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Abstract—One of the main methods of protecting pipelines and machine parts against stress corrosion and 
hydrogen embrittlement is to test metals for hydrogen-induced cracking. The hydrogen-induced cracking test 
is a standard procedure for testing steels and titanium alloys and for studying hydrogen resistance. The expe-
rimentally revealed phenomenon of nonuniform hydrogen distribution after hydrogen charging of specimens 
is called the skin effect. Here we study the influence of the skin effect after hydrogen charging on the crack 
growth under mechanical stresses and the influence of a 50-μm-thick skin layer on the durability of bulk spe-
cimens. A corset-type cylindrical specimen with a circumferential notch is considered. The Oriani decohesi-
on model is chosen as a hydrogen embrittlement model. The investigation is performed using our data on the 
real nonuniform hydrogen distribution and the literature data on hydrogen diffusion coefficients, diffusion ac-
tivation energy, steel parameters, cohesive law parameters, as well as other parameters of the hydrogen em-
brittlement model proposed by Serebrinsky. Hydrogen redistribution is described by the diffusion law taking 
into account mechanical stresses. Modeling is carried out with the original finite volume code in the axisym-
metric setting. Crack propagation parameters are determined. The fracture pattern is complex. Cracking first 
occurs by the hydrogen-enhanced decohesion mechanism and then by the conventional mechanism, which 
explains the experimentally observed brittle-ductile fracture behavior in tensile hydrogen-charged specimens. 
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1. INTRODUCTION 

Engineering practice is constantly faced with the 
problems of hydrogen-induced cracking (HIC), hyd-
rogen embrittlement, stress-corrosion cracking, and 
hydrogen damage. This is explained by the fact that 
hydrogen is widely spread in nature, either in a gase-
ous state or in the form of chemical compounds, wa-
ter being the most widespread. For example, the oil 
and gas industry deals with these phenomena in all 
types of corrosion [1]. 

As a rule, an increase in the strength of metals and 
alloys is accompanied by a decrease in plasticity. 
Unlike other alloy components with the maximum 
permissible concentration of hundredths and thou-
sandths of a percent, hydrogen begins to influence 
the properties of some metals at the mass concentra-
tion of one hundred thousandths of a percent. 

Therefore, there is a special sensitivity of modern 
high-strength alloys with iron, aluminum, magne- 
 

sium or nickel matrices to low concentrations of hyd-
rogen. For Bessemer steels, the maximum permissi-
ble mass concentration of hydrogen is about 4 ppm, 
while, for modern ultrahigh-strength steels, it is 
about 30 times less. 

Even if such low hydrogen concentrations are 
achieved in the production of alloys, the subsequent 
processing and operation of metal parts will increase 
the concentration of hydrogen and its significant in-
fluence on the mechanical properties of metals and 
alloys, which are strength, ductility, fracture tough-
ness, and crack resistance [2]. 

The problem of the interaction of metals with hy-
drogen used as an energy source in various hydrogen 
energy projects is worthy of notice. Transportation of 
mixtures of natural gas and hydrogen [3–7] leads to a 
decrease in the ductility, fracture toughness, and 
crack resistance of steel walls of pipelines [8–11], to 
say nothing of the transportation of pure hydrogen 
gas [9, 12]. 
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Thus, the influence of hydrogen on the properties 
of materials cannot be left disregarded without seri-
ous consequences. Solving engineering problems re-
quires that the effect of hydrogen on the strength of 
materials be evaluated at the design stage of structu-
res and during their operation. 

Tests on hydrogen-charged notched corset metal 
specimens for strength, fatigue strength, ductility, 
and fracture toughness are often used in engineering 
practice and in research. Such tests allow the quality 
control of metals and the selection of metals that are 
resistant to hydrogen embrittlement and hydrogen-in-
duced cracking. 

Hydrogen charging is a standard procedure for 
HIC testing of steels for pipelines and other elements 
of machines [13–16]. In this case, use is usually 
made of nongaseous methods of hydrogen saturation 
[14, 16], which always lead to the formation of a skin 
layer for the time recommended by the saturation 
standards. 

High inhomogeneity of distribution of hydrogen 
concentrations after the standard saturation procedure 
was reported in [17–20]. This phenomenon was re-
ferred to as the skin effect [17, 19]. Due to this effect, 
the hydrogen concentration in the surface layer with 
the approximately one grain thickness (10–100 μm) 
can exceed the concentration inside the specimen by 
tens of times. Modeling of this phenomenon has so 
far been carried out without taking into account the 
influence of the skin effect on the fracture of metal 
specimens [21]. 

The skin layer is sometimes explained by the very 
slow diffusion of hydrogen [22, 23]. However, previ-
ously we discussed in detail the experimental results 
that do not confirm this assumption [19]. In any case, 
a large increase in the hydrogen concentration in the 
boundary layer of metals is of fundamental impor-
tance to the test results. 

The effect of the skin layer on the results of me-
chanical tests on hydrogen-charged specimens also 
has not been investigated. It follows from practice 
that standard methods for hydrogen saturation lead to 
a strong decrease in plasticity (relative to residual 
elongation) and strength of the entire specimen. At 
the same time, fracture often has a dual pattern: the 
fracture surface of the specimen has areas of both 
hydrogen brittleness and ductile fracture [24, 25]. 

Correct consideration for the influence of the skin 
layer is very important when modeling hydrogen em-
brittlement. This is due to the need of understanding 
the leading mechanisms of fracture and predicting 

the destruction of machine parts operating in aggres-
sive media.  

Crack resistance is critically reduced by hydro-
gen; therefore, the two most popular and well-known 
calculation models of hydrogen brittleness (hydro-
gen-enhanced decohesion (HEDE) [26] and hyd-
rogen-enhanced localized plasticity (HELP) [27, 28]) 
are based on the approaches of crack theory and con-
sider the nucleation and sink of dislocations at the 
crack tip as the physical mechanism of fracture. The 
initially developed models significantly differed from 
each other. Thus, the HEDE model considered brittle 
fracture as a result of the development of hydrogen 
embrittlement without plastic deformation, while, on 
the contrary, the HELP model interpreted the effect 
of hydrogen dissolved in a metal as the action of a 
chemical constituent, which reduces the energy re-
quired for dislocation nucleation. By the HELP me-
chanism, hydrogen is concentrated under the action 
of internal stresses at the crack tip, where metal “sof-
tening” or localized plasticity occurs. 

These models were verified in numerous experi-
ments [29–35] (see also reviews [24, 25, 36, 37]). 
The bulk of the experimental results were obtained 
on specimens artificially charged with hydrogen in 
the electrolyte solution, as a rule, using cathodic 
charging. 

The investigations showed that the fracture sur-
faces of experimental specimens have not only areas 
of hydrogen brittleness but also zones of ordinary 
fracture without pronounced hydrogen signs. The 
idea of the hybrid HELP + HEDE mechanism was 
proposed for explaining this dual fracture pattern 
[38–41] (a review is done in [24]). 

The HELP and HEDE models can be formally 
combined within the Abaqus package. The HELP 
method can be used to describe plastic flow at low 
local hydrogen concentrations, and the HEDE me-
thod can be employed to analyze the crack propagati-
on from the groove or notch in the specimen at local 
hydrogen concentrations above the switching thre-
shold of the models. This was done for the two-di-
mensional case in [42]. The combined model was ap-
plied to determine the fatigue crack growth rate with 
the parameters given in advance. The authors pointed 
to the existing problems of determination of a large 
number of parameters and stated only a qualitative 
agreement between the simulation results and the ex-
perimental findings. 

The combined model with additional considerati-
on for the void formation under loading was used to  
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simulate the crack growth in a notched viscoelastic 
material in [43]. In this case, the transport of hydro-
gen is modeled by the simplified method [44], and 
the cohesive law is independent of hydrogen. The 
problem of crack growth in high-strength chromium 
steel 690 around an inclusion was studied in [45–47]. 
The HELP model in the form of [44] is supplemented 
by the HEDE cohesive law. 

In all of the above works, the authors assume the 
uniform hydrogen concentration in metal specimens 
after hydrogen charging. All changes in the hydrogen 
concentration are associated with its redistribution 
under an external load or during the crack growth. As 
a rule, a specific value of the initial hydrogen con-
centration results from fitting the model parameters 
to the experimental data. Therefore, it varies within a 
wide range from 0.0005 [48] to 1.5 ppm in various 
papers [49]. 

By comparing the initial HELP and HEDE ap-
proaches, we can conclude that the HEDE mecha-
nism corresponds to the concept of brittle fracture, 
which is observed in steels at high hydrogen concent-
rations [42]. Therefore, the use of the HEDE mecha-
nism in describing the consequences of the skin ef-
fect for the crack growth should provide an adequate 
model for fracture of specimens artificially saturated 
with hydrogen in electrolyte solutions or at cathodic 
charging. 

2. ORIANI DECOHESION MODEL OF BRITTLE 
FRACTURE 

The process of hydrogen transport inside a solid is 
traditionally considered within the HEDE model as a 
diffusion process. It is described within Fick’s law 
with the additional term that takes into account the 
thermodynamic (or chemical) potential V [50]: 

 ( , ) .
C C V

D T C
t RT

            
r  (1) 

Here C is the hydrogen concentration, D is the diffu-
sion coefficient, R is the gas constant, T is the abso-
lute temperature, r is the position vector, t is the time, 
and   is the Hamilton nabla operator. Taking into 
account the action of mechanical stresses, this equati-
on can be rewritten as 

2 H[ ] [ ]
C V C

D T C D T
t RT

  
  


 

 
2

H[ ] ,
CV

D T
RT

 
  (2) 

where σ is the primary stress (spherical part of the 
stress tensor), and VH is the partial molar volume of 
hydrogen.  

Then, the fracture criterion associated with the 
magnitude of crack opening comes into operation wi-
thin the HEDE mechanism. According to Gorsky’s 
law [51], hydrogen is concentrated in the region of 
the maximum stress tensor (i.e. spherical part of the 
stress tensor) and reduces the adhesion of the crack 
faces which leads to decohesion [26]. 

These changes in cohesive forces between grains 
are described through the parameter of coverage of 
the free surface of a crack with hydrogen atoms θ, 
which can be represented as [52] 

 
H

,
exp[ ( )]

C

C g RT
 

 
 (3) 

where ΔgH is the Gibbs free energy difference be-
tween hydrogen adsorbed inside the crystal lattice 
and at the crystal boundary (taken from the experi-
ment). Formula (3) was obtained by Serebrinsky [52] 
by comparing the parameters of hydrogen trapping in 
the metal based on the McLean ratio [53]. 

A value of the parameter θ determines the change 
in the specific energy of the free surface γ(θ), which 
depends on the surface sorption of hydrogen [52]: 

 2( ) (1 1.0467 0.1687 ) (0).        (4) 
This dependence was obtained by approximating the 
graph for the case of deformation of a pure Fe single-
crystal saturated with hydrogen in the (110) crystal-
lographic direction. 

From the energy identity 2γ(θ) = σzc(θ)δc(θ), where 
σzc(θ) is the maximum cohesive stress normal to the 
crack edges, and δc(θ) is the maximum possible 
crack-opening displacement without breaking bonds 
(decohesion), the law of hydrogen-induced degradati-
on has the form [52] 

 2( ) (1 1.0467 0.1687 ) (0)z z        (5) 
under the assumption of the weak dependence of the 
δc(θ) value on the parameter θ. 

In this paper, we investigate the applicability of 
the HEDE model to the description of hydrogen-in-
duced fracture of a corset specimen with considerati-
on for the skin effect. 

3. INITIAL AND BOUNDARY CONDITIONS, 
MODEL PARAMETERS, AND CALCULATION 

PROCEDURE 

We simulate uniaxial loading of a cylindrical spe-
cimen (Fig. 1) with the diameter d = 10 mm, which  
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Fig. 1. Cylindrical specimen. 

 
has a stress concentrator in the form of a semicircular 
groove with the radius r = 0.5 mm. 

The problem is solved in the two-dimensional axi-
symmetric formulation. By symmetry, only a quarter 
of the cylinder is considered and a rectilinear struc-
tured grid consisting of triangles is generated. Thus, 
we model a sector of the longitudinal section of the 
specimen (Fig. 2), with the Oy axis along the left side 
of the computational domain, and the Ox axis along 
the lower side. For a smoother distribution of the cal-
culated values and greater accuracy of calculations,  
 

partitioning into finite volumes of two types (with 
different directions of the diagonal of a structural ele-
ment) is carried out. 

Specimens under study are made of high-strength 
steel PSB1080 with the following physical proper-
ties: ultimate strength σB = 1498 MPa, yield stress 
σy = 1276 MPa, mass density ρ = 7800 kg/m3, and 
shear modulus G = 79.3 GPa. In addition, the diffusi-
on coefficient D = 2.5 × 10–11

 m2/s, the partial molar 
volume of hydrogen VH = 2 × 10–6

 m3/mol [54], the 
Gibbs free energy difference for hydrogen adsorbed 
inside the crystal lattice and at the crystal boundary 
ΔgH = 30 kJ/mol [54], and the absolute temperature 
T = 298 K. 

The initial distribution of hydrogen over the spe-
cimen is found as follows: the background uniform 
concentration 0c = 0.1 ppm over the entire domain 
and the concentration in the surface layer with the 
one element thickness dH = 20 μm, c0 = 10 ppm. The 
initial concentration characterizes the experimentally 
observed hydrogen content in the hydrogen-charged 
specimens, which results from the skin effect (the en-
larged fragment in Fig. 2). 

By symmetry, displacements along Ox vanish for 
the left side and displacements along Oy vanish for 
the lower side. The tensile stress σ = 450 MPa is ap-
plied to the upper side of the domain and acts along 
axis Oy. 

We investigate the uncoupled problem by the ite-
rative method, as suggested by the original Oriani 
model. Based on the stress-strain characteristics of a  

 

 

Fig. 2. Finite volume grid, boundary conditions (color online). 
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body, the diffusion problem of hydrogen redistribu-
tion over the specimen is solved. Then, the change in 
cohesive stresses (and consequently in the crack con-
figuration) is calculated in terms of the hydrogen 
content in the domain and particularly near the crack 
tip. The hydrogen distribution has no direct effect on 
the stress state of a specimen. 

The calculation procedure consists of two succes-
sive stages: (1) solving the mechanical problem of 
the stress-strain state of a specimen, and (2) analyz-
ing the diffusion problem with the simultaneous cal-
culation of cohesive stresses σz. 

At the first stage, we obtain the numerical soluti-
on of the boundary-value problem of linear elasticity 
by means of the relaxation method proposed by Wil-
kins [55, 56]. It relies on the fact that the stationary 
problem is solved as the nonstationary problem, 
which is brought to the stationary mode. 

The stress-strain state of the specimen obtained at 
this stage is transferred to the next stage. It includes 
the solution of the system of the foregoing equations 
(2), (3), (5): 
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 (6) 

 

 

Fig. 3. Field of elastic stresses σy at the decohesion mo-
ment at the first node (color online). 

The numerical solution of Eq. (2) is also carried out 
based on the relaxation method by Wilkins [55, 56]. 
The stress σz(0) is taken to be 4.5σy according to [57]. 

The criterion of fracture, i.e. breaking of bonds 
between the atomic planes in the material, is fulfilled 
when the elastic stress obtained from the solution of 
the static problem exceeds the cohesive stress. As 
soon as this condition is fulfilled, the displacement 
constraint along axis Oy is removed at the grid node. 
This node is able to break away from the bottom face 
or, on account of symmetry, from the opposite node 
and to move upward under the action of tensile loads. 

To monitor parameter changes during the problem 
solution and to reduce simulation errors, we use a 
well-tried approach [58–60]. To implement the ap-
proach, we developed a program code written in the 
Microsoft Visual Studio environment in C++ (VS), 
which allows obtaining a numerical solution to prob-
lems on the stress-strain state of a hydrogen-charged 
body within the finite volume method. Thus, we pro-
gram the crack initiation and its propagation to a grid 
space. Thereafter a static problem is solved for the 
next crack propagation step, by repeating the calcula-
tion procedure. 

4. SIMULATION RESULTS 

The bond at the first grid node is broken instantly 
at the very first step of time integration due to high 
stresses acting near the stress concentrator and a sig-
nificant hydrogen content in the surface layer. The 
field of distribution of the elastic stress component 
acting along the vertical axis near the groove at this 
time instant is shown in Fig. 3. 

Maximum tensile stresses are seen to arise near 
the concentrator. The stress value for the first node 
along the crack propagation line is 1370.88 MPa. 

Changes in the hydrogen concentration at this 
stage are insignificant. It decreases to C = 9.99967 ppm 
at the second node, and increases from the back-
ground value C0 = 0.1 ppm to C = 1.0028 ppm at the 
third node. 

A similar situation occurs for the second node 
along the crack propagation line. At the initial stages, 
the hydrogen content in the surface layer is so high 
that a crack initiates almost instantly by the HEDE 
mechanism. 

The calculations for the third node show that the 
solution of the diffusion problem takes some time for 
hydrogen redistribution until it arrives at the actual 
concentrator, i.e. the supposed place of debonding 
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Fig. 4. Field of elastic stresses σy at the decohesion mo-
ment at the third node (color online). 

 
between the atomic planes of the material. The calcu-
lated time of this process is t = 9.17 s, and the critical 
hydrogen concentration is C = 0.386 ppm. The distri-
bution of the elastic stress component at the moment 
of fulfillment of the fracture criterion at the third 
node is shown in Fig. 4. 

The tendency towards increasing the time interval 
between the fulfillment of the fracture criterion for 
two successive nodes persists at subsequent integrati-
on steps. The corresponding dependence is shown in 
Fig. 5. 

Starting from the third node, diffusion takes more 
and more time for hydrogen redistribution and accu-
mulation at the potential fracture site of the material. 
At the seventh node, which corresponds to the dis-
tance 0.551 mm from the groove edge, this time in- 

 

 

Fig. 5. Time between the fulfillment of the fracture crite-
rion at the adjacent nodes. 

 

Fig. 6. Field of elastic stresses σy at the decohesion mo-
ment at the seventh node (color online). 

 
terval (from the moment the sixth node was detach-
ed) amounts to 122.85 s, and the critical concentrati-
on is C = 0.213 ppm. The resulting elastic stress field 
is shown in Fig. 6. 

Thereafter, as seen from Fig. 5, the time between 
the fulfillment of the fracture criterion at the adjacent 
nodes begins to decrease gradually. This is due to an 
increase in the level of stresses acting near the con-
centrator. Due to a lower hydrogen content in the re-
gion, cohesive stresses become lower than elastic 
ones, which leads to the propagation of a crack to a 
grid space according to the established algorithm. 

 

 

Fig. 7. Field of elastic stresses σy when a crack is halfway 
through the specimen thickness (color online). 



POLYANSKIY et al. 
 

PHYSICAL MESOMECHANICS     Vol. 25     No. 5     2022 

472

 

Fig. 8. Hydrogen concentration versus distance along the 
specimen radius (color online). 

 
This process is observed up to the thirteenth node, 

which corresponds to the distance 1.102 mm from the 
specimen surface. The field of elastic stress distribu-
tion at this time instant is shown in Fig. 7. In this 
case, the critical hydrogen concentration, at which 
the fracture criterion is fulfilled, is C = 0.113 ppm.  

Thereafter elastic stresses acting along the lower 
side of the domain become so high that the back-
ground concentration in the material is sufficient to 
reduce the level of cohesive stresses (according to 
Serebrinsky’s formula (5)). Therefore, when solving 
the diffusion problem, the fracture criterion starts to 
fulfill already at the first time step and the hydrogen 
content at the node decreases progressively. For ex-
ample, it is C = 0.103 ppm at the fourteenth node 
(1.194 mm from the groove surface) and C = 

0.1005 ppm at the fifteenth node (1.286 mm from the 
edge). 

Figure 8 shows the hydrogen concentration distri-
bution along the specimen radius at different time in-
stants: from the initial state to the instant when a 
crack passes a quarter of the specimen thickness. 

Under the action of mechanical stresses, hydrogen 
is gradually distributed and transferred from the spe-
cimen surface to the material interior. However, one 
can see that it does not diffuse deeper than 1.25 mm 
from the surface. Further fracture of the specimen oc-
curs already at the initial background hydrogen con-
centration due to high stresses acting in the region. 

5. DISCUSSION 

By using the HEDE model with consideration for 
the skin effect, we obtained the results on brittle frac-

ture in hydrogen-charged corset specimens. The con-
sidered parameters of the specimens and loading con-
ditions are common for hydrogen brittleness tests 
[61–65]. 

The results obtained using the HEDE model were 
compared with the experimental data only in terms of 
the incubation time of crack growth. A universal 
means of fitting to the experimental data is the initial 
hydrogen concentration, which is considered by all 
authors to be uniform. Such fitting gives its wide 
scatter in different papers. Sometimes it differs by se-
veral orders of magnitude from the experimental ave-
rage hydrogen concentration. We took experimental-
ly measured values of concentration after 96 h of hy-
drogen charging of specimens [17–20].  

We found that the incubation time of the macro-
crack growth is determined not by the time of in-
crease of hydrogen concentration at the crack tip 
from the uniform one, but by the diffusion time of 
the increased hydrogen concentration from the skin 
layer to the crack tip. A microcrack in the skin layer 
is formed immediately after the application of a me-
chanical load. This also agrees with the numerous 
experimental data on the formation of microscopic 
quasi-cleavage cracks on the surface of hydrogen-
charged specimens under deformation.  

From a mechanical point of view (excluding hyd-
rogen), the HEDE model is linear and less accurate 
than modern approaches that take into account the 
size and configuration of grains, plasticity, and other 
nonlinear effects, including the reciprocal influence 
in the crack ensemble. At the same time, the model is 
generally recognized in modeling of hydrogen brittle-
ness and allows us to investigate the skin effect in the 
simplest approximation, without any additional as-
sumptions.  

In our modeling, we used hydrogen diffusion 
Eq. (2). It ignores the presence of hydrogen traps [66] 
inside the material. All hydrogen is thought to be in 
the perfect crystal lattice. On the one hand, this is un-
doubtedly a simplifying assumption; on the other 
hand, it allows one to estimate the net effect of the 
skin layer formed during hydrogen charging of corset 
specimens. At the same time, such an assumption is 
physically possible; we simply assume a defect-free 
(without trap sites) homogeneous internal structure in 
the specimen. 

There is another factor that justifies the made as-
sumptions. According to the Oriani trap model for 
hydrogen transport in metals [66], the binding energy 
of trapped hydrogen is much higher than the diffusi-
on activation energy, and the volume concentration  
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Fig. 9. Schematic of the regions of propagation of hydro-
gen and conventional cracks at the fracture surface. 

 
of trapped hydrogen is only a fraction of the concen-
tration of hydrogen diffusing in the crystal lattice. 
Otherwise the Oriani formula relating trapped hydro-
gen to lattice one does not work. This is because it is 
unclear from where hydrogen can be obtained with a 
sharp change in the volume concentration of trapping 
sites (such a change occurs, for example, during plas-
tic deformation and this is one of the problems of the 
HELP model). Oriani’s assumptions make the effect 
of trapped hydrogen insignificant in dynamic proces-
ses since it has a smaller concentration and redistri-
butes much more slowly than mobile hydrogen. Na-
turally, Oriani himself and his followers proceeded 
from the fact that the processes of hydrogen redistri-
bution are slow and the entire system at each step 
must be in thermodynamic equilibrium. This raises 
the question of whether these assumptions are ade-
quate to conditions of strength tests on notched and 
grooved corset specimens [38, 40, 67–70]. 

We found out that the experimentally discovered 
skin effect leads to a dual mechanism of fracture. We 
can schematically represent the following distributi-
on of the areas of influence of hydrogen over the 
cross section of the specimen (Fig. 9). 

We understand that our calculation of crack pro-
pagation is rather simplified. As a rule, the HEDE 
model is used to calculate the moment of growth of a 
hydrogen-induced crack. Theoretically, the maxi-
mum mechanical stresses at the tip of a crack of a 
certain length are unbounded. Therefore, stress va-
lues obtained by the finite volume method for corner 
nodes can only be considered as a kind of approxi-
mation. The use of the HEDE model to describe the 

crack propagation in a metal free of hydrogen is also 
the very first rough approximation. 

In our opinion, the most important result is the de-
scription of the influence of the skin effect in hydro-
gen-charged specimens on the HEDE mechanism. 
We found that a crack is quickly initiated, but it has a 
microscopic length for a long time since its growth is 
limited by hydrogen redistribution due to diffusion. 
This diffusion motion occurs simultaneously with a 
decrease in the hydrogen concentration around the 
crack and stops its growth by the brittle mechanism. 
Moreover, the mechanism of hydrogen-induced, brit-
tle, fracture acts much deeper than the initial thick-
ness of the hydrogen-saturated skin layer. At the ed-
ges of the fracture surface, brittle fracture is associat-
ed with an increased hydrogen concentration. Areas 
of hydrogen brittleness should be observed in this 
part of the specimen. The middle part exhibits usual 
fracture by the decohesion mechanism. This duality 
was often found in experiments [63, 71]. Moreover, 
an annular crack similar to that in Fig. 9 with the cha-
racteristic width about 1 mm was obtained on groov-
ed corset cylindrical steel specimens [63]. 

The dual pattern of fracture is usually explained 
by the two main mechanisms of hydrogen-induced 
degradation of metals: the HEDE and HELP mecha-
nisms. It should be noted that the HEDE mechanism 
was initially considered as a mechanism of pure brit-
tle fracture, but later, by formally combining the 
HEDE model with the elastic-plastic material model, 
this rigorous approach began to “smear” [72–74]. 

The HELP + HEDE model of hydrogen brittle-
ness has been recently used to describe the duality of 
hydrogen-induced fracture observed in practice. 
Thus, fracture is described either by the HELP me-
chanism which provides hydrogen-induced plastic 
fracture or by the brittle HEDE mechanism, depend-
ing on the local concentration of hydrogen at the 
crack tip [67, 75, 76]. 

According to [24, 38, 41, 77–79], the HELP me-
chanism works at the hydrogen concentration below 
the threshold CH0, whereas the HEDE mechanism ac-
tivates at the CH cr concentration. These assumptions 
were used to make approximations of the experimen-
tal data and to plot the distribution of hydrogen over 
the cross section of a specimen based on the fracture 
pattern. However, this hybrid concept does not deal 
with direct measurements of the distribution of hyd-
rogen concentration. It focuses only on the micro-
structure of the fracture surface. 

Almost all publications on the HELP and HEDE 
models use the assumption of the initially uniform 
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hydrogen concentration. The presence of such incon-
sistencies in the known approaches allows us to say 
that the nonuniform hydrogen distribution in hydro-
gen-charged specimens is the true reason for the dual 
pattern of fracture observed in practice. 

When verifying the models, many authors take the 
hydrogen concentration values calculated by Taha 
and Sofronis [80] as the reference data. These values 
indicate that the hydrogen concentration at the crack 
tip exceeds manifold the average values. This excess 
is obtained due to the formation of a large number of 
hydrogen sites inside dislocations during plastic de-
formation. The calculations performed by the authors 
of the HELP model in [44] show that significant 
changes in the mechanical properties of a metal occur 
at local relative mass hydrogen concentrations of 
about 10–2, which is an unattainable concentration for 
most metals. The calculation of local plasticity in the 
theoretical analysis of a crack with a spherical tip 
showed that the local hydrogen concentration at the 
crack tip is about 100 times higher than the average 
one [69]. Given the average mass concentration of 
about 10–6, local concentrations do not exceed 10–4. 
Thus, the assumption about the operation of the 
HELP mechanism at low average hydrogen concen-
trations does not correspond to the verification re-
sults. At low average hydrogen concentrations, exter-
nal mechanical stresses cannot induce such local hy-
drogen accumulation that can trigger the physical 
mechanisms of hydrogen-enhanced localized plasti-
city. 

This is especially important for industrial tests for 
hydrogen-induced cracking of metals based on the 
methods of hydrogen charging of specimens resulting 
in the skin effect. It is necessary to additionally in-
vestigate whether this effect occurs when oil, gas, 
hydrogen or other aggressive mixtures are pumped 
through pipelines and how it affects mechanic stres-
ses in pipe walls. 

6. CONCLUSIONS 

We carried out special finite volume modeling of 
fracture of a hydrogen-charged corset cylindrical 
steel specimen with a notch. The HEDE model was 
used as a model of hydrogen embrittlement. The ex-
perimentally observed skin effect due to hydrogen 
charging was taken into account. 

The simulation results demonstrated that fracture 
begins from the specimen surface as brittle fracture 
induced by hydrogen, then, due to the “lag” of diffu-
sion fluxes of hydrogen, the crack grows by itself at 

normal background values of the hydrogen concent-
ration. 

This results in a dual pattern of fracture. The areas 
of both hydrogen embrittlement and normal fracture 
are observed on the fracture surface of the specimen. 

The nonuniform distribution of hydrogen concen-
tration can be the main source of the dual pattern of 
fracture, which is currently explained by the simulta-
neous operation of the HELP and HEDE mechanisms 
at the top of the main crack. 

The skin effect in hydrogen-charged specimens 
has a strong influence on the fracture of metal speci-
mens in spite of the very shallow depth. 

Artificial charging with hydrogen can differ signi-
ficantly in the distribution of hydrogen concentrati-
ons from natural saturation with hydrogen during 
operation, which must be taken into account in expe-
riments since the skin effect strongly affects the re-
sults of mechanical tests. 

From an engineering point of view, the obtained 
results mean that standard tests for hydrogen-induced 
cracking must be changed since the HIC due to the 
skin effect may not correspond to the HIC with a 
more uniform distribution of hydrogen inside the 
metal.  
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