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Abstract—Frictional damping in elastic contact of a parabolic indenter subjected to a combination of oscilla-
tions in normal and tangential directions is numerically simulated. The dissipated energy first increases line-
arly with coefficient of friction, then decreases linearly, and finally reaches a constant value. These three re-
gions correspond to the states of complete slip, partial slip and complete stick. All three asymptotical de-
pendencies can be described analytically. The dissipated energy in a dimensionless form is function of the ra-
tio of normal oscillation amplitude and mean indentation depth, the ratio of change in contact area and stick-
ing area, and phase shift between normal and tangential oscillation. Master curves are suggested. 
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1. INTRODUCTION 

In frictional contacts, energy is dissipated when 
two contacting bodies have a relative sliding move-
ment. For elastic bodies, it is well known that under 
the periodic oscillating loading in tangential direction, 
the microslip appears at the boundary of contact and 
stick in the middle of contact, which may lead to fret-
ting and initiation of fatigue cracks [1]. This frictional 
damping occurs very common in the interface of 
joints of machine components [2, 3] and plays an im-
portant role in many applications of tribology and 
structure mechanics [4]. The energy dissipation of a 
spherical indenter subject to tangential oscillation was 
analyzed early by Mindlin [5]. It was found that the 
dissipated energy in one cycle is inversely proportio-
nal to the coefficient of friction, which indicates that 
there will be no energy dissipation if the coefficient of 
friction is infinitely large, because the whole contact 
is in a state of stick. However, a recent study shows 
that even in the case of infinitely large coefficient, 
energy dissipation still occurs if the body oscillates in 
both vertical and tangential directions, because the 
elastic energy stored at the boundary elements of con-
tact is suddenly relaxed during the composed oscillat-
ing process [6]. This kind of energy dissipation is call-
ed “relaxation damping”. In this paper, we numerical-

ly study the frictional damping due to a combination 
of vertical and tangential oscillation with constant co-
efficient of friction in contact under the Coulomb’s 
law of friction.  

The energy dissipation under varying normal and 
tangential loading has been studied by many resear-
chers, for example analytically by Davies et al. [7] for 
smooth two-dimensional indenters and by Putignano 
et al. [8] for rough surfaces, numerically by Liu and 
Eriten for two-dimensional wavy surfaces using the 
finite element method [9], and experimentally early by 
Johnson [10], Goodman and Brown [11] and recently 
by Usta et al. [12], where a power-law relation be-
tween dissipated energy and maximal applied stress 
has been intensively discussed and the power-law ex-
ponent is argued between 2 and 3. Furthermore, stu-
dies have shown that phase shift between normal and 
tangential oscillation plays an essential role in frictio-
nal energy dissipation [13, 14], and the maximal ener-
gy dissipation occurs in many cases when phase diffe-
rent is /2 [8, 14]. In this paper, we carry out simula-
tions of contact due to a combination of normal and 
tangential oscillation using the method of dimensiona-
lity reduction [15–17]. This is a very effective analyti-
cal and numerical tool exactly for this type of contact 
problems where  only the total macroscopic force  and  
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Fig. 1. Equivalent contact between a parabolic indenter 
and an elastic half space in the framework of the method 
of dimensionality reduction. 

 
displacement are of importance. Both these quantities 
are determined in the framework of method of dimen-
sionality reduction exactly, provided Coulomb’s law 
of friction is assumed.  

2. MATHEMATICAL MODEL 

We consider a contact between a rigid parabolic in-
denter with profile f (r) = r2/(2R) and an elastic half 
space with elastic modulus E and Poisson’ ratio , 
where R is radius of indenter and r polar radius in the 
contact plane. After indentation by d0, indenter is 
forced to oscillate in vertical and tangential directions 
with angular frequency , phase difference  and 
small amplitudes uz and ux according to the follow-
ing displacement-controlled laws:  
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We consider the case of “no jumping” and small am-
plitude, therefore uz << d0.  

In the framework of the method of dimensionality 
reduction, the three-dimensional profile is transformed 
into a plane profile according to [15, 16]  
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For the parabolic indenter, its corresponding one-
dimensional profile is given by g(x) = x2/R. Further-
more, the elastic half space is replaced by a one-
dimensional elastic foundation consisting of an array 
of independent springs with discrete distance x  
(Fig. 1). The normal and tangential stiffness of 
springs, kz and kx are defined following the rules:  

 * *, ,z xk E x k G x       (3) 

where effective elastic modulus is E*
 = E/(1 – 2) and 

shear modulus G*
 = 4G/(2 – ). With profile and elas-

tic foundation defined in Eqs. (2) and (3), one can 

simply solve the normal or tangential contact prob-
lems. The normal and tangential forces on each spring 
in contact is easily calculated by its stiffness kz, kx 
and displacement uz(x, t) and ux(x, t) 

 ( , ) ( , ), ( , ) ( , ).z z z x x xf x t k u x t f x t k u x t       (4) 

The normal displacement is dependent of only the 
profile g(x) and the given normal oscillation uz

(0)(t) 

 (0)( , ) ( ) ( ).z zu x t u t g x   (5) 

The tangential displacement can be determined by 
the following Coulomb’s law of friction: firstly, we 
assume that all springs in contact are in stick state and 
have the same incremental tangential displacement as 
indenter. If the resulted tangential force on some 
spring is larger than the production of coefficient of 
friction  and normal force fz(x, t), then it is in a state 
of slip, and the tangential force should be corrected 
according to Coulomb’s law. So, for a given small 
incremental displacement of indenter dux

(0)(t), we have 
the following rules  
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x x x
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The details on application of the method of dimen-
sionality reduction to normal and tangential contact 
can be found in paper [15]. With obtained tangential 
displacement of springs one can then calculate the 
force according to Eq. (4) as well as the total tangen-
tial force by summing the spring forces 

cont
( ) ( , ).x xF t f x t   

The energy in one period of oscillation T = 2/ is 
then given as  

 (0)

0

( )d ( ).
T

x xW F t u t   (7) 

3. RESULTS 

3.1. Theoretical Analysis 

Before presenting numerical results, we introduce 
the existing important results from the literature and 
offer a brief discussion on the current study. In the 
case of only tangential oscillation with finite coeffi-
cient of friction, the dissipated energy in one period of 
oscillation was given by Mindlin [5, 15]  

 1 22 * 1 2 (0) 3 1
M 0

2
( ) ,

3 xW E R d u      (8) 

where  = E*/G*. It is inversely linear function of coef-
ficient of friction, thus there will be no energy dissipa-
tion if coefficient of friction is infinitely large  = . 
However, in the case of composition of vertical and 
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tangential oscillation according to Eq. (1), the relaxa-
tion damping with  =  appears and it was given by 
Popov et al. [6]  

 1 2* 1 2 (0) (0) 2 2
0

8
( ) sin .

3 z xW G R d u u
      (9) 

The maximal damping W,max occurs when the phase 
shift is  = /2: 

 1 2* 1 2 (0) (0) 2
,max 0

8
( ) .

3 z xW G R d u u
     (10) 

Considering another limiting case of very small 
coefficient of friction where the whole contact area is 
in a state of slip, then the tangential force is simply 
following the Coulomb’s law of friction: Fx = Fn, and 
the dissipated energy in one oscillation cycle is equal 
to  

 (0)
C n 4 .xW F u    (11) 

Substitution of solution of normal load in Hertzian 
contact, Fn = 4/3E*R1/2d0

3/2 (we assume uz << d0, so 
the influence of vertical amplitude is neglected) into 
Eq. (11) provides  

 3 2* 1 2 (0)
C 016 3 .xW E R d u    (12) 

Equations (8), (9), (12) are three analytical solutions 
which will be used in the following analysis.  

Now we discuss one important parameter in de-
scription of energy dissipation: the ratio of the change 
in contact area and sticking area a/c. For the nor-
mal contact, it is well known that the contact radius is 
geometrically related to indentation depth d and 
sphere radius ,a Rd  so derivative of contact ra-
dius with respect to indentation depth results in the 
change in contact radius  
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In an oscillating contact, the maximum change in in-
dentation depth is d = 2uz

(0), then Eq. (13) becomes  

 1 2 1 2 (0).za R d u    (14) 

For tangential contact, the contact radius of sticking 
area c is determined by the relation (the normal ampli-
tude of oscillation is still neglected compared with 
mean indentation depth) 
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Similar to normal oscillation, considering the maximal 
change in tangential displacement (absolute value), it 
has, 

 (0) 1| 2 | | 2 | .xu R c c      (16) 

For small amplitude of oscillation, the radius of slip 
area is also very small, then we have c a Rd   in 
comparison with c. Following that Eq. (16) has the 
form 

 (0) 1/2 1/2 1 1.xc u R d         (17) 

From Eqs. (14) and (17) the ratio of change in contact 
area and sticking area a/c is then equal to 
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which is denoted by .  
In this study, we consider dual oscillation but with 

finite coefficient of friction, the numerically obtained 
dissipated energy will be normalized by the maximal 
value W,max in the limiting case of  =  in Eq. (9) 
with  = /2. Then the normalized solution by Mindlin 
in Eq. (8) is  
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The solution for the case of complete slip (12) in the 
normalized form is  
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with ratio of normal oscillation amplitude and mean 
indentation depth 
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Normalized solution for relaxation damping (9) is 
then phase dependent  

 2
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sin .
W

W
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
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
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From Eqs. (19), (20) and (22), we can see that the 
normalized dissipated energy in case of Mindlin de-
pends only on ,  in the case of relaxation damping by 
Popov et al. only on phase , and in the case of Cou-
lomb on both   and .  In the following part, numeri-
cal results show that the dimensionless energy dissipa-
tion in one oscillation period in a general case is a 
function of these three parameters:  

 ~ ( , , ).W f     (23) 

3.2. Numerical Results  

The frictional contact was numerically simulated 
using the method of dimensionality reduction as de- 
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Fig. 2. Map of slip, stick, and noncontact area in two cy-
cles of oscillation for parameter set:  = /2,  = 0.7268 
and  = 0.01 (color online). 

 
scribed in Sect. 2. Figure 2 shows an example of con-
tact area, sticking area and area out of contact chang-
ing with time in two cycles of oscillation 2T for pa-
rameter  = /2,   = 0.7268 and   = 0.01. Vertical 
axis shows the coordinate in plane ranging from the 
minimal boundary of stick-slip area cmin to the maxi-
mal contact radius amax. One can see that the contact 
radius varies with a harmonic-like function which 
could be also analytically calculated according to a(t) = 
(Ruz

(0)(t))1/2. Focus on only one time moment, for ex-
ample at time t1 (dashed line in Fig. 2), there is a stick 
region in the middle (upper part in yellow), slip region 
at the contact boundary (middle part in orange), and 
noncontact region (lower part in blue). But from the 
map it is seen that slip does not exist all the time, for 
example at time t3 the whole contact is in a state of 
sticking. Thus, energy dissipation occurs not all the 
time, but only in the time intervals when slip appears. 
Interestingly, one can see that in dual oscillation, the 
 

slip region appears and spreads gradually, but van-
ishes suddenly to a state of complete stick (for exam-
ple at time t2).  

A phenomenon should be noted here: in Fig. 2 the 
first cycle behaves slightly differently than the follow-
ing one. The reason for that is the initiation of spring 
locations, therefore only the second cycle is consid-
ered below for the calculation of the dissipated energy 
per cycle.  

Figure 3a shows the dependence of the normalized 
dissipated energy W  on the parameter   for phase 
 = /2 and three different values of   = 10–4, 10–3 
and 10–2. The parameter   was changed by varying 
the coefficient of friction . Focus on one single 
curve, one can see that the dissipated energy increases 
with coefficient of friction as well as parameter ,  
then it decreases until reaches to a constant value.  

This dependence can be divided into three regions:  
– a linear dependence in region I where the com-

plete slip occurs according to Coulomb’s law of fric-
tion described by Eq. (20),  

– an inversely proportional dependence in region II 
which can be described by the Mindlin’s solution 
(Eq. (19)) for a state of partial sliding, and 

– constant value in the region III corresponding to 
the pure “relaxation damping” for a state of complete 
sticking described by Popov et al. in Eq. (22) [6].  

In this normalized form, three curves overlap at 
large value of   in regions II and III where the energy 
is independent of ,  and the normalized dissipated 
energy is equal to 1 in the plateau with this example 
 = /2: 1W  . A multiplication of the normalized 
dissipated energy by the ratio   and its reciprocal by 

,  as shown in Fig. 3b, leads to an overlap of the 
curves at small ratios of    in regions I and II. 
These behaviors can be described by Eqs. (19)–(22). 

 

 
Fig. 3. Dependence of dissipated energy on parameter   for different amplitudes of normal oscillation   from 10–4 to 10–2: the 
curves overlap at large values of   (a); the curves overlap at small values of    (b) if the coordinates are multiplied by   and 
its reciprocal (color online). 
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Fig. 4. Dependence of dissipated energy on parameter   for different phases for  = 10–2. The energy is normalized by W,max 
(a) and by W() (b) in its corresponding phase . 

 
In Fig. 4a the dependences of dissipated energy W  

on parameter   for 210   and different phases  
are shown. A master curve is generated at small va-
lues of   in regions I and II, so the dissipated energy 
is independent of phase in this range. With increasing 
coefficient of friction, they are dispersed because the 
dissipated energy with very large coefficient of fric-
tion in the case of relaxation damping is phase de-
pendent. If the energy is normalized as W/W() by 
taking into account the phase angle, then the curves 
tends towards W/W() = 1 in the region of plateau 
(Fig. 4b).  

To find an “empirical” equation describing all 
three regions, two options are presented below. 

The first possibility is to describe three regions 
separately with already known theories, as discussed 
above: 
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The boundary between two regions are simply obtain-
ed by equilibrium of two equations. These three rela-
tions are shown in Fig. 3b with solid lines. In Figs. 3 
and 4 numerical results show that there is a smooth 
transition between regions I and II, as well as between 
regions II and III. However, Eq. (24) does not cover 
these transition zones.  

Another possibility is to approximate the simula-
tion results using rational functions. For region I, be-
ginning of region II and their transition, a perfect mas-
ter curve is observed as seen in Figs. 3b and 4a, the 
results are dependent of   but independent of phase 

. Taking   into account, we have the following ra-
tional function for 0  1  4: 

4 5 4 3
1 1 1

2 5 4 3
1 1 1 1 1

(4.858 10 0.2203 0.2226

0.1252 0.1836 )( 1.932 1.482

W        

        
 

 2 1
1 10.5866 0.0779 0.0889)      (25) 

with definition of parameter  

 1 .


 


 (26) 

This approximation is shown in Fig. 5 on the left side 
with the example of 210  , which agrees with nu-
merical results very well. It is noted that the range of 
1 in Eq. (25) is evaluated based on the curves in 
Fig. 3b. For other cases, for example 210  , the 
range will be reduced. The importance of (25) is the 
description of transition zone, so for the linear part, 
more exact solution (24) is suggested. 

For the other transition between regions II and III, 
one can see that shape of the curves in this area are 
different for different phases  (Fig. 4), thus a master 
curve cannot be generated, therefore we give here 
only an approximation for a special case of  = /2 for 

110  : 

 

 
Fig. 5. Approximation to the numerical result using ra-
tional functions. 
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    
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4. CONCLUSION 

The frictional contact of a parabolic indenter and 
an elastic half space, while the indenter is subjected to 
oscillations in normal and tangential directions, is nu-
merically simulated using the method of dimensiona-
lity reduction. The dissipated energy in one oscillation 
cycle is studied for different coefficients of friction, 
oscillation amplitudes and phase shifts between verti-
cal and horizontal direction. It is found that the dissi-
pated energy increases linearly with coefficient of 
friction (region I), then decreases linearly (region II), 
finally reaches to constant (region III). These three re-
gions correspond to states of complete slip, partial slip 
and complete stick. The can be described by the 
known asymptotic solutions based on the Coulomb’s 
law of friction, Mindlin’s solution and solution for re-
laxation damping.  

The dissipated energy in dimensionless form oc-
curs to be function of only three dimensionless para-
meters: normal oscillation amplitude, ratio of change 
in contact radius and radius of sticking area, and phase 
shift. Depending on these parameters, two master 
curves were obtained covering the most part of region, 
but not the transition between regions II and III where 
the shape of curves is phase dependent. The depend-
ences in these three regions can be described very 
well by use of existing analytical solutions, and transi-
tions between them can be defined roughly by their 
intersection points. The second possibility of approxi-
mations is to specify the curve by two rational func-
tions. With that a fairly precise calculation was ap-
plies to the case of phase shifts of /2. For other phase 
shifts or very large ratios of vertical vibration ampli-
tude to depth of indentation, the numerical simulation 
should be used as the calculation method. 
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