
ISSN 1029-9599, Physical Mesomechanics, 2021, Vol. 24, No. 1, pp. 20–31. © Pleiades Publishing, Ltd., 2021. 
Russian Text © The Author(s), 2020, published in Fizicheskaya Mezomekhanika, 2020, Vol. 23, No. 4, pp. 31–42. 

 

20 

Method of Images Solution for an Edge Dislocation  
and a Circular Cavity in Crystalline Solids 

K. Nguyen1* and A. Mehrabian1 
1 Department of Energy and Mineral Engineering, Earth and Mineral Sciences Energy Institute,  

The Pennsylvania State University, University Park, PA, 16802 USA 
* e-mail: ktn36@psu.edu 

Received July 15, 2020, revised July 15, 2020, accepted July 31, 2020 

Abstract—Mechanics of defects in solids across a wide span of length scales is commonly formulated using 
the dislocations theory. This paper revisits the classical problem of interaction between an elastic edge dislo-
cation and a circular cavity. A heuristic, yet, mechanistic approach is taken to obtain the stress solution to this 
problem. The approach uses complex variable theory of elasticity, along with method of images. For this 
purpose, a definition and formulation of elastic dipole singularities similar to dipole charges in electrostatics 
is developed. It is shown that an image dislocation with Burger’s vector of the same strength as the real dis-
location but in opposite direction, as well as a set of four singularities including a dislocation dipole, a mo-
ment-dilatation dipole, and two centers of dilatation would establish a circular, traction-free boundary in an 
infinite elastic medium. Adding a Volterra dislocation to the finite-length edge dislocation from this study 
would recover the related problem of interaction between an infinite-length edge dislocation and circular ca-
vity. The interesting analogy between the considered elastic problem and the electrostatic problem of interac-
tion between a line electric charge and a cylindrical conductor is discussed. 
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NOMENCLATURE 

q—magnitude of electrical charge, 
q0—magnitude of image electrical charge, 
V—electrical potential, 
x—real axis in complex plane, rectangular x coordi-
nate axis, 
y—imaginary axis in complex plane, rectangular y 
coordinate axis, 
R0—a reference radial distance, 
R—circular cavity radius centered at the origin, 
—the end-coordinate of a finite edge dislocation 
measured from the origin, 
—angle measured from x-axis, 
G—shear modulus, 
—Poisson ratio, 
ij—stress tensor, 
2—Laplace operator, 
U—Airy’s stress function, 
z—complex coordinate of physical plane, 
—complex stress potential, 

—complex stress potential, 
Re—real part of a complex expression, 
Im—imaginary part of a complex expression, 
b—Burger’s dislocation vector in complex plane, 
bx—glide edge dislocation magnitude, 
by—climb edge dislocation magnitude, 
i—complex unit number, i = (–1)1/2,  
e—Euler’s number, natural logarithm base constant, 
—generic auxiliary potential, 
—generic auxiliary location of singularity in com-
plex plane, 
J—generic auxiliary magnitude of singularity, 
B—auxiliary dislocation magnitude, 
Q—auxiliary center of dilatation magnitude, 
M—auxiliary moment magnitude, 
P—auxiliary combined moment and center of dila-
tation magnitude, 
S—auxiliary coefficient, 
||—indicating the norm of a complex expression, 
Arg—indicating the argument of a complex expres-
sion. 
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SUBSCRIPT 

r—radial direction in cylinder coordinate, centered at 
the origin, 
—tangential direction in cylinder coordinate, 
i, j—stress tensors index, 
x—real part of a complex variable, 
y—imaginary part of a complex variable, 
b—Burger’s dislocation vector in complex plane. 

SUPERSCRIPT 

– —overbar indicating complex conjugate property, 
—derivative in complex plane, 
 —dipole of a singularity, 
ed—edge dislocation, 
dp—dipole of a potential, 
fed—indicating a property of a finite length edge dis-
location, 
 

V—indicating of the property of a Volterra disloca-
tion. 

1. INTRODUCTION 

The method of images offers a rather exploratory 
means of solving certain problems in mathematical 
physics involving singularities within finite domains, 
e.g., in electrostatics [1], plane elasticity [2], heat con-
duction [3], flow of inviscid fluids [4] and theory of 
vibrations [5]. The technique involves expanding the 
solution domain to an infinite space by introducing an 
image of the real problem domain against one or more 
boundary surfaces or hypersurfaces. Fictitious singu-
larities of deliberately selected strength and location 
are usually placed in the image domain in such a way 
that the prescribed boundary conditions of the prob-
lem boundary surfaces are secured.  

A pioneering application of the images method is 
found in the [6] on the interaction between point 
charges and spherical conductors. The two-dimensio-
nal variation of the problem is shown in Fig. 1 where 
a line electric charge q located at x = , an image 
charge –q located at x = R2/, along with an auxiliary 

 

 
Fig. 1. Schematics of electrostatic problem of a line charge interacting with a conducting cylinder (a), as well as the images 
charges at image point, x = R2/(b), and the conductor center, x = 0 (c). The arrowed curves and black curves are the resulting 
electric field and equipotential contours, respectively (d) (color online). 
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charge of strength q0 = –qln(R/) ln–1(R0/R) located at 
x = 0, within an infinite space would produce a cir-
cular equipotential contour of radius R centered at the 
origin of the coordinate system [1]. Thus, the unique-
ness theorem of Poisson’s equation would immedi-
ately establish the solution to the problem of electro-
static interaction between an infinite line charge q lo-
cated at a distance  from the center of a circular con-
ductor held at electric potential V = 0 [1].  

Method of images has been applied to problems of 
defects in elastic crystalline solids, in particular, via 
the theories of dislocations and fracture mechanics. 
Early contributions to the subject considered the ana-
logy between elastic stress fields of screw dislocations 
and electrostatic fields of line charges [7, 8]. The in-
teraction between an elastic edge dislocation and a 
planar boundary at the interface of two dissimilar so-
lids using the images method is presented in [9]. The 
solutions for the elastic interaction between screw and 
edge dislocations with boundaries of inhomogeneities 
were further treated in [10]. Extension of the solution 
in [7] was later applied to semiconductors technology 
where the configuration of inhomogeneous strained 
layer superlattices was shown to allow for filtering 
screw dislocations in gallium arsenide layers grown 
on silicon [11]. The phenomenon was reported to be 
responsible for superior yield strength of lamellar ma-
terials compared to the bulk pure crystals of their ei-
ther constituents. A scaling theory of such strengthen-
ing effect based on the method-of-image solution of 
the repulsive forces between dislocation rows and in-
homogeneity interfaces between alternating layers of 
lamellar materials is given in [12]. More recently, the 
displacement profile of the interface for the inho-
mogeneity-dislocation problem was published [13] 
while multilayer extensions of the solution using suc-
cessive dislocations images can be found in [14–18]. 
The method of images has been used to solve for the 
elastic field of twist disclinations in nonhomogeneous 
infinite spaces [19] and in hexagonal crystals [20].  

A similar record of literature has documented the 
fundamental and applied solutions on the interaction 
between dislocations and circular boundaries. Eshelby 
applied the images method to solve for the problem of 
a screw dislocation in the vicinity the circular boun-
dary of a thin rod [21]. Recently, the work of Eshelby 
has been extended to the cases of multiple annular 
elastic layers [22] and piezoelectric nanowires [23]. 
The stress field of an edge dislocation in presence of a 
circular inhomogeneity is somewhat more complex 
than the alternative problem involving a screw dislo-
cation since the former problem entails biharmonic 

stress potentials whereas the stress potential of the lat-
ter is a harmonic function. The pioneering work by 
Dundurs and Mura [24] concludes the solution to this 
problem. The solution in [24] is, however, a pure 
mathematical guess based on a rather try-and-error 
investigation of the similarities with the associated 
stress potentials from the limiting case of two inho-
mogeneous semi-infinite planes [25, 26]. Dundurs and 
Mura’s solution on the subject was later reformulated 
in the complex plane [27]. The solution for the case 
when the circular boundary is coated by a thin layer of 
different properties is presented in [28] whereas the 
case of two circular inclusions is treated in [29]. The 
problem of interaction between an edge dislocation 
and an elliptic boundary is successfully solved by con-
formal mapping technique in [30]. The solution for 
the case of edge dislocation inside an elliptical inclu-
sion is published in [31]. The solution for an edge dis-
location interacting with an interfacial crack at the 
boundary of a circular inhomogeneity is determined in 
[32]. The case of imperfect boundary interface be-
tween the matrix and circular inhomogeneity is inves-
tigated in [33]. More recently, the solution to the 
problem of cavity and dislocation is extended to the 
case where the matrix is an elastic half-space [34]. 

This paper uses the electrostatics analogy of ima-
ges method to revisit and solve the problem of interac-
tion between an edge dislocation and a circular cavity. 
The nonzero stresses due to the real and image dislo-
cations of opposite sign at the boundary of the cavity 
are determined and inspected. It is shown that delibe-
rate placement of four auxilliary singularities of de-
termined strength would retrieve traction-free condi-
tion of the cavity surface. These mechanical singulari-
ties include a dislocation dipole, a moment-dilatation 
dipole and two centers of dilatation. The strengths of 
these singularities are obtained from a system of linear 
algebraic equations that are extracted from the trac-
tion-free boundary conditions on the cavity surface. 
Results are verified by the previous published solution 
to the same problem [24]. 

2. THE ELASTIC PROBLEM OF EDGE 
DISLOCATION AND CIRCULAR CAVITY 

Figure 2 illustrates the plane-strain problem where 
a single edge dislocation of Burger’s vector b is 
placed in an infinite elastic medium of elastic con-
stants G,  located at a distance  from the center of a 
traction-free circular cavity. The problem boundary 
conditions consist of zero traction on the cavity 
boundary, i.e., 
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Fig. 2. Schematic of a finite edge dislocation and a cir-
cular cavity in an infinite elastic domain. 
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together with zero far-field stresses, as follows: 

 ( , ) 0.ij r     (3) 

The polar-coordinate form of Navier’s equations of 
static equilibrium, along with stress compatibility 
condition, takes the following forms [2]: 
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of polar coordinate. 
The stress components can be given in terms of 

Airy stress function U(r, ) [35]: 
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Direct substitution of the Eqs. (7)–(9) would verify 
that Airy’s stress function satisfies both the stress 
equilibrium and compatibility conditions expressed in 
Eqs. (4)–(6), provided that U(r, ) is a biharmonic 
function, i.e., 2(2U) = 0. 

The Airy stress U can be written in terms of two 
constitutive complex potential functions (z) and 
(z), as follows [36]: 

 U( , ) 1 2[ ( ) ( ) ( ) ( )],r z z z z z z        (10) 

where the in-plane stresses can be expressed as a com-
bination of these two complex potentials as 
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In polar coordinate, the in-plane stresses are calcu-
lated from Eqs. (11)–(13), as follows: 
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2.1. Method of Images Solution 

Without loss of generality, the real axis of the 
complex plane with the origin at the center of the ca-
vity in Fig. 2 is assumed to align with the line con-
necting the dislocation and cavity center. For a dislo-
cation with Burger’s vector b located at z =  in an 
infinite elastic field, the complex potential functions 
take on the following form [36, 37]: 
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Kelvin’s method of images [6] for circular boun-
daries is followed by placing an image edge dislo-
cation with Burger’s vector –b at z = R2/. This me-
thod follows a direct analogy of the well-known elec-
trostatics solution for interaction between a line 
charge and a circular conductor, as shown in Fig. 1. 
The complex potential functions pertaining to the real 
dislocation at z =  and image dislocation at z = R2/ 
are written as 
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where ed and ed are defined in Eqs. (17) and (18). 
By substituting Eqs. (19) and (20) in Eq. (13), the in-
plane shear and radial stresses at the hole’s boundary 
z = Rei simplify to 
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The correct solution to the considered problem re-
quires the right side of Eq. (21) to vanish. Hence, the 
task at hand becomes a search for supplementary sin-
gularities negating the right side of Eq. (21).  

The mathematical form of stresses expression in 
Eq. (21) suggests an ad hoc method to secure this 
condition. It appears that singularities of higher order 
can be used for this purpose. Dipoles of elastic singu-
larities could form the basis of a plausible solution. 
Appendix A presents a formulation for potential func-
tions of the elastic dipoles, as well as the correspond-
ing formulae for known elastic singularities including 
dislocations, moments, or centers of dilatation. The 
generalized formulations of singularities are summa-
rized in Tables A1 and A2. In particular, from Appen-
dix A, the complex potentials of a dislocation dipole 
with Burgers vector 1B̂  at R2/ are given by substitut-
ing Eqs. (17) and (18) in Eq. (A1): 
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where 1B̂  is the unknown Burgers vector of the dis-
location dipole at the image point. An attempt by in-
troducing a dislocation dipole into Eq. (21) reveals 
that it is impossible to completely negate the nonzero 
terms on the right side of Eq. (21) with a dislocation 
dipole alone. Thus, auxiliary complex potentials that, 
likewise, contain second order singularity originating 
from a combined moment-center of dilatation at the 
image location are used as well. From Eqs. (A8) and 

(A9), the potential functions pertaining to a combined 
singularity of the form P1 = M1 + iQ1 located at R2/ in 
a complex plane, would find the following form: 

 
1

2

, 0,P
R

z
 

    
 (24) 

 
1

2
1

2
, ,

4 (1 )P
R G P

z
i z R

 
        

 (25) 

where P1 is the complex variable of the combined sin-
gularity, M1 and Q1 are real-valued magnitude of mo-
ment and center of dilatation at the image location. 
P1 = –P(1 – )/G is defined to maintain the consistency 
with the generic definition in Appendix A. Appen-
dix B shows that dislocation dipole 1B̂  induces third 
order singularity to the problem, which by itself does 
not cancel out with any other terms. As a result, a 
combined moment-center of dilatation dipole is also 
placed at the image location, whose magnitude 2̂P  is 
determined in such a way to reduce the third order sin-
gularity arising from the previously selected disloca-
tion dipole. Following the derivations in Appendix B, 

2̂P  and 1B̂  are related by 
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By adding the combined moment-center of dila-
tation dipole 2̂P  and by substituting Eq. (26) into the 
total potential, the zero in-plane shear stress at the cir-
cular cavity’s wall suggests an approach to determine 
the magnitude of 1B̂  and P1. Since 1B̂  and P1 are com-
plex variables, they can be written as 1 1 1
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and P1 = M1 + iQ1. Thus, the complex expanded form 
of Eq. (16) determines the shear stress around the cir-
cular hole containing the physical and image disloca-
tions, one dislocation dipole 1

ˆ ,B  one moment-center 
of dilatation dipole 2̂P  and one moment-center of dila-
tation P1. The resulting mathematical expression 
would find the following form: 
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The vanishing shear stress condition at the inter-
face demands that all groups of trigonometric func-
tions should identically vanish. The resulting set of 
linear algebraic equations is outlined, as follows: 
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Equations (28) constitute a set of 5 linear algebraic 
equations to be solved for only 4 variables. Although 
there are more equations than variables, the solution 
can be uniquely determined, as follows: 
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Although the in-plane shear stress condition in 
Eq. (2) is met, the radial stress at the boundary is yet to 
be satisfied. The residual radial stress at the wall’s 
boundary after 1 2

ˆ ˆ,B P  and P1 having been determined is 
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The constant residual radial stress in the elastic 
problem is similar to the electrostatic subproblem in 
Fig. 1b where a constant potential is found on the in-
terface of a conducting cylinder. Thus from Eq. (30) it 
is straight-forward to include a uniquely defined cen-
ter of dilatation at the cavity center to negate the ob-
tained radial stress. From Appendix A, the complex 
potential of a dilatation of magnitude Q3 at the cavity 
center is found by 
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where Q3 is the strength of dilatation center at the ori-
gin. Using (14), (30) and (32), Q3 is determined as 

 
2 2

3 2Im[ ] .
R

Q
 

 


b  (33) 

3. DISCUSSION 

In summary, the exact analytical solution of the 
problem of a single dislocation b placed at an arbi-
trary distance  away from the center of circular hole 
can be decomposed into two subproblems in an infi-
nite continuum domain: (i) the dislocation b at  and 
(ii) complementary terms to account for the stress free 
boundary condition at the cavity boundary. The latter 
second problem can be further written as a superposi-
tion of five singularities in infinite elastic domain. 
Figure 3 illustrates the summary of these elastic singu-
larities. 

Consequently, the complex holomorphic functions 
describing the interaction of a dislocation of finite length 
( – R) with the circular cavity are obtained, as follows: 

 
2

ed ed
0( , ) ( , ) , ( ),

R
z z z z

 
         

b b  (34) 

 
2

ed ed( , ) ( , ) ,
R

z z z
 

           
b b   

 0 1( ) ( ),z z     (35) 

where the generic primary complex potentials of 
a dislocation in an infinite elastic field b

ed(z, ),  
 –b

ed(z, R2/), bed(z, ), and b
ed(z, R2/) are obtained 

from Eqs. (14) and (15), 0(z), 0(z) and 1(z) are 
extra singular expressions due to the center of dilation 
and moment-dilatation dipole at the image point, as 
well as the center of dilatation at the cavity center. 
These potentials are obtained as  

 
2 2 2

0 3 2

( )
( ) ,

4 (1 ) ( )

G R R
z

i z R

 
 

    
b

 (36) 
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0 2 2 2

( )
( ) ,

4 (1 ) ( )

G R R
z

i z R

  
    

b
 (37) 

 
2 2

1 2

Im[ ] 2( ) 1 1
( ) .

4 (1 )

G R
z

zz R

          

b
 (38) 

Table 1 shows the striking analogy between the 
electrostatic and elastostatic problems. The associated 
method-of-images solutions to both problems involve 
placing an image singularity at z = R2/, as well as an 
auxiliary singularity at the cavity center. However, a 
set of three extra auxiliary singularities at the image 
location is required in the case of the elastostatic prob-
lem to reproduce the traction-free boundary conditions 
on the cavity. 
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Fig. 3. Schematics of the method-of-images solution to the dislocation and cavity problem in an infinite elastic domain. 
 

3.1. Verification with Results of [24] 

From Eqs. (34) to (38), Airy stress functions 
pertaining to glide bx and climb by components of 
the edge dislocation b = bx + iby in presence of a cir-
cular cavity can be derived by using Eq. (10). The 
results are expressed as 

1
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 (39) 
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Table 1. The analogy between method-of-images solutions of the electrostatic and elastostatic problems  
with circular boundaries 

 Electrostatics Elastostatics 

Potential function 2V = 0 2(2U) = 0 

Boundary conditions  
at z = Rei 

V = 0 
2

2 2

1 U 1 U 1 U
0, 0

r r r r r

            
 

Singularity location Description Magnitude Description Magnitude 

Singularity at z =  Electric charge q Dislocation b 

Primary image  
singularity at z = R2/  

Image electric charge –q Image dislocation –b 

Dislocation dipole 
2 2 2

3

( )R R 



b  

Moment-dilatation dipole 
2 2 2 2

4

( )R R 


b
 

Auxiliary singularities  
at z = R2/ 

None 0 

Center of dilatation 
4 4

3

2Im( )( )R 


b
 

Auxiliary singularities  
at z = 0 

Electric charge 
0

ln( )

ln( )

q R

R R


  Center of dilatation 

2 22Im( )( )R 



b

 

 

 
2 2 2

2

cos Arg( )
2 ln | | .

z R R
z

z R

             

 (40) 

The infinite edge dislocation from Dundurs and 
Mura’s formulation [24] can be retrieved from the 
finite-length edge dislocation solution of this study if 
Eqs. (39) and (40) are superposed with a Volterra dis-
location [5], whose potentials are written as 

 V ( ) ln ,
4 (1 )

G
z z

i
 

 b
b

 (41) 

 
2

V
2

( ) (ln 1) .
4 (1 )

G bR
z z

i z

 
        
b b  (42) 

Hence, the Airy stress of the Volterra dislocation be-
comes: 

 
2

VU ( ) Re (ln ln ) .
R

z z z z
i i z

 
    

 
b

b b
 (43) 

Equation (43) pertains to the special case of a more 
generalized Volterra dislocation in Eq. (44) of a ring-
shaped elastic field given by Lardner [38], whose 
schematic is displayed in Fig. 4: 

 
2 2

V
2
1

U ( ) Re (ln ln ) .
z z R

z z z z
i i i zR

 
     

 
b

b b b
(44) 

It is easy to see that as R1  , the limiting case 
from Eq. (44) will be simplified into Eq. (43). Super- 

posing Volterra’s dislocation stress function by Eq. (43) 
on the glide and climb components of the Burger’s 
vector bx and by with potentials (z) and (z) defined 
by Eqs. (34)–(38) and rederiving the real-valued Airy 
stress function from Eq. (10), the following identical 
formulation of Dundurs and Mura for an infinite-
length dislocation is recovered [24]: 

 
1

1 1 1
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2 sinlnU
4 (1 )

(2 sinln ln sin )
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r r

r r r r


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  

  

 

 
Fig. 4. Schematics of a ring-shaped Volterra dislocation. 
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2 Arg ,
R

z
 

     
  

 Arg( ).z    

4. CONCLUSION 

Method of images is used to solve the problem of a 
circular cavity interacting with a finite edge disloca-
tion. It is shown that aside from the image dislocation, 
a set of three singularities including a center of dilata-
tion, a moment dilatation dipole and a dislocation di-
pole at the image point, as well as a center of dilation 
at the cavity center, would secure the traction-free 
boundary of the cavity. The presented solution closely 
mimics Kelvin’s solution of interacting line charges 
and cylindrical conductors in electrostatics. 

APPENDIX A. DIPOLES OF ELASTIC 
SINGULARITIES 

The complex potential of dipole of strength Ĵ  is, 
defined by a pair of corresponding singularities, with 
the same magnitude of strength J but in opposite in 
direction, one located at an arbitrary point  and the 
other located at an infinitesimal distance  + d in 
such a way that ˆ dJ J   is a finite value [39, 40]. 
With this definition, supposing the potential function 

(z, ) with singularity’s magnitude J, the complex 
potentials of a dipole can then be obtained, as follows: 

 dp
ˆ

d 0
( , ) lim ( ( , ) ( , d ))J JJ
z z z


            

 ˆ[ ( , )] d [ ( , )].J z J z
  

         
 (A1) 

Similar to the electrostatic charge dipoles, neither J 
nor d would have any physical meaning since the 
former tends to infinity while the latter is infinitesi-
mally small. In this context, the dipole’s magnitude is 
written in terms of ˆ,J  which has a finite magnitude. 
Hence, from Eqs. (17), (18) and (A1) the dipole of a 
dislocation, whose magnitude at  is the Burgers’ vec-
tor ˆ,B  becomes: 
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ˆ

ˆ 1
( , ) ,

4 (1 )B

GB
z

i z
   
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 (A2) 
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i z z z

      
         

(A3) 

The complex potential of a moment and a center of 
dilatation are outlined in Eqs. (A4), (A5) and (A6), 
(A7), respectively [41]: 

 ( , ) 0,M z    (A4) 

 
1

( , ) ,
4M
iM

z
z

  
 

 (A5) 

 ( , ) 0,Q z    (A6) 

 
1

( , ) ,
4Q
Q

z
z
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 

 (A7) 

where M and Q are real-valued magnitude of a mo-
ment and a center of dilatation, respectively. Since 
their forms are identical with the same order of singu-
larity at point , it is convenient to define a complex 
variable combining moments and centers of dilatation 
together, denoted as P = M + iQ. Thus, with this defi-
nition, the combined complex potential becomes: 
 

Table A1. Complex potential (z, ) 

 ln(z – ) 1/(z – ) 

Dislocation B 
4 (1 )

GB

i  
 0 

Moment M 0 0 

Center of dilatation Q 0 0 

Dislocation dipole B̂  0 
ˆ

4 (1 )

GB

i


  
 

Moment dipole M̂  0 0 

Center of dilatation dipole Q̂  0 0 
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 ( , ) 0,P z    (A8) 

 
1

( , ) .
4P
iP

z
z

  
 

 (A9) 

Using the definition of dipoles (A1), a combined 
moment-center of dilatation dipole of magnitude 

ˆˆ ˆ    P M iQ   located at  in a two-dimensional plane is 
defined by the potentials: 

 dp
ˆ ( , ) 0,
P

z    (A10) 

 dp
ˆ 2

ˆ 1
( , ) .

4 ( )P

iP
z

z
  

 
 (A11) 

A summary of singularities and their associated 
potentials is tabulated in Tables A1 and A2. 

APPENDIX B. REDUCTION OF THE  
THIRD-ORDER SINGULARITY  

Adding a dislocation dipole 1B̂  and a combined 
moment-center of dilatation P1 to Eq. (21), the boun-
dary stress terms, i.e., z = Rei would find the follow-
ing form 
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Table A2. Complex potential (z,  ) 

 ln(z – ) 1/(z – ) 1/(z – )2 
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 (B1) 

Equation (B1) shows that the dislocation dipole at 
the image point induces stress singularity of third or-
der. Thus, to negate this third order singularity, a 
combined moment-center of dilatation dipole is placed 
at the image point location R2/ so that it is reduced to 
the second order. To be consistent with the notations 
of Appendix A, the combined potential magnitude is 
equivalent to 2̂

ˆ (1 ) :P G P   
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2
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 
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 (B2) 
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 (B3) 

where 2 2 2
ˆˆ ˆP M iQ   is the complex coefficient of the 

moment-center of dilatation dipole at the image point. 
Adding only the third order singularities of stresses 
induced by dislocation dipole 1B̂  and the combined 
moment-center of dilatation dipole 2̂ ,P  the relation-
ship between their magnitudes is determined from 
substitute into latter part of Eq. (13) at the circular 
cavity’s boundary, i.e. 
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 (B4) 

To reduce the third order singularity to second or-
der, the numerator must reduce to a common factor of 
(Rei

 – R2/), hence: 
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 (B5) 

where S is any linear combination of products contain-
ing powers of ei, R and . Then, 2̂P  is related to 1B̂  as 

 
2 2

2 1
ˆ ˆ .

R
P B

 



 (B6) 

 

REFERENCES 

1. Jackson, J.D., Classical Electrodynamics, John Wiley 
and Sons, 2007.  

2. Barber, J.R., Elasticity, Dordrecht: Kluwer Academic 
Publishers, 2002. 

3. Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in 
Solids, Clarendon Press, 1992. 

4. Munson, B.R., Okiishi, T.H., Huebsch, W.W., and 
Rothmayer, A.P., Fluid Mechanics, Singapore: Wiley, 
2013. 

5. Volterra, V., Note on the Application of the Method of 
Images to Problems of Vibrations, Proc. Lond. Math. 
Soc., 1905, vol. 2, no. 1, pp. 327–331. 

6. Maxwell, J.C., A Treatise on Electricity and Magne-
tism. V. 1, Clarendon Press, 1873. 

7. Eshelby, J.D., The Force on an Elastic Singularity, Phi-
los. Trans. Roy Soc. Lond. A. Math. Phys. Sci., 1951, 
vol. 244, no. 877, pp. 87–112. 

8. Head, A.K., The Interaction of Dislocations and 
Boundaries, Philos. Mag. J. Sci., 1953, vol. 44, no. 348, 
pp. 92–94. 

 

9. Head, A.K., Edge Dislocations in Inhomogeneous Me-
dia, Proc. Phys. Soc. B, 1953, vol. 66, no. 9, p. 793. 

10. Dundurs, J., Elastic Interaction of Dislocations with 
Inhomogeneities, in Mathematical Theory of Disloca-
tions, 1969, pp. 70–115. 

11. Taylor, R.I., The Force on a Screw Dislocation Due to a 
Series of Layers of Alternating Shear Modulus, Semi-
conduct. Sci. Technol., 1989, vol. 4, no. 8, p. 612. 

12. Friedman, L.H. and Chrzan, D.C., Scaling Theory of 
the Hall–Petch Relation for Multilayers, Phys. Rev. 
Lett., 1998, vol. 81, no. 13, p. 2715. 

13. Chou, Y.T., Pande, C.S., and Masumura, R.A., The 
Role of Harmonic Functions in Dislocation–Boundary 
Interactions by the Method of Images, Mater. Sci. Eng. 
A, 2007, vol. 452, pp. 99–102. 

14. Ma, C.C. and Lu, H.T., Theoretical Analysis of Screw 
Dislocations and Image Forces in Anisotropic Multi-
layered Media, Phys. Rev. B, 2006, vol. 73, no. 14, 
p. 144102. 

15. Wen, J. and Wu, M.S., Analysis of a Line Defect in a 
Multilayered Smart Structure by the Image Method, 
Mech. Mater., 2007, vol. 39, no. 2, pp. 126–144. 

16. Zhou, K. and Wu, M.S., Elastic Fields Due to an Edge 
Dislocation in an Isotropic Film–Substrate by the  
 

Image Method, Acta Mech., 2010, vol. 211, no. 3–4, 
pp. 271–292. 

17. Ogbonna, N., Force on a Screw Dislocation in a Multi-
phase Laminated Structure, Math. Mech. Solids, 2014, 
vol. 19, no. 6, pp. 694–702. 

18. Ogbonna, N., On Screw Dislocation in a Multiphase 
Lamellar Inclusion, J. Niger. Math. Soc., 2015, vol. 34, 
no. 1, pp. 32–39. 

19. Chou, T.W., Elastic Behavior of Disclinations in Non-
homogenous Media, J. Appl. Phys., 1971, vol. 42, 
no. 12, pp. 4931–4935. 

20. Chou, T.W. and Pan, Y.C., Elastic Energies of Discli-
nations in Hexagonal Crystals, J. Appl. Phys., 1973, 
vol. 44, no. 1, pp. 63–65. 

21. Eshelby, J.D., Screw Dislocations in Thin Rods, J. 
Appl. Phys., 1953, vol. 24, no. 2, pp. 176–179. 

22. Ogbonna, N., On Elastic Interaction of a Screw Dislo-
cation with a Coated Cylindrical Inclusion, J. Eng. 
Math., 2016, vol. 99, no. 1, pp. 203–212. 

23. Wang, X. and Pan, E., Screw Dislocations in Piezoelec-
tric Nanowires, Mech. Res. Comm., 2010, vol. 37, 
no. 8, pp. 707–711. 

24. Dundurs, J. and Mura, T., Interaction between an Edge 
Dislocation and a Circular Inclusion, J. Mech. Phys. 
Solids, 1964, vol. 12, no. 3, pp. 177–189. 

25. Dundurs, J. and Hetényi, M., The Elastic Plane with a 
Circular Insert, Loaded by a Radial Force, J. Appl. 
Mech., 1961, vol. 28, no. 1, p. 103. 

26. Hetényi, M. and Dundurs, J., The Elastic Plane with a 
Circular Insert, Loaded by a Tangentially Directed 
Force, J. Appl. Mech., 1962, vol. 29, no. 2, p. 362. 

27. List, R.D., A Two-Dimensional Circular Inclusion 
Problem, Math. Proc. Cambridge Philos. Soc., 1969, 
vol. 65, no. 3, pp. 823–830.  

28. Povstenko, Yu.Z., Interaction between an Edge Dislo-
cation and a Circular Boundary in the Presence of an 
Alien Surface Layer, Sov. Appl. Mech., 1975, vol. 11, 
no. 3, pp. 272–277. 

29. Fukuzaki, K. and Shioya, S., On the Interaction be-
tween an Edge Dislocation and Two Circular Inclu-
sions in an Infinite Medium, Int. J. Eng. Sci., 1986, 
vol. 24, no. 12, pp. 1771–1787. 

30. Chen, D.H., Green’s Functions for a Point Force and 
Dislocation Outside an Elliptic Inclusion in Plane Elas-
ticity, ZAMP, 1996, vol. 47, no. 6, pp. 894–905. 

31. Warren, W.E., The Edge Dislocation Inside an Ellipti-
cal Inclusion, Mech. Mater., 1983, vol. 2, no. 4, 
pp. 319–330. 

32. Fang, Q.H., Liu, Y.W., and Jiang, C.P., Edge Disloca-
tion Interacting with an Interfacial Crack Along a Cir-
cular Inhomogeneity, Int. J. Solids Struct., 2003, 
vol. 40, no. 21, pp. 5781–5797. 

33. Wang, X., Interaction between an Edge Dislocation and 
a Circular Inclusion with an Inhomogeneously Imper-
fect Interface, Mech. Res. Commun., 2006, vol. 33, 
no. 1, pp. 17–25. 

 



METHOD OF IMAGES SOLUTION FOR AN EDGE DISLOCATION AND A CIRCULAR CAVITY 

PHYSICAL MESOMECHANICS     Vol. 24     No. 1     2021 

31

34. Dai, D.N., An Edge Dislocation Inside a Semi-Infinite 
Plane Containing a Circular Hole, Int. J. Solids Struct., 
2018, vol. 136, pp. 295–305. 

35. Malvern, L.E., Introduction to the Mechanics of a Con-
tinuous, Englewood Clifs, N.J.: Prentice-Hall, 1969. 

36. Muskhelishvili N.I. Some Basic Problems of the Ma-
thematical Theory of Elasticity, Graningen: Noordhoff, 
1954. 

37. Ardakani, S.M. and Ulm, F.J., Chemoelastic Fracture 
Mechanics Model for Cement Sheath Integrity, J. Eng. 
Mech., 2014, vol. 140, no. 4, p. 04013009. 

38. Lardner, R.W., Mathematical Theory of Dislocations 
and Fracture, Toronto: University of Toronto Press, 
1974. 

39. Chen, Y.Z. and Lin, X.Y., Potentials In-Plane Elasticity 
by Distribution of Dislocation Doublet or Force Doub-
let Along a Curve, Int. J. Eng. Sci., 1998, vol. 36, no. 1, 
pp. 23–31. 

40. Denda, M. and Kosaka, I., Dislocation and Point-Force-
Based Approach to the Special Green’s Function BEM 
for Elliptic Hole and Crack Problems in Two Dimen-
sions, Int. J. Numer. Meth. Eng., 1997, vol. 40, no. 15, 
pp. 2857–2889. 

41. Green, A.E. and Zerna, W., Theoretical Elasticity, New 
York: Dover Publications, 2012. 

 
 

 


