξth grain volume, the results change 
slightly (5–6% variation). 

Figure 2 shows the probability densities for zero-

order corrections (0)( )( )
33 .a   The zero-order approxi-

mation is a solution for individual grains embedded 
in a homogenized medium. Thus, these curves are al-
so strain distributions for isolated anisotropic ran-
domly oriented Eshelby inclusions [27]. 

Figure 3 shows typical probability densities for first-

order corrections (1)( )( ) ( ) *
633 33|a a

klklB 
    to the inter-

action with one nearest neighboring grain (number 6). 
The behavior of the curves reflects the complex 

dependence of the interaction of grains on the mutual 
orientation of their crystallographic axes. 

 

 
Fig. 3. Probability density of strains for the contribution from the interaction with grain 6. The horizontal axis is the relative 
strain (1)( )( ) *

6 3333 | /a 
   (color online). 
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Fig. 4. Total probability densities. The horizontal axis is the relative strain ( )( ) *
3333

a    (color online). 

 
Figure 4 shows the total probability densities of 

the strain components ( )( )
33 .a   Numerical differentia-

tion causes the sawtooth shape of the curves in 
Figs. 2 and 3. Summing the probability densities for 

(0)( )( )a
ij

  and 18 contributions (1)( )( ) |a
ij


  smoothes 

the curves for the total probability densities in Fig. 4.  
The contributions of different neighboring grains 

vary significantly. For example, in copper, the maxi-

mum contribution (1)( )( )
33 |a 

  is from grain 0 (and is 

equivalent to 17), and the minimum contribution is 
from grain 5 (being equal to the contributions from 
grains 2, 3, 4, 13, 14, 15, and 16). The ratio of these 
contributions is 4.01. The contributions of other 
grains lie between these limiting values. Thus, only 
two grains (0 and 17 in a favorable orientation) can 
significantly increase the strain in the central ξth 
grain. In other polycrystals, the maximum influence 
can be exerted by other grains. The same is true for 
various types of external loads. 

All probability densities are asymmetric and cor-
respond to finite intervals of possible strains. The 
asymmetry is determined by the type of elastic aniso-
tropy of single crystals and specific values of the 
elastic modulus tensor components of the grain. The 
higher the anisotropy of grains, the higher the asym-
metry of the distribution. For polycrystals with very 
weak grain anisotropy (such as tungsten with the 
Zener factor 1), the probability density reduces to the 
Dirac delta function. The average strain and the stain 
with the highest probability are not the same. The 
distribution tails tend to 0 at the boundaries of the de-
finition domain exponentially. On the scale of Fig. 4, 
these tails are invisible. For example, the maxi-
mum possible relative strain for zinc is equal to 

( )( ) *
3333 1.92,a     which is almost twice the macro-

strain. For this polycrystal with the relative strain 

more than 1.5, the probability of mesostrain is about 
0.02. This probability is large enough to be a possible 
cause of triggering critical local events (such as pri-
mary damage). 

The asymmetry of the distributions is also govern-
ed by the large difference in the zero- and first-order 
corrections. From Fig. 2 it can be seen that, for zinc, 
the maximum contribution of the zero-order correc-
tion is more than 10 times higher than that of the 
first-order correction to the interaction with grain 6 
shown in Fig. 3. The total maximum influence of all 
nearest neighbors is comparable to the zero-order 
correction, but has a very low probability, because it 
requires that these neighbors be simultaneously ori-
ented in specific extreme positions. Therefore, for 
zinc, the long tail of the probability density with the 
zero-order corrections towards high strains leads to 
the asymmetry of the central region of the total pro-
bability density in Fig. 4. Similar considerations qua-
litatively illustrate the asymmetry of the probability 
density for copper. For polycrystals with weak elastic 
anisotropy of grains, the zero- and first-order correc-
tions are comparable. As a result, the strain distribu-
tion densities for titanium and molybdenum are al-
most symmetric, being close to the normal distribu-
tion. 

If the polycrystal deformation passes to the plastic 
region, the distributions change. It is obvious that the 
left and right tails of the probability density should 
be differently elongated due to the fact that the plas-
tic part of the total tensile strain will have mainly po-
sitive values. Some authors use the lognormal distri-
bution to interpolate the total strain at the plastic 
stage, but assume that the elastic part of deformation 
remains normally distributed [19]. 

Taking into account interactions with the second, 
third and subsequent neighbors hardly changes the 
behavior of the elastic probability densities, but fur-
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ther increases the limiting values. With consideration 
for the interactions with the nearest (18 grains), se-
cond (66 grains) and third (146 grains) neighbors, the 
maximum relative strain is 2.75 for zinc. This value 
of the limiting strain corresponds to a certain crystal-
lographic orientation of a sufficiently large number 
of grains. In an untextured polycrystal with equally 
probable orientations of crystallographic axes of 
grains, the formation of such a cluster of grains has a 
very low probability, but is of theoretical interest. 

In polycrystals with high grain anisotropy, the 
maximum possible strain is more than 2 times higher 
than the macroscopic one. Neighboring grains in con-
figurations with the maximum contribution to the 
strain of a given grain constitute clusters of an ex-
treme grain structure described in [31, 32], which 
often present sources of damage. 

5. CONCLUSIONS 

The method proposed for plotting the probability 
densities of strain is based on specific mathematical 
features of the integral form of the boundary value 
problem of deformation of polycrystalline materials. 
The integral equation for strains (1) is completely 
equivalent to the differential formulation of the boun-
dary value problem, consisting of equilibrium equa-
tions in displacements and boundary conditions, and 
was deduced from the latter by correct mathematical 
procedures [23–25]. The advantage of the integral 
method is that the solution to the boundary value 
problem of a polycrystalline solid is considered as a 
result of grain interactions. Contributions from these 
interactions are additive and statistically independent 
in the first order of the intensity of interactions. Thus, 
it was revealed that the influence of interactions with 
different neighbors on the strain state of the studied 
grain differed significantly, sometimes by an order. 

The property of additivity allowed obtaining large 
statistical samples of random variables. They are im-
portant for finding extreme values of the strain tensor 
components that define distribution boundaries and 
correspond to the simultaneous low-probability ori-
entation of a group of grains in certain positions. A 
sample of 106 different orientations for the central 
grain and for each of the 18 nearest neighbors corre-
sponds to 106×19 random implementations of the local 
grain structure. The probability of random formation 
of an extreme cluster of 19 grains is of the order of 
p19 (p is the probability of orientation of each grain in 
an extreme position). This is a very low probability. 
From the qualitative viewpoint, the proposed method 

provides sufficient statistics of random strains to 
build a continuous distribution, including the distri-
bution boundaries. The non-Gaussian type of the dis-
tributions is associated with a large difference in the 
intensities of interactions with neighboring grains, 
which are differently located relative to the studied 
grain and external loading directions. In addition, the 
number of interacting neighboring grains is limited 
and insufficient to apply the central limit theorem of 
probability theory. 

The aim of the work was to study the influence of 
random grain interactions caused by their different 
crystallographic orientations on the statistics of ran-
dom mesostrains. For this purpose, calculations were 
made on model polycrystals with grains in the form 
of truncated octahedra. The method is also applicable 
to other grain models built using Voronoi polyhedra 
or by other methods, but it requires large computatio-
nal resources. 

The proposed method provides a rapid calculation 
of distributions of strain components under various 
conditions of multiaxial macroloading. It is easily 
transformed for stress distributions (according to 
Hooke’s law) and can be used to estimate the proba-
bilities of critical mechanical events in polycrystal-
line materials. 
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