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Abstract—The service life and brittle fracture of steel structures at subzero temperatures is predicted with 
purely empirical methods based on impact bending test results or fracture mechanics criteria. Force, energy 
and deformation methods of fracture mechanics are used for a comparative assessment of fracture toughness 
in safety-related structures operating under harsh environment conditions. However, such methods are not ef-
ficient enough for the design of welded engineering components and structures due to their complex shapes, 
welding factors, and loading conditions. This has led to the development of specific physical methods for 
brittle fracture prediction. This paper proposes a method based on the application of the known brittle frac-
ture criterion to a small material volume ahead of the crack tip (pre-fracture zone). A mathematical model 
was developed to describe the loading of the pre-fracture zone in a part made of an elastic-plastic material. 
The effect of mechanical characteristics of the material and service temperature on the brittle fracture resis-
tance of the part was evaluated using the proposed method. The design coefficients were calculated and the 
functional dependencies were verified using the literature experimental data on the critical stress intensity 
factors obtained at subzero temperatures. A comparative analysis of the experimental and numerical results 
showed that the curves calculated by the proposed method are consistent with the test results. This work con-
firms the applicability of physical models of brittle fracture which use the mechanical characteristics of steel 
more suitable for engineering applications. 

Keywords: fracture mechanics, stress intensity factor, brittle fracture, cleavage stress, plasticity, deformation, 
stress state, plastic zone 
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1. INTRODUCTION 

The fracture mechanics methods used to select 
steels for safety-related structures [1–6] are not suit-
able for fracture toughness prediction of complex 
welded structures made from small-thickness rolled 
sheets. This problem is solved by physical methods 
of brittle fracture prediction which use different li-
miting states of the material at the crack tip [7–11]. 

Here we continue to develop a method for predict-
ing the brittle fracture behavior of a part with a crack. 
The method is based on applying a generalized the-
ory of brittle fracture in accordance with the Neuber–
Novozhilov approach to the pre-fracture zone ahead 
of the crack tip [11–13]. The basic principles of the 
method were verified earlier by test data of various 
specimens obtained from determining the fracture 
mechanics criteria. The tests were conducted at sub-
zero temperatures so that we could estimate the tem- 
 

perature dependence of the critical stress intensity 
factor. 

A similar relationship was obtained with the pro-
posed method. By comparing these dependences, we 
checked the adequacy of the analytical dependence 
and the calculated value of the cleavage stress S0. In 
this work, the cleavage stress of low-alloy structural 
steels is assumed to be linearly related to the steel 
yield stress σy, i.e., S0 = Cσy. 

2. MATHEMATICAL MODEL OF BRITTLE 
FRACTURE 

Brittle fracture prediction for a part with a crack 
can be done by applying the force criterion of the ge-
neralized theory of brittle fracture to the pre-fracture 
zone ahead of the crack tip, which consists of two 
conditions [8, 9, 11, 14]: 

 r y 1r 0, .i T S      (1) 
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Fig. 1. Curves illustrating the fulfillment of the strength 
condition: sr(k) (1); ηr(k) (2); sc = S0/σyT (3). 

 
Here, σir and σ1r are the average stress intensity and 
the average first principal stress in the pre-fracture 
zone during elastic-plastic deformation, σyT is the 
yield stress of a given material determined at the test 
(loading) temperature, and S0 is the temperature-
independent mode I (cleavage) stress. Expressions 
(1) are the crack initiation conditions. The crack 
growth conditions are not considered in this study. 

It is convenient to represent the loading of the 
pre-fracture zone in a part made of an elastic-plastic 
material in dimensionless coordinates [13]: 

 1r I
r

y y 0

, ,
T T

K
s k

r


 
  

 (2) 

where r0 = 0.5 mm is the characteristic size of the pre-
fracture zone [11]. 

The stress variation in the pre-fracture zone was 
investigated by the finite element method on solid 
models of elastic-plastic material [12, 13, 15]. The 
parameter sr(k) does not depend on temperature. A 
typical sr(k) curve for a plate with an edge, through-
thickness, or surface crack is divided into three 
stages (Fig. 1, curve 1). The first stage at 0 < k ≤ k1 
corresponds to nearly elastic deformation of the ma-
terial in the crack tip region. The second one at 
k1 < k ≤ k2 reflects the evolution of a small plastic 
zone accompanied by an increase in the stress-strain 
stiffness factor of the state ηr = σ1r/σir (curve 2) [14]. 
In the third stage at k > k2, the stress-strain stiffness  

factor decreases, while the plastic zone size and the 
plastic strain intensity grow rapidly. 

Analysis of the loading of the pre-fracture zone 
suggested that brittle fracture can occur only at the 
second stage of deformation at k1 < k ≤ k2, under the 
second condition (1). If brittle fracture does not occur 
at k ≤ k2, then at the third stage at k > k2 fracture will 
be preceded by pronounced plastic deformation. The 
value of kс for which σ1r = S0 depends on temperature. 
Taking into account Eqs. (2), we write σ1r = srσyT and 
represent the strength condition in the form sr ≤ sc, 
where sc = S0/σyT. At sr > sc (curve 3), ductile fracture 
occurs in the interval k > k2. With decreasing tem-
perature, the yield stress increases and the right-hand 
side of the condition sc = S0/σyT will decrease (Fig. 1, 
curve 4). Brittle fracture will occur at k = kс. 

This method was implemented using a mathema-
tical model that establishes the functional relation-
ship sr(k) in the first two stages of loading at k ≤ k2 
[12]. The model reads: 

 
1

r p 2
1 22

1.2 for 0 ,

1
1 1 for .

k k k

s G
U V k k k k

Ek

 
          

 (3) 

The coefficients U and V for plates with different 
cracks under uniaxial loading were determined by 
generalizing the data of finite element calculations 
[12, 13, 15]. The following dependences were obtain-
ed: for edge cracks at a/B < 0.1 

1.1 1.2 , 1,
a

U V
B

    

for through-thickness cracks at a/B < 0.1 

2
0.9 1.1 , 1,

a
U V

B
    

for semi-elliptical surface cracks 

1.1 0.25 , 0.
ab

U V
t

    

In these expressions, a is the characteristic crack size 
(Fig. 2) and Gp is the plastic hardening modulus for 
the bilinear approximation of the tensile curve. The 
influence of this parameter on brittle fracture occur-
rence is small, as it occurs with plastic strains not  

 

 

Fig. 2. Schematic view of plates with cracks. 
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Fig. 3. Dependences sr(k) (a), ηr(k) (b), erp(k) (c) for compact specimens of thickness 25 ( ) and 50 mm ( ) obtained by the finite 
element method and analytically using Eq. (3) (curve 1) and Eq. (5) (curve 2). 

 
exceeding 1–2%. Therefore, Gp was determined here 
using a simplified approach suitable for describing 
the initial portion of the true tensile curve for mild 
steels with tensile elongation δ5 = 0.18–0.22. The va-
lue σB for such steels is achieved at an elongation of 
approximately 0.5δ5, and the relative decrease in the 
specimen diameter as a result of uniform plastic elon-
gation is approximately ψ = 0.1. Hence the tangent of 
the slope angle of the second portion of the true ten-
sile curve can be calculated by the formula [11] 

 B y
p

5

1.1
,

0.5
G

 



 (4) 

where σy, σB, δ5 are the yield strength, ultimate 
strength, and tensile elongation obtained at a tempe-
rature of 20°C. 

The coefficients U and V for compact specimens 
and prismatic specimens tested for bending [5, 6] 
were determined in a finite element study according 
to the procedure from [12, 15]. It was found that the 
coefficient U for compact and prismatic specimens at 
a/B = 0.3–0.5 is independent of the crack size and can 
be taken equal to U = 1.6 and V = 1 (Fig. 3a). The ma-
ximum stress-strain stiffness factor for compact spe-
cimens is achieved at k2 = 6–7 (Fig. 3b). The plastic 
strain intensity epr in the pre-fracture zone at k = k2 
reaches about 4% (Fig. 3c). Deviation from the 
power-law dependence in the range k < 3 is due to the 
fact that not the entire pre-fracture zone is in the plas-
tic state. The second deviation of the power-law de-
pendence epr(k) at k2 > 5.5–6.0 is associated with a ra-
pid expansion of the plastic zone. In the elastic calcu-
lation, the stress-strain stiffness factor η for these 
specimens does not exceed 2. The value of η = 2.5 
corresponding to plane strain conditions is achieved 
only if a local plastic zone appears ahead of the crack 
tip. Approximately the same results were obtained 
for prismatic specimens under bending. 

The plastic strain intensity in the pre-fracture zone 
at k1 < k ≤ k2 is satisfactorily described by the relation-
ship (Fig. 2c) 

 2
pr yTe k E    (5) 

at ζ = 0.2–0.4. 
Using conditions (1) and model (3), we can calcu-

late the critical value of the stress intensity factor K1c 
corresponding to brittle fracture. Assuming that in 
brittle fracture the second condition is satisfied by 
equality at sr = sc and taking into account the relation 
σ1r = scσyT, we get the equation 

 c y 0 0.Ts S    (6) 

The quantity S0 will be represented as the sum 
S0 = S0c + ΔS0, consisting of the temperature-indepen-
dent base part and the additional component ΔS0(ep) 
depending on plastic deformation ep that precedes 
fracture [14, 16]. The base part will be considered 
proportional to the yield stress determined at a tem-
perature of 20°С and will be written as S0c = Cσy. 

If the plastic zone ahead of the crack tip is very 
small compared to the size of the crack and the thick-
ness of the part, the plastic strain intensity of the pre-
fracture zone can be represented as [12] 

y 2
pr p .Te k

E


   

Then, assuming that at small strain the additional 
component is proportional to the plastic strain, we 
write the expression for determining the plastic com-
ponent in the form 

y 2
0 pr ,T

SS Y e Y k
E


    

where Y is the material constant with the dimension 
of stresses (Pa). As a result, the cleavage stress is de-
scribed by the function 

 y 2
0 y .TS C Y k

E


    (7) 
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Table 1. Mechanical properties and chemical composition of the studied steels 

Mechanical  
characteristics, 

MPa 
Chemical composition, % 

Design 
coefficients No. Steel 

y B С Mn Si Balance elements 

Notes 

U C 

1 A517-F 758 834 0.17 0.88 0.19 
0.84Ni + 0.52Cr + 
0.43Mo + 0.04V + 
0.015P + 0.015S 

Without heat 
treatment,  
 = 19%,  
 = 62% 

1.6 2.7 

2 
A5721 
Gr50 

(345) (450) (0.21) (1.5) (0.40) 
(0.005–0.050)Nb + 
(0.04)P + (0.05)S 

Without heat 
treatment 

1.6 2.7 

3 UXW 560 700 0.19 1.60 0.30 
0.5Ni + 0.3Cr + 0.05P + 
0.04S 

Normalization + 
tempering 

1.6 2.7 

4 A302B1 330 
(550–
690) 

(0.20–
0.25) 

(1.07–
1.62) 

(0.13–
0.45) 

(0.41–0.64)Mo + 
(0.035)P + (0.035)S 

Annealing 1.6 2.7 

5 А533В 352 620 0.25 1.32 0.22 
0.55Ni + 0.5Mo + 
0.035P + 0.035S 

Heat treatment 1.6 3.0 

440 590 0.12 0.70 0.86 0.028P + 0.020S Base metal 
6 10ХСНD 

480 580 0.12 0.90 0.35 – Weld metal 
U(a) 2.6 

1 The values in parentheses are standard for this material. 

 
Substituting model sr(k) (3) and cleavage stress 

(7) into Eq. (6), we find the critical value of kc, which 
is the solution to Eq. (6). In the first stage of defor-
mation, the average plastic strain intensity in the pre-
fracture zone is nearly zero; therefore, the first condi-
tion (1) is not satisfied. It can be satisfied in the se-
cond stage of deformation at k1 < k ≤ k2; then the frac-
ture condition takes the form 

p y2 2
c y y c2

c

1
1 1 0.T

T

G
U k C Y k

E Ek

    
          

   
 

The critical value of kc is the solution to this equa-
tion 
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γT = σyT/σy is the temperature hardening coefficient of 
steel. We determined this coefficient for low-alloy 
steels using the expression [17] 

0.01( 20)1 0.1(1 ),T
T e      

where T is the temperature in °С. 
Using the critical value of kc from solution (8) and 

formula (2), we can calculate the critical value of the 
stress intensity factor as 

 Ic c y 0 .TK k r     (9) 

Thus, the critical stress intensity factor within the 
considered model is a function of the yield stress σy, 
plastic hardening modulus Gp, and temperature hard-
ening coefficient γT, which depends on the type of 
steel and test temperature T. The parameters of this 
dependence are the quantities C and Y. The second 
parameter characterizes an increase in the cleavage 
stress as a result of plastic deformation. In view of 
very limited data, we assumed Y ≈ 800 MPa for all 
steels in this work. The value of C was selected from 
the condition that the calculated curves are close to 
test results. 

3. SPECIMEN TEST RESULTS 

The parameters of the proposed model were deter-
mined and its adequacy was verified using test results 
of various steel specimens, for which KIc was meas-
ured at negative temperatures. These results are com-
pared with the analytical estimates obtained with the 
above formulas. 

1. The KIc values were experimentally determined 
in [18] during bending tests on prismatic specimens 
with a notch and a fatigue crack in accordance with 
the standard test method [5]. The specimens were 
made of low-alloy A517-F steel, whose properties 
are given in Table 1 (No. 1). The calculated harden-
ing modulus is Gp = 1750 MPa (4). The specimen di-
mensions (thickness × width) were 25.4 × 76.2 mm 
and 50.8 × 203 mm. The crack size was 0.25–0.40 of  
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Fig. 4. Test temperature dependence of KIc. Test on 
A517-F steel specimens with a thickness of 25.4 ( ) and 
50.8 mm ( ). Test on A572 steel specimens at strain rate 
e = 10–3 ( ) and 10 1/s ( ). Calculations by Eq. (9) at C = 

2.7 for steel A517-F (1) and A572 (2, 3). 

 
the specimen width. The experimental values of KIc 
obtained for these specimens are shown in Fig. 4. The 
figure also shows the curve plotted by Eq. (9) with the 
substituted parameters U = 1.6 and С = 2.7 (curve 1). 

2. Bending test results for prismatic specimens 
made of A572 Grade 50 steel (Table 1, No. 2) are re-
ported in [3]. The hardening modulus is defined as 
Gp = 1670 MPa (4). The values of KIc were obtained 
at negative temperatures. The bending test results 
shown in Fig. 4 were obtained at normal (e= 10–3

 1/s) 
and high strain rate (e= 10 1/s). The normal strain 
rate corresponds to the curve plotted by the proposed 
method (9) with the substitution of the parameters 
U = 1.6 and С = 2.7 (curve 2). Assuming that an in-
crease in the loading rate is manifested in the same 
way as a decrease in temperature, the KIc(T) curve 
was calculated for the same values of U and C, but 
the estimated temperature was lower by 60°С in 
comparison with the real one (curve 3). 

3. Test results for normalized and tempered dou-
ble-cantilever beam specimens made of low-alloy  

 

 

Fig. 5. Test temperature dependence of KID for UXW 
steel.  and —experimental values obtained before and 
after general yield of the specimen. Curve 1 was calcu-
lated by Eq. (9) at C = 2.7. 

 
UXW steel are given in [19] (Table 1, No. 3). The 
hardening modulus Gp = 2620 MPa (4). The experi-
mental values of KID obtained for such specimens 
after crack arrest are compared in Fig. 5 with the 
curve calculated by Eq. (9) with the parameter U = 

1.6 corresponding to the compact specimen, at 
C = 2.7. 

4. Test results for compact wedge-opening-load 
(WOL) specimens [5] are reported in [20]. The speci-
mens were made of low-alloy ASTM A302B steel; 
its post-annealing properties are indicated in Table 1 
(No. 4). The hardening modulus Gp = 1670 MPa (4). 
The experimental values of KIc are compared in 
Fig. 6a with the curve calculated by Eq. (9) at U = 1.6 
and C = 2.7. 

5. In [21], compact specimens of A533B steel 
were tested at negative temperatures (Fig. 6b). The 
steel was subjected to heat treatment, including aus-
tenitization for 4 h at 843°С with water quenching, 
tempering for 30 min at 660°С to a thickness of 
25 mm, holding for 25 h at 610°С, furnace cooling to 
315°С, and then air cooling. The mechanical charac-
teristics of the heat-treated steel are presented in Ta-
ble 1 (No. 5). The hardening modulus for this materi- 
 

 

Fig. 6. Test temperature dependence of KIc for steel A302B (a) and A533B (b).  and —experimental values. The curves were 
calculated by Eq. (9) at C = 2.7 (1) and 3.0 (2). 



MATHEMATICAL MODEL OF BRITTLE FRACTURE OF A CRACKED PART 
 

PHYSICAL MESOMECHANICS     Vol. 25     No. 1     2022 

77

 

Fig. 7. Test temperature dependence of KIc for welded 10CrSiNiCu steel specimens. —experimental values. Curve 1 was calcu-
lated for the base metal by Eq. (9) at C = 2.6. 

 
al was Gp = 3850 MPa. The dimensions of the com-
pact specimens conformed to the ASTM standards 
[5], i.e., the thickness t and length a of the crack were 
at least 2.5(KIc/σy)

2. The thickness of the test speci-
mens was 25, 51, 102, and 152 mm. Two series of 
tests were performed in which the KIc values were 
obtained at different negative temperatures. The test 
results for both series are shown in Fig. 6b. The same 
figure illustrates the temperature dependences of KIc 
calculated by Eq. (9) at U = 1.6 and C = 3 (curve 2). 

6. Test results of welded 10CrSiNiCu steel speci-
mens are presented in [22] (Table 1, No. 6). The har-
dening modulus Gp = 1548 MPa. The specimens of 
width B = 300 mm consisted of four welded strips of 
thickness t = 40 mm. After welding they were tested 
for rupture in the temperature range from 0 to  
–130°С (Fig. 7a). The concentrator was a narrow gap 
of length 2a = 120 mm between the adjacent edges of 
the two central plates. Taking into account that the 
concentrator in these specimens is formed by a weld-
ed joint, its tip is not the tip of a sharp notch, and the 
material in which the crack is initiated differs from 
the base one. The critical values of the stress intensi-
ty factor were calculated from the fracture stress for 
the specimens. The value of sr was determined using 
Eq. (3). However, since these specimens had a crack 
with the relative size 2a/B = 0.4 exceeding the above 
limits, a specific finite element analysis was carried 
out. Due to the lack of more accurate data, the con-
centrator was modeled as a mathematical notch with 
a straight front along the entire specimen thickness. 
Based on this calculation, we derived the following 
expression for the parameter: 

2
0.9 0.6 .

a
U

B
   

Satisfactory convergence of the calculated Kc(T) 
curves (9) with the experimental ones was obtained 

at C = 2.6. The calculation was carried out using the 
mechanical characteristics of the base metal (Fig. 7b, 
curve 1). 

4. DISCUSSION OF RESULTS 

We considered the results of studies on the frac-
ture behavior of parts with cracks in subzero tem-
perature conditions [3, 18–22]. The tests were con-
ducted in different laboratories using different meth-
ods and mostly aimed at determining the critical val-
ues of the stress intensity factor. The test specimens 
were made of low-alloy steels and had concentrators 
in the form of a crack or crack-like notch. The test 
results were used to evaluate the temperature de-
pendence of KIc. All tests showed that KIc for the 
studied steels reaches its minimum at low tempera-
ture (about –80 ÷ –120°C) and grows with tempera-
ture rise. The scatter of KIc values within one series 
of tests was approximately (15–20)%. 

Using these results, we verified the brittle fracture 
assessment method based on criterion (1) and the 
model of elastic-plastic deformation of the pre-
fracture zone (3). We did this by calculating the criti-
cal stress intensity factor KIc (9) for the test speci-
mens from the cited works. The initial data for the 
calculations were the yield stresses σy, plastic harden-
ing moduli Gp, and test temperatures T. The value of 
the coefficient C was determined from the condition 
that the calculated curve is close to the scatter plot of 
experimental KIc values. Taking this into account, the 
cleavage stress S0c = Cσy for the considered steels was 
found to be equal to S0c = (2.6–3.0) σy. 

In all the tests considered, specimen fracture oc-
curred at the second stage of deformation of the pre-
fracture zone, at k1 < kc < k2, and only at very low 
temperature kc was approaching k1 = 1.2 (Fig. 6a). 
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Fig. 8. Test temperature dependence of kc. The values 
were calculated from experimental data: —UXW steel; 

—A302B; —A517-F; —A572. Curve 1 was calcu-
lated by Eq. (8) at C = 2.7 and U = 1.6. 

 
The behavior of the calculated KIc(T) curves for 

the given values of C agrees in most cases with the 
experimental data. For A517F, A572, A302B steel 
specimens without heat treatment and heat-treated 
UXW steel specimens, the coefficient C was found to 
be equal to 2.7. A different situation was observed in 
tests on A533B steel subjected to complex heat treat-
ment. The calculated curve was approximated to the 
experimental values using the value C = 3 (Fig. 5b). 
This deviation is probably caused by a significant im-
provement of the steel structure as a result of multi-
stage heat treatment. 

An opposite deviation was observed when pro-
cessing the test results of welded 10CrSiNiCu steel 
specimens, for which C = 2.6 (Fig. 7). The first diffe-
rence of these specimens from all the others is in the 
structure of the concentrator tip. It is formed not by a 
fatigue crack, but by a burn-through defect between 
two plates. In addition, there were residual welding 
stresses in the specimen, and the metal in which the 
crack propagated was subjected to welding. 

The dependence of the coefficient C on any cha-
racteristics of steel has not yet been observed. The 
determination of this coefficient requires more exten-
sive experimental research. 

For A517-F and A572 steels (at low loading rate), 
the experimental values of KIc increase considerably 
with increasing temperature (Fig. 4). The calculation 
of KIc in the given range by the proposed method 
gives underestimated values. This method does not 
take into account the rate of deformation. A prelimi-
nary assessment of the strain rate effect by a relative 
decrease in temperature shows that this quantity can 
really be taken into account using the corresponding 
yield stress increase factor (Fig. 4, A572 steel). How-
ever, the determination of its type and value requires 
additional study. 

The general curve (Fig. 8) shows the values of the 
coefficient kc for compact and bending specimens of 
A517-F, A5721, UXW, and A302B steels used in the 
above references. Symbols indicate the experimental 
values of kc,test calculated with the KIc values deter-
mined from the test results as in Eqs. (2): 

 Ic
c,test

y 0

.
T

K
k

r

  

 (10) 

The solid line shows the curve calculated by 
Eq. (8) with the averaged parameters Gp = 1500 MPa, 
Y = 800 MPa, C = 2.7, and U = 1.6. The summary 
curve shows that the calculation results by the pro-
posed method for C = 2.7 agree with the experimental 
data for low-alloy steels in the as-received or anneal-
ed states. 

Thus, the verification of the model by comparison 
with test results for low-carbon low-alloy steels show-
ed that the model satisfactorily describes the depen-
dence of the critical stress intensity factor on the sub-
zero temperature value in brittle fracture. This is done 
using the standard mechanical characteristics of steels. 

The analytical model for the loading of the pre-
fracture zone eliminates the need for an elastic-
plastic calculation of a metal structure by the design 
model of a structure with a crack. This is very conve-
nient for practical application, because design calcu-
lations are time consuming and are not an engineer-
ing practice. 

5. CONCLUSIONS 

The proposed method of brittle fracture prediction 
was shown to adequately describe the dependence of 
the KIc values on low subzero temperatures for low-
carbon low-alloy steels. 

The cleavage stress estimate in the form S0c = Cσy 
was obtained by comparison with experimental data. 
For low-carbon low-alloy steels in the as-received or 
annealed state C = 2.7. For steel subjected to multi-
stage heat treatment C = 3.0, which confirms the 
grain size dependence of the cleavage stress [14]. It 
can be assumed that after collecting a sufficient 
amount of experimental data this quantity can be nor-
malized according to the type and condition of steel. 

The developed method is based on using the stan-
dard mechanical characteristics of steel, which is ad-
vantageous at the design stage of engineering struc-
tures and components. 
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