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Abstract—This paper presents the bending and buckling analyses of simply supported nanowires using vari-
ous classical and nonclassical higher-order shear deformation theories (HSDTs). A one-dimensional structure 
is modeled with including the surface effects based on the Gurtin–Murdoch surface elasticity theory (non-
classical beam theory) and the small-scale effect based on the Eringen nonlocal theory (nonlocal beam the-
ory); the transverse displacement is divided into two bending and shear components. A system of governing 
equations is derived with the help of the minimum total potential energy principle and resolved via Navier’s 
solutions. Several numerical results are presented and compared with those given in the literature. The results 
showed that the influence of the surface effects on the bending and buckling load of nanowires is more pro-
nounced than that of the nonlocal parameter. 
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1. INTRODUCTION 

Nanowires (NWs) belong to the family of thin 
materials that have a dimension 1D, such as nano-
beams and nanotubes (NT). A wide range of uses of 
nanowire-based devices exists in the fields of engi-
neering, physics applications, and others sectors. 
Nanowires are commonly used in devices based on 
advanced technologies, such as transistors, sensors, 
resonators in nano- (NEMS) and microelectro-
mechanical (MEMS) systems and actuators [1–4]. 
They have wide applications in environmental moni-
toring, medical diagnostics, food processing, mining, 
bioengineering, and defense [5, 6].  

For the first time, Gurtin and Murdoch [7, 8] pro-
posed a generic theoretical framework based on the 
concept of continuum mechanics that represents the 
surface energy/interface. As is well known, the sur- 
 

face/volume ratio is high in nanoscale structures. 
Hence, the surface effect is one of the most important 
influences on the nanostructures compared to those 
on the macroscale. This way was clearly indicated 
and explained by Ansari and Sahmani [9] who adopt-
ed various theories of beams for the analysis of the 
buckling of nanobeams with surface effect. Others, 
for example Song et al. [10], used a continuum mod-
el for the mechanical behavior of nanowires includ-
ing surface and surface-induced initial stresses. Din-
greville et al. [11] demonstrated that the structure 
size influences the general elastic behavior and this 
dependence is important when at least one of the 
structural dimensions reduces to nanometers. 

Nonlocal elasticity has been used widely to study 
the wave propagation in composites, elastic waves, 
dislocation mechanics and dynamic/static responses 
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of FG-structures, carbon nanotubes, microtubules, 
and nanorods. For example the authors of works [12–
14], as well as Reddy and Pang [15], modified ana-
lytical models (EBT and TBT) using the nonlocal 
elasticity theory of Eringen to analyze the static and 
dynamic behaviors of CNTs with various boundary 
conditions. Phadikar and Pradhan [16] analyzed the 
static bending and buckling of nanobeams and nano-
plates in which nonlocal elasticity was included. Ci-
valek and Demir [17] investigated the static flexural 
behavior of microtubules (MTs) using nonlocal elas-
ticity, classical beam theory, and the differential 
quadrature method (DQM). Based on FEM and using 
a nonlocal continuum model, Demir and Civalek [18] 
analyzed the longitudinal and torsional frequency and 
the wave response of microtubules. Attia [19] devel-
oped a new analytical model to examine the re-
sponses of a PFG-nanobeam based on classical EBT, 
modified couple stress, nonlocal and surface elastic-
ity. Based on the EBT model and Eringen’s nonlocal 
elasticity, Dihaj et al. [20] investigated the vibra-
tional response of a chiral DW-CNT resting on the 
Winkler elastic foundation. The vibrational analysis 
of armchair SW-CNTs in thermal environment and 
embedded in an elastic medium was performed by 
Hamidi et al. [21] using the nonlocal Timoshenko 
beam theory. Ebrahimi et al. [22] studied the stability 
and free vibrational responses of simply supported, 
simply-clamped and clamped-clamped FG nano-
beams using the HSDT model, nonlocal elasticity, 
and Chebyshev–Ritz method. Based on nonlocal 
elasticity, Bensattalah et al. [23] examined analyti-
cally the effects of the small-scale coefficient, vibra-
tional mode and geometry parameters on frequency 
of chiral SW-CNTs using the TBT formulation and 
nonlocal elasticity. Civalek et al. [24] examined the 
free vibrational response of silica carbide and carbon 
nanotubes with various boundary conditions using 
the EBT formulation, Hamilton’s principle, and finite 
element-method. Based on nonlocal continuum elas-
ticity and FSDT formulation (Timoshenko’s model), 
Bensattalah et al. [25] examined the mechanical sta-
bility of zigzag TW-CNTs. Shanab et al. [26] studied 
the static (bending, buckling) and dynamic (free vi-
bration) behaviors of FG-nanobeams on the Winkler–
Pasternak elastic foundation using Timoshenko’s 
beam theory with including the effects of surface en-
ergy and microstructure. 

In this investigation, several nonclassical HSDTs 
(shear deformation theories) are developed to exam-
ine the buckling and bending responses of nonlocal  
 

nanowires (NWs) with taking into account the sur-
face stress and small-scale effects. The accuracy of 
the current model is checked by comparing the ob-
tained results with those found in the literature. The 
influence of the parameters of small-scale and sur-
face stress effects on the critical buckling load and 
maximum center deflection are examined and dis-
cussed in detail through several numerical examples. 

2. PROBLEM FORMULATION 

Consider a straight uniform beam with the length 
L; the area and perimeter of the cross section are A 
(A = b × h, where h and b are the thickness and width) 
and s, respectively. A coordinate system x, y, z is tak-
en along the length, width and height of the beam, 
respectively (where 0 ≤ x ≤ L, –b/2 ≤ y ≤ b/2, –h/2 ≤ 
z ≤ h/2), as shown in Fig. 1. The NW is subjected to 
transverse load q (point load or uniform load) and 
axial forces p at both ends. 

2.1. Surface Effects 

The stress–strain relation with surface effect pro-
posed by [7, 8] can be expressed in the general sim-
ple form as 

 s s s s( )               

 s s s s2( ) ,u         (1) 

where μs, λs are the Lamé constants of the surface, 
and τs is the surface stress (residual). 

Based on nonlocal elasticity proposed by [27–30], 
the stress–strain relations are given as 

 

 

Fig. 1. Simply supported straight uniform beam with rec-
tangular cross section and its coordinate system. 
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where σx is the normal stress, τxz is the transverse 
shear stress, E and G are Young’s modulus and shear 
modulus, x is the origin coordinate at the left end of 
the one-dimensional structure, the depth is along the 
z axis, and the nonlocal parameter μ is zero. We ob-
tain the constitutive relations of the local theories, 
where μ = (e0a)2, e0 is a material constant which is to 
be determined experimentally or by calibrating with 
atomistic modeling, and a is the internal characteris-
tic length (e.g., lattice parameter, molecular diameter, 
and grain size).  

2.2. Displacement Field 

Based on assumptions of higher-order shear de-
formation theories [31–37] that the components of 
axial displacement u and the transverse displacement 
of any point of the beam w along the x, y, z axes are 
only dependent on the x and z coordinates, in a gen-
eral form, the following displacement field can be 
written: 

 b s
b s( , ) ( ) , ,

w w
u x z z f z w w w

x x

 
    

 
 (3) 

where the transverse displacement is partitioned with 
two components: the bending part wb and the shear part 
ws; the nonzero strains of the proposed beam theory are  

 
2 2

b s s
2 2

( ) , ( ) ,x xz
w w w

z f z g z
xx x

  
     

 
 (4) 

where εx is the longitudinal strain, and xz is the 
transverse shear strain. 

f (z) and g(z) are the shape functions and are cho-
sen to satisfy the stress-free boundary conditions on 
the top and bottom surfaces of the beam. Thus the 
shear correction factor k is not needed. 

The shape functions f (z) used in this work are 
model 1 (TBT) of [38]:  

 3 2( ) 4 (3 ),f z z h   
model 2 (SBT) of [39]:  

 ( ) sin ( ),f z z h z h      
model 3 (HBT) of [40]:  

 ( ) sinh ( ) cosh(1 2).f z z h z h z      
The following sections present the stress-displace-

ment relations based on the developed surface elas-
ticity beam model. The effects of surface stresses on 
the beam are assumed to be governed by the Gurtin–

Murdoch theory of surface elasticity [7, 8] and can be 
simplified in the present study as 

 s s s s s s(2 ) , .xx x xz
w

x


          


 (5) 

In this work, we consider a superposition between 
the quantities corresponding to the surface and the 
bulk, and this summation is considered to facilitate 
only the mathematical formulation: 

 b s s b, .x x x xz xz xz          (6) 

The superscript s is used to denote the quantities cor-
responding to the surface, and the superscript b is 
employed to represent the quantities corresponding to 
the bulk, τs is the residual surface stress under uncon-
strained conditions, and μs, λs are the Lamé surface 
elasticity moduli determined by atomistic simulations 
or experimental measurements [41, 42]. 

For the classical beam theories, the stress compo-
nent σzz = 0 because σzz << τxz. 

For the nonclassical beam theories, the surface is 
not in balance with the above assumption. It is sup-
posed that the stress component σzz changes linearly 
within the beam thickness and satisfies the balance 
conditions on the top and bottom surfaces [43], with 

 
s s s s

t b t b

1
.

2
xz xz xz xz

zz
z

x x h x x

             
         

 (71) 

According to this assumption, σzz can be determined as 

 
2 2s

b s
2 2

2
.zz

w wz

h x x

  
      

 (72) 

Using Eq. (4) along with Eq. (5), the components 
of surface stress for the present beam theories can be 
obtained in the following form: 

 

2 2
s s s sb s

2 2

s s b s

(2 ) ( ) ,

.

xx

xz

w w
z f z

x x

w w

x x

  
            

        

 (8) 

The nonzero components of stress for the bulk 
σb

xx, τ
b

xz of the beam can be determined as 

 
2 2

b b s
2 2

( )x x z
w w

E E z f z
x x

  
           
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x

  
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 (9) 

where  is Poisson’s ratio. 
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3. NONLOCAL BEAM THEORY INCLUDING 
SURFACE EFFECTS 

3.1. Stress–Strain Relationships 

The following section presents the stress–dis-
placement relations and the related Euler–Lagrange 
equations corresponding to each type of beam theory 
based on the developed nonlocal beam theory includ-
ing the surface effects (N-HSDTs). The components 
of surface stress for N-HSDTs are given as 

 

2 s
s s s s

2

2 s 2 2
s s b s

2 2 2

(2 ) ,

.

x
x x

xz
xz

x

w w

x x x

 
        


    

         

 (10) 

The nonzero components of stress for the bulk for 
N-HSDTs are given as 

 

2 b
b

2

2 b
b s

2

,

( ) ,

x
x x z

xz
xz

E
x

w
Gg z

xx

 
     


  

  


 (11) 

where  
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2 2

2
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  
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In this work, we consider  

 b s b s, .xz xz xz x x x          (12) 
We have also  

 b s( , , ) ( , , ) d .
x

x
A
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M M Q z f g A

 
   
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  (13) 

By substituting Eq. (4) into Eqs. (10), (11) and the 
subsequent results into Eq. (13), the stress resultants 
are obtained as 
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v

  

3.2. Governing Equations 

The minimum total potential energy principle 
[44–48] is employed here to obtain the governing 
equations: 

 int ext( ) 0,U W    (15) 

where Uint is the virtual variation of the strain en-
ergy and Wext is the variation of work done by ex-
ternal forces. The strain energy variation is given as 
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d d d
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L h

xx xx xz xz
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L
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 

 


(16) 

The variation of the potential energy of the ap-
plied loads can be expressed as 

 b s
0

( )d
L

W q w w x      

 b s b s

0

d( ) d ( )
d .

d d

L w w w w
p x

x x
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   (17) 

Substituting the expressions for U, W from 
Eqs. (16), (17) into Eq. (15), integrating by parts, and 
collecting the coefficients of wb, ws, the following 
governing equations of the beam are obtained: 

 

2 2
b b s
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 (18) 

By replacing the stress resultants of Eq. (14) into 
Eq. (18), the nonlocal governing equations of N-
HSDTs including surface effects can be expressed in 
terms of displacements wb, ws as 
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 (192) 

where the constant parameter H is obtained by the 
residual surface tension τs and the shape of cross sec-
tion. In this study for a rectangular beam, we have 
H = 2bτs. 

In case if the nonlocal parameter μ is equal to zero 
and the surface effect is completely neglected, the 
equilibrium equation (19) becomes the classical 
beam theory; we denoted it by symbol CL. 

In case if the surface effect is completely ne-
glected, the equilibrium equation (19) becomes the 
nonlocal beam theory; we denoted it by symbol NL. 

In case if the nonlocal parameter μ is set to zero, 
the equilibrium equation (19) becomes the nonclassi-
cal beam theory; we denoted it by symbol SE. 

4. CLOSED-FORM SOLUTION FOR SIMPLY 
SUPPORTED NANOWIRES  

In this study, analytical solutions are given for 
simply supported isotropic nanobeams in bending 
and buckling. The boundary conditions of simply 
supported beams are 

 b s b s(0) ( ) 0, (0) ( ) 0.w w L M M L     (20) 

The following two coefficients of displacements (wb, 
ws) are chosen to satisfy the above boundary condi-
tions of simply supported beams as [49–52]: 

 b b s s
1 1

sin( ), sin( ),n n
n n

w W x w W x
 

 
      (21) 

where Wsn are arbitrary parameters to be determined, 
with α = nπ/L. 

The transverse load q is also expanded in the Fou-
rier sine series as 

 1

1

( ) sin( ),

2
( )sin( ).

n
n

n
n

q x Q x

Q q x x
L








 
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


 (221) 

The Fourier coefficients Qn associated with uniform 
and point loads are given 

for sinusoidal load [53] Qn = q0, n = 1, 
for uniform load Qn = 4q0/(nπ), n = 1, 3, 5.

(222)

Substituting Eqs. (21) and (22) for the expansion of 
displacement components wb, ws and transverse load 
q into governing equations (18), the analytical solu-
tions can be obtained from the following matrix system: 

 b11 21 2

s12 22

(1 ) ,n n

n n

W QM M

W QM M

     
      

      
 (23) 

where M11 = S11 – Pα2(1 + μα2), M12 = S12 – Pα2(1 + μα2), 
M21 = S21 – Pα2(1 + μα2), M22 = S22 – Pα2(1 + μα2) and 

s 3
2 s s 4

11 11

s
2 s s s 41

12 21 11 p4

2
(2 ) ,

6 2

2
(2 ) ,

I h Ah
S H D

h

I
S S H D I

h

  
               

 
          

 

v

v

 

s
2 s s s 41

22 11 p5

s s s 2
55 p1 p3 p2

2
(2 )

2 2( ) .

I
S H H I

h

A I I I

 
         

 
        

v

  

The buckling load is obtained from Eq. (22) by 
setting q to zero: 

 
Table 1. Critical buckling load for different nonlocal 
parameters of simply supported beams 

L/h μ, nm2 [54] [14] Present TBT 

0 9.6228 9.6228 9.6228 

1 8.7583 8.7583 8.7583 

2 8.0364 8.0364 8.0364 

3 7.4245 7.4245 7.4245 

10 

4 6.8991 6.8991 6.8991 
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2

11 22 12
cr 2 2

11 22 12

.
(1 )( 2 )

S S S
p

S S S



   

 (24) 

The static deflection is obtained from Eq. (22) by 
setting p to zero: 

 
2 2

2 2
1 11 12 22 22 12 11

(1 ) (1 )
( ) n n

n

Q Q
w x

S S S S S S





  
   
   

 
2

11 22 12 12

2(1 )
sin( ).nQ

x
S S S S

 
  

 (25) 

5. RESULTS AND DISCUSSION 

5.1. Nonlocality Validation for the Surface  
Effect is Completely Neglected 

This first part is devoted to the buckling analysis 
of a simply supported nanobeam with including only 
the nonlocality effect. 

The geometrical and material properties of a non-
local beam used in this section, according to [54], are 
L = 10 nm, E = 3 × 106

 N/m2, v = 0.3, h = b = 1 nm.  
 

 
Table 2. Critical buckling loads corresponding to the first mode in the nonlocal theory with surface effect 

L/h τs 2μs
 + λs μ, nm2 FSDT RBT TBT, present SBT, present HBT, present 

0 0 0.0 1.4226* 1.4226* 1.4229 1.4229 1.4229 

0.0 4.5549* 4.6272* 4.6272 4.6272 4.6272 

0.5 – – 4.4096 4.4096 4.4096 

1.0 – – 4.2115 4.2115 4.2115 

1.5 – – 4.0305 4.0305 4.0305 

2.0 – – 3.8644 3.8644 3.8644 

2.5 – – 3.7114 3.7114 3.7114 

3.0 – – 3.5701 3.5701 3.5701 

3.5 – – 3.4392 3.4392 3.4392 

10 
1.7 –3 

4.0 – – 3.3175 3.3175 3.3175 

0 0 0.0 0.3623* 0.3623* 0.3623 0.3623 0.3623 

0.0 3.6932* 3.7117* 3.7117 3.7117 3.7117 

0.5 – – 3.6664 3.6664 3.6664 

1.0 – – 3.6223 3.6223 3.6223 

1.5 – – 3.5792 3.5792 3.5792 

2.0 – – 3.5371 3.5371 3.5371 

2.5 – – 3.4690 3.4690 3.4690 

3.0 – – 3.4559 3.4559 3.4559 

3.5 – – 3.4166 3.4166 3.4166 

20 
1.7 –3 

4.0 – – 3.3782 3.3782 3.3782 

0 0 0.0 0.0583* 0.0583* 0.0583 0.0583 0.0583 

0.0 3.4471* 3.4501* 3.4501 3.4501 3.4501 

0.5 – – 3.4433 3.4433 3.4433 

1.0 – – 3.4365 3.4365 3.4365 

1.5 – – 3.4298 3.4298 3.4298 

2.0 – – 3.4231 3.4231 3.4231 

2.5 – – 3.4164 3.4164 3.4164 

3.0 – – 3.4097 3.4097 3.4097 

3.5 – – 3.4031 3.4031 3.4031 

50 
1.7 –3 

4.0 – – 3.3965 3.3965 3.3965 

* Taken from [9]. 
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Table 3. Critical buckling loads corresponding to the second mode in the nonlocal theory with surface effect 

L/h τs 2μs
 + λs μ, nm2 FSDT RBT TBT, present SBT, present HBT, present 

0 0 0.0 5.3013* 5.3019* 5.3019 5.3019 5.3019 

0.0 7.7531* 8.0214* 8.0204 8.0204 8.0204 

0.5 – – 6.6982 6.6982 6.6982 

1.0 – – 5.7503 5.7503 5.7503 

1.5   5.0374 5.0374 5.0374 

2.0   4.4817 4.4817 4.4817 

2.5   4.0365 4.0365 4.0365 

3.0   3.6717 3.6717 3.6717 

3.5   3.3674 3.3674 3.3674 

10 
1.7 –3 

4.0   3.1097 3.1097 3.1097 

0 0 0.0 1.4226* 1.4226* 1.4226 1.4226 1.4226 

0.0 4.5549* 4.6272* 4.6272 4.6272 4.6272 

0.5 – – 4.4096 4.4096 4.4096 

1.0 – – 4.2115 4.2115 4.2115 

1.5 – – 4.0305 4.0305 4.0305 

2.0 – – 3.8644 3.8644 3.8644 

2.5 – – 3.7114 3.7114 3.7114 

3.0 – – 3.5701 3.5701 3.5701 

3.5 – – 3.4392 3.4392 3.4392 

20 
1.7 –3 

4.0 – – 3.3175 3.3175 3.3175 

0 0 0.0 0.2324* 0.2324* 0.2324 0.2324 0.2324 

0.0 3.5880* 3.5998* 3.5999 3.5999 3.5999 

0.5 – – 3.5716 3.5716 3.5716 

1.0 – – 3.5439 3.5439 3.5439 

1.5 – – 3.5165 3.5165 3.5165 

2.0 – – 3.4896 3.4896 3.4896 

2.5 – – 3.4631 3.4631 3.4631 

3.0 – – 3.4370 3.4370 3.4370 

3.5 – – 3.4113 3.4113 3.4113 

50 
1.7 –3 

4.0 – – 3.3860 3.3860 3.3860 

* Taken from [9]. 

 
τs

 = μs
 = λs

 = 0 and μ  0 correspond to the nonlocal 
beam theory, but μ = 0 corresponds to the local beam 
theory. 

The presented results are for a wide range of 
small-scale coefficients and the length-to-depth ratio 
L/h = 10. From Table 1, we can see that the obtained 
results are in good agreement with those given by 
Aydogdu [14] and Reddy [54]. It can be also ob-
served that an increase in the nonlocality parameter 
tends to decrease the critical buckling load. This em-

phasizes the significance of the size effect on the crit-
ical buckling load of the beams. 

5.2. Surface Stress Including Nonlocal Elasticity 
Model for Nanowires 

Analytical solutions for the bending and buckling 
response of simply supported nanobeams with taking 
into account the coupling effect of nonlocality and 
surface properties are presented in Tables 2–6. 
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Table 4. Critical buckling loads corresponding to the third mode in the nonlocal theory with surface effect 

L/h τs 2μs
 + λs μ, nm2 FSDT RBT TBT, present SBT, present HBT, present 

0 0 0.0 10.7081* 10.7134* 10.7134 10.7134 10.7134 

0.0 12.3356 * 12.8760 * 12.8710 12.8703 12.8710 

0.5 – – 8.9119 8.9121 8.9119 

1.0 – – 6.8157 6.8160 6.8157 

1.5 – – 5.5179 5.5180 5.5179 

2.0 – – 4.6353 4.6354 4.6353 

2.5 – – 3.9960 3.9961 3.9960 

3.0 – – 3.5117 3.5118 3.5117 

3.5 – – 3.1322 3.1323 3.1322 

10 
1.7 –3 

4.0 – – 2.8266 2.8267 2.8266 

0 0 0.0 3.1058* 3.1060* 3.1060 3.1060 3.1060 

0.0 5.9339* 6.0915* 6.0912 6.0912 6.0912 

0.5 – – 5.4824 5.4824 5.4824 

1.0 – – 4.9843 4.9843 4.9843 

1.5 – – 4.5692 4.5692 4.5692 

2.0 – – 4.2178 4.2179 4.2178 

2.5 – – 3.9167 3.9167 3.9167 

3.0 – – 3.6557 3.6557 3.6557 

3.5 – – 3.4273 3.4273 3.4273 

20 
1.7 –3 

4.0 – – 3.2258 3.2258 3.2258 

0 0 0.0 0.5203* 0.5203* 0.5203 0.5203 0.5203 

0.0 3.8213* 3.8478* 3.8477 3.8477 3.8477 

0.5 – – 3.7806 3.7806 3.7806 

1.0 – – 3.7157 3.7157 3.7157 

1.5 – – 3.6530 3.6530 3.6530 

2.0 – – 3.5925 3.5925 3.5925 

2.5 – – 3.5338 3.5338 3.5338 

3.0 – – 3.4771 3.4771 3.4771 

3.5 – – 3.4222 3.4221 3.4222 

50 
1.7 –3 

4.0 – – 3.3690 3.3690 3.3690 

* Taken from [9]. 

 
The material properties used in this investigation 

are [8] E = 17.73 × 1010
 N/m2,  = 0.27, λs

 = –8 N/m, 
μs

 = 2.5 N/m, τs
 = 1.7 N/m, and b = h = 1 nm. 

Tables 2–4 present the values of the critical buck-
ling load Pcr of simply supported nanobeams corre-
sponding to the first, second and third buckling 
modes, respectively. The given results are compared 
with those obtained by Ansari and Sahmani [9] using 
the first shear deformation theory (FSDT) and re-
fined beam theory (RBT) for the case of μ = 0. The 
tabulated results indicate that the current model is in 
good agreement with the results of Ansari and Sah-

mani [9] for various values of the aspect ratio L/h. It 
can also be observed that the values of the critical 
buckling load increase in the case of τs

  0, 2μs
 + λs

  0 
(the surface stress effect is taken into account). It is 
clear from Tables 1–3 that the critical buckling load 
is in inverse relation with the values of the small-
scale effect μ. The largest values of Pcr are obtained 
for the ratios L/h = 10 because the structure is slender. 
Comparisons of Tables 1–3 show that the largest val-
ues of the critical buckling load Pcr are obtained for 
the third mode where the effect of the small scale is 
more pronounced. We conclude from the tables 



 
 

42 

50 

Table 5. Comparison between maximum center deflections under uniform load of nanowires 

L/h τs 2μs
 + λs μ, nm2 FBT HBT TBT, present SBT, present HBT, present 

0 0 0.0 9.0276* 8.9890* 9.0276 9.0273 9.0276 

0.0 2.7538* 2.7518* 2.7544 2.7545 2.7544 

0.5 – – 2.8791 2.8792 2.8791 

1.0 – – 3.0038 3.0040 3.0038 

1.5 – – 3.1286 3.1287 3.1286 

2.0 – – 3.2533 3.2535 3.2533 

2.5 – – 3.3780 3.3782 3.3780 

3.0 – – 3.5027 3.5029 3.5027 

3.5 – – 3.6275 3.6277 3.6275 

10 
1.7 –3 

4.0 – – 3.5027 3.6275 3.7522 

0 0 0.0 141.8635* 141.7089* 141.8635 141.8622 41.8635 

0.0 13.6216* 13.6213* 13.6217 13.7670 13.9122 

0.5 – – 13.7670 13.7670 13.7670 

1.0 – – 13.9122 13.9121 13.9122 

1.5 – – 14.0575 14.0573 14.0575 

2.0 – – 14.2027 14.2026 14.2027 

2.5 – – 14.3479 14.3478 14.3479 

3.0 – – 14.4931 14.4930 14.4931 

3.5 – – 14.6384 14.6383 14.6384 

20 
1.7 –3 

4.0 – – 14.7836 14.7835 14.7836 

0 0 0.0 5513.3390* 5512.3725* 5513.3389 5513.3311 5513.3389 

0.0 90.8133* 90.8133* 90.8133 90.8133 90.8133 

0.5 – – 90.9603 90.9601 90.9603 

1.0 – – 91.1074 91.1072 91.1074 

1.5 – – 91.2544 91.2542 91.2544 

2.0 – – 91.4014 91.4013 91.4014 

2.5 – – 91.5485 91.5483 91.5485 

3.0 – – 91.6955 91.6953 91.6955 

3.5 – – 91.8425 91.8423 91.8425 

50 
1.7 –3 

4.0 – – 91.9896 91.9894 91.9896 

* Taken from [55]. 

 
that the critical buckling load is influenced a lot 
by the surface effect in the case of higher values of 
L/h. 

Figure 2 plots the variation of the critical buckling 
loads versus the nonlocal parameter μ = 0.0, 0.5, 1.0, 
1.5, 2.0 nm2 and slenderness ratio L/h for the simply 
supported beam with E 

s
 = –3 N/m, τs

 = 1.7 N/m, and 
b = h = 1 nm. From the obtained curves we can see 
that the critical buckling load is in inverse relation 
with the ratio L/h because the structure becomes 
slender. We can also observe that an increase in the 

nonlocal parameter μ leads to a decrease in the values 
of the buckling parameter Pcr. 

Figure 3 presents a comparison of the critical 
buckling loads of simply supported nanowires E 

s
 =  

–3 N/m, τs
 = 1.7 N/m, and b = h = 1 nm predicted by 

the classical theory (CL), nonclassical nanobeam the-
ory (SE), nonlocal theory (NL), and nonlocal theory 
with surface effect (NL-SE). The curves indicate that 
the critical buckling loads computed using the non-
classical theory (SE) are larger than those predicted 
by the nonlocal theory with surface effect (NT-SE)  
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Table 6. Comparison between maximum center deflections under sinusoidal load of nanowires 

L/h τs 2μs
 + λs μ, nm2 FSDT RBT TBT, present SBT, present HBT, present 

0 0 0.0 1.4062* 1.4004* 1.4062 1.4060 1.4062 

0.0 0.4229* 0.4228* 0.4230 0.4230 0.4230 

0.5 – – 0.4392 0.4392 0.4392 

1.0 – – 0.4555 0.4555 0.4555 

1.5 – – 0.4718 0.4718 0.4718 

2.0 – – 0.4880 0.4880 0.4880 

2.5 – – 0.5043 0.5043 0.5368 

3.0 – – 0.5209 0.5205 0.5209 

3.5 – – 0.5368 0.5368 0.5368 

10 
1.7 –3 

4.0 – – 0.5531 0.5531 0.5531 

0 0 0.0 11.0580* 11.0466* 11.0580 11.0580 11.0580  

0.0 1.0300* 1.0300* 1.0300 1.0380 1.0461 

0.5 – – 1.0380 1.0380 1.0380 

1.0 – – 1.0461 1.0461 1.0461 

1.5 – – 1.0542 1.0542 1.0542 

2.0 – – 1.0623 1.0623 1.0623 

2.5 – – 1.0704 1.0704 1.0704 

3.0 – – 1.0785 1.0785 1.0785 

3.5 – – 1.0866 1.0866 1.0866 

20 
1.7 –3 

4.0 – – 1.0947 1.0947 1.0947 

0 0 0.0 171.9444* 171.9157* 171.9444 171.9442 171.9444 

0.0 2.7073* 2.7073* 2.7073 2.7073 2.7073 

0.5 – – 2.7101 2.7101 2.7101 

1.0 – – 2.7130 2.7130 2.7130 

1.5 – – 2.7158 2.7158 2.7158 

2.0 – – 2.7187 2.7186 2.7187 

2.5 – – 2.7216 2.7216 2.7216 

3.0 – – 2.7244 2.7244 2.7244 

3.5 – – 2.7272 2.7272 2.7272 

50 
1.7 –3 

4.0 – – 2.7301 2.7301 2.7301 

* Taken from [55]. 

 

 

Fig. 2. Variation of critical buckling load with nonlocality 
parameters and Es

 = –3 N/m, τs
 = 1.7 N/m (color online). 

 

Fig. 3. Variation of critical buckling load of nanowires 
versus span-to-depth ratio L/h (color online). 
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Fig. 4. Variation of critical buckling load with the aspect 
ratio corresponding to different values of Es and nonlo-
cality parameters with τs

 = 0 (color online). 

 
for the small values of ratio L/h, but the values of Pcr 
computed via SE and NL-SE are almost the same for 
higher values of L/h. The nonlocal theory (NL) gives 
small values of Pcr compared to the classical theory 
(CL). 

Figure 4 illustrates the effect of E 
s, nonlocality 

parameter μ and slenderness ratio on the critical 
buckling load of the beam with τs

 = 0. The plotted 
curves clearly show that an increase in the nonloca-
lity parameter μ and ratio L/h reduces the values of 
the critical buckling load. The highest values of the 
critical buckling load are obtained for 2μs

 + λs
 = 5. 

Figure 5 shows the variation of the critical buck-
ling load versus the value of the residual surface 
stress τs and small-scale effect parameter μ with 
E 

s
 = 0. We can see from the graphs that an increase in 

the magnitude of τs leads to an increase in the values 
of the critical buckling parameter for various values 
of the parameter μ. We can conclude again that the 
critical buckling load is in inverse relation with the 
slenderness ratio L/h and small-scale parameter μ. 

Tables 5 and 6 present the maximum center de-
flections of nanowires under uniform and sinusoidal  

 

 

Fig. 5. Variation of critical buckling load with the aspect 
ratio corresponding to different values of τs and nonloca-
lity parameters with the assumption of E 

s
 = 0 (color 

online). 

 

Fig. 6. Variation of maximum center deflections with 
nonlocality parameters and E 

s
 = –3 N/m, τs

 = 1.7 N/m 
(color online). 

 
transverse mechanical load, respectively. The ob-
tained results are compared with those given by Ould 
Youcef et al. [55] using FBT and HBT classical and 
nonclassical theories. The tabulated results for the 
maximum center deflections of nanowires confirm a 
good agreement between the current results and those 
of Ould Youcef et al. [55]. It is remarkable that the 
classical theory gives the highest values of the max-
imum center deflections because of neglecting the 
surface effect. The transverse displacement is in di-
rect correlation with the nonlocality parameter μ. The 
maximum deflection increases with increasing span-
to-thickness ratio L/h because the nanowire becomes 
slender and flexible. 

The variation of the maximum transverse deflec-
tion of nanowires with E 

s
 = –3 N/m, τs

 = 1.7 N/m ver-
sus the span-to-depth ratio L/h and nonlocality pa-
rameter μ is illustrated in Fig. 6. It is seen that an in-
crease in the ratio L/h leads to an increase in the val-
ues of the maximum deflection because the nanowire 
becomes flexible. The results obtained with allow-
ance for the small-scale effect are higher than those 
obtained with the local theory. 

 

 

Fig. 7. Variation of maximum center deflections of 
nanowires versus span-to-depth ratio L/h (color online). 
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Fig. 8. Variation of maximum center deflections with the 
aspect ratio corresponding to different magnitudes of E 

s 
and nonlocality parameters with the assumption of τs

 = 0 
(color online). 

 
Figure 7 presents a comparison of the transverse 

deflection of nanowires predicted by various analyti-
cal models (CL, SE, NL-SE and NL) for different 
values of the span-to-depth ratio L/h. The comparison 
demonstrates that the effect of nonlocality on the 
maximum deflection is more significant than the sur-
face effect. We can confirm again that the higher 
values of deflection are obtained for slender nan-
owires. 

The influence of the slenderness ratio L/h, nonlo-
cal parameter μ, and the magnitudes of Es on the 
maximum center deflection of simply supported nan-
owires with τs

 = 0 is presented in Fig. 8. One can see  
 

from the plotted curves that the maximum transverse 
displacement increases with increasing parameter μ 
and length-to-thickness ratio. The low values of de-
flections are obtained for the positive values of E 

s. 
The variation of the maximum center deflection 

versus the slenderness ratio L/h, residual surface 
stress τs, and small-scale effect parameter μ with 
E 

s
 = 0 is illustrated in Fig. 9. It can be seen that the 

center deflection increases with an increase in the 
nonlocality parameter μ and span-to-depth ratio L/h 
because the structure becomes flexible. An increase  

 

 

Fig. 9. Variation of maximum center deflections with the 
aspect ratio corresponding to different values of τs and 
nonlocality parameters with E 

s
 = 0 (color online). 

in the residual surface stress τs reduces the values of 
the center deflection for various values of L/h and 
parameter μ. 

6. CONCLUSIONS 

This work presents analytical solutions of the me-
chanical buckling and flexural behavior of simply 
supported nanowires under axial and transverse me-
chanical load. The structure is modeled on the basis 
of the cubic, sinusoidal and hyperbolic higher-order 
shear deformation theories. The surface stress and 
small-scale effects are considered based on the Gur-
tin–Murdoch surface elasticity theory and Eringen’s 
nonlocal theory. The governing equations are deter-
mined via virtual work principle. The obtained dif-
ferential equations are solved analytically with the 
help of the Navier procedure. The accuracy of the 
developed model is checked by comparing the ob-
tained results with those existing in the literature. 
Several examples are considered to show the influ-
ence of different parameters on the static responses 
of nanowires. The formulation can be extended to 
examine others types of structures and materials, as 
in [56–60]. 
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