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Abstract—A mathematical model of Green–Naghdi photothermal theory is given to study the wave propaga-
tion in a two-dimensional semiconducting material due to moving heat source. By using the Fourier and 
Laplace transformations with the eigenvalues method, the physical quantities are obtained analytically. Ini-
tially, it is assumed that the medium is at rest and it is subject to a heat source in motion with a constant ve-
locity, which is free of traction. A semiconductor media such as silicon has been studied. The derived method 
is evaluated with numerical results which are applied to the semiconductor medium in simplified geometry. 
The influences of the different values of moving heat source speed are discussed for all physical quantities. 
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1. INTRODUCTION 

The most previous studies considering the thermal 
and elastic properties of the semiconducting elastic 
medium are isotropic and homogeneous. Whereas the 
equations of plasma, thermal and elastic waves are 
partially coupled and also the coupling between them 
was neglected. Solving the system with coupling the 
plasma, the thermal and elastic equation is very com-
plex. But, the analysis with partially coupled is enough 
in most experimental studies. In those work, the coup-
ling between the plasma, thermal, and elastic waves 
was neglected. As an especially cases the problem of 
thermoelastic and electronic distortion were taken into 
account. The effect of coupling was studied in terms 
of approximately quantitative analysis. Studying the 
excitation of short elastic pulses by photothermal 
means is important for engineers and physicists be-
cause it is applied in several areas, such as the moni-
toring of laser drilling, the determination of the para-
meters of the thermoelastic material, the photoacous-
tic microscope, the formation of images by thermal 
wave, laser annealing and fusion phenomena. The dif-
ference influences of thermoelastic and electronic de-
formations in semiconductor media with disregard the 
coupling between the plasma and thermoelastic equa-

tions have been analyzed. Todorovic et al. [1–3] per-
formed the theoretical analysis to describe two pheno-
mena that provide information about the transport pro-
perties and carrier recombination in the semiconductor 
material. The changes in the propagations of photo-
thermal waves go back to the linear coupling between 
the heating and mass transports (i.e., thermodiffu-
sions) has inclusive. In the materials science, the vari-
able thermal conductivity that depends on temperature 
is very important and has many applications in nature. 
Recent studies of the thermal conductivity dependence 
of semiconductors on temperature showed that physi-
cal properties, especially deformation and thermome-
chanical behavior, are strongly affected by any change 
in material temperature. Rosencwaig et al. [4] studied 
the local thermoelastic deformations at the model flat 
cause to the excitation. Green and Naghdi [5, 6] pro-
posed a new generalized thermoelasticity theorem by 
consists of the thermal-displacement gradient among 
the independent constitutive variables. Othman and 
Marin [7] studied the thermoelastic interactions on po-
rous material under Green and Naghdi theory due to 
laser pulse. Abbas and Abbas et al. [8–17] applied the 
generalized thermoelastic theories to get the numerical 
and analytical solutions of physical quantities. Marin 
and Öchsner [18] have presented the effects of a dipo-
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lar structure under Green–Naghdi thermoelasticity. 
Moreover, Song et al. [19] presented the vibration by 
the generalized theory of thermoelasticity subject to 
optically excited semiconducting microconductors. 
Lotfy and Lotfy et al. [20–23] have solved some prob-
lems by applied various fields in semiconductors ma-
terials. The eigenvalue method gave an analytical so-
lution without any supposed restrictions on the factual 
physical variables in the Laplace domain.  

The aim of the present article is to introduce a uni-
fied mathematical Green–Naghdi model for photo-
thermoelastic case. By using the eigenvalue approach 
and Fourier–Laplace transformations based on an ana-
lytical-numerical method, the governing equations are 
processed. For the considered variables, the numerical 
results are obtained and presented graphically.  

2. MATHEMATICAL MODEL 

Consider an isotropic, homogeneous and elastic 
semiconducting media, the basic equation of plasma, 
thermal conduction and motion based on Green and 
Naghdi model can be expressed by [2, 24] 
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The stress-displacement relations can be expressed 
as 
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where Q is the moving heat source,  is the material 
density, ij are the components of stress, N = n – n0, n0 
is the equilibrium carrier concentration,  = T – T0, T0 
is the reference temperature, ,  are the Lame’s con-
stants, ui are the components of displacement, De is 
the coefficient of carrier diffusion, t = (3 + 2)t, t 
is the linear thermal expansion coefficient, n = (3 + 
2)dn, dn is the electronic deformation coefficient, 
E = E – Eg, E is the excitation energy, Eg is the semi-
conducting energy gap, K is the thermal conductivity, 
K*

 is the material constant characteristic of the theory, 
ce is the specific heat at constant strain, r is the posi-
tion vector, t is the time,  = n0/ is the thermal 
activation coupling parameter [25],  is the photoge-
nerated carrier lifetime, i, j, k = 1, 2, 3. Taking into 

account the stress state of the plane in a two-dimen-
sional semiconducting problem, the components of 
the variables are defined by 
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Subsequently, the Eqs. (1)–(4) can be given by 
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The problem initial and boundary conditions can 
be defined by 
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where s0 is the surface recombination speed. For con-
venience, the dimensionless variables can be taken as 
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where  

( 2 ) , .ec c k         

In these nondimensional terms of the physical 
quantities in Eq. (13), the above Eqs. (5)–(12) can be 
expressed as in the following forms (the dash has been 
dropped for convenience) 
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Now, we consider that the plane is induced by 
moving thermal source along x axis with a constant 
velocity  which is assumed in the following nondi-
mensional form  
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where  is the delta function, Q0 is constant and H is 
the step function of the Heaviside unit. 

3. THE LAPLACE–FOURIER TRANSFORMS 

The Laplace transforms for any function Z(x, y, t), 
can be expressed by 
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ing ordinary differential equations system 
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while the matrix A = [aij] = 0, i, j = 1, ..., 8, excepting 
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The general solution V of the nonhomogeneous 
system (29) are the sum of the complementary solu-
tion Vc of the homogeneous equation and a particular 
solution Vp of the nonhomogeneous system. By using 
the eigenvalues method which proposed in Ref. [25], 
the exact solutions of homogeneous system can be 
obtained. Then, the matrix A has the characteristic 
equation which can be given by 
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To obtain the solutions of Eq. (29), the eigenvalues 
and corresponding eigenvectors of matrix A must be 
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Hence, the complementary solutions of Eq. (29) 
can be given by 
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where the terms containing exponentials of growing 
nature in the space variable x have been discarded due 
to the regularity condition of the solution at infinity, 
B1, B2, B3 and B4 are constants which can be calcu-
lated by using the problem boundary conditions while 
ui, vi, Ni and i are the components of corresponding 
eigenvectors with 

2 2 2
1 74 51 62 62 56 65( ( ) ( )),s fa a m a m m a a a       

2 2
2 73 51 62

2 2
56 65 62

( )( ( )

( )),

s f m a a m a

m m a a a

    

  
 

2 2 2
3 58 62 73 56 64 73

2
63 74 57 62 74

( ( )( ) ( ( )

) ( ) ),

s fm a m a m a a a m a

a a a m a a

     

  
 

2 2 2 2
4 64 73 51 58 65 73

2 2
51 63 57 65 74

( ( )( ) ( )

(( ) ) ),

s f a m a m a m a a m a

m a a m a a a

     

  
 

5 3 3 4 1 2,n ts ms iqm s s s      

6 2 4 3( ),s m ms iqs     
8 6 4 2

1 2 3 4.D m f m f m f m f      
 
 

Now, for any function *( , , ),Z x q p  its inversion of 
Fourier transform can be defined by 

 *1
( , , ) ( , , ) d .

2
iqyZ x y p Z x q p e q






   (40) 

Finally, to get the general solutions of temperature, 
the displacements, carrier density and stresses along 
distances x, y at any time t, we choose the Stehfest 
numerical inversion approach [26]. In this approach, 
the inverse of Laplace transforms for ( , , )h x y p  can 
be approximated by 

 
1

ln 2 ln 2
( , , ) , , ,

N

n
n

Z x y t V Z x y n
t t

   
 

  (41) 

where Vn is defined by the following relation: 

( 2 1)( 1) N
nV    

 
( 2 1)min( , 2)

( 1) 2

(2 )!
,

!( )!( 2 )!(2 1)!

Nn N

p n

p p

p n p N p n



 


  
  (42) 

where N is the term numbers. 
 

 

 
Fig. 1. The variation of temperature  (a), carrier density N (b), horizontal u (c) and vertical displacement v (d), stress xx (e) and 
xy (f) along to distance x when y = 0.5 for different values of heat source velocity  = 0.01 (1), 0.03 (2), 0.05 (3). 
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4. NUMERICAL RESULTS AND DISCUSSION 

The polymeric silicone appears in the photovoltaic 
solar cell of the p-n junction and can be manufactured 
quickly and economically. The values of thermal pro-
perties for silicon (Si) like material have been written 
as [27] 

10 2 35.46 10 N m , 2330 kg m ,p      
10 23.64 10 N m , 2.33 eV,E     

3 2 1 1
0 g2.5 10 m s , 2 ms , 1.11eV,eD s E       

6 1 20 3
03 10 K , 10 m ,t n       

31 3 59 10 m , 5 10 s,nd         
1 1

0 300 K, 695 J kg K , 0.4.eT c b     
The above data have been applied to study the ef-

fects of the moving heat source speed in the variations 
of temperature , the variations of carrier density N, 
the components of displacement u, v and the stresses 
xx, xy. The media is considered to be an isotropic 
and homogeneous two-dimension semiconducting ma-
terial. In addition, the thermal and elastic properties  
 

are considered without leaving the conjunction be-
tween the waves subjected to the plasma and the ther-
moelastic conditions. 

Figure 1a predicts the increment of temperature 
along the distance x. It is noticed that it starts from 
zeros according to the application of boundary condi-
tion and increase with x to have utmost values at x = 
0.3 and decreases gradually with increasing x to close 
to zero beyond a wave front for the generalized photo-
thermal theory. Figure 1b shows the carrier density 
variation along x. It is observed that the carrier density 
increasing with increases x to have maximum values 
on x = 0.4 and decreases with the increasing x until 
attaining zero on x = 3. Figure 1c displays the varia-
tion of vertical displacement along x which have 
maximums values on x = 0 and decreases with increas-
ing x. Figure 1d shows the variation of horizontal dis-
placement u along x. It is observed that it attains ut-
most negative value and progressively increases until 
it attains peak values at a particular location in close 
proximity to x = 0 and then continuously decreases to 
zero.  

 

 
Fig. 2. The variation of temperature  (a), carrier density N (b), horizontal u (c) and vertical displacement v (d), stress xx (e) and 
xy (f) along to distance y when x = 0.5 for different values of heat source velocity  = 0.01 (1), 0.03 (2), 0.05 (3). 
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Figure 1e display the stress component variation 
xx along x. It is clear that the stress magnitude always 
starts from zero which satisfies the boundary condi-
tions. Figure 1f predicts the variation of stress compo-
nent xy along x. The stress magnitude always starts 
from zero which satisfies the problem boundary con-
ditions. 

Figures 2a and 2b show the variations of the in-
crement of temperature  and the carrier density N 
along y and they point that the carrier density and the 
increment of temperature have ultimate values at the 
length of thermal surface (|y|  0.4) and they start to 
reduce just near the edge (|y|  0.4) where they 
smoothly decrease and finally close to zero values. 
Figure 2c shows the variations of vertical displace-
ment v along y. We find that it starts raising at the be-
ginning and ending of the thermal surface (|y|  0.4), 
and  has  smallest values at the middle of the thermal 
surface, then it starts increasing and come to highest 
values just near the edge (y = 0.4), after that it de-
creases to reach to zero. Figure 2d displays the varia-
tions of horizontal displacement u with respect to x 
and it indicates that it has ultimate values at the length 
of the thermal surface (|y|  0.4), and it begins to re-
duce just near the edge (y = 0.4), and after that re-
duces to zero value. Respectively, stresses xx and xy 

with respect to y are shown in Figs. 2e and 2f. As ex-
pected, it can be found that the speed of moving heat 
source have the great effects on the values of all the 
studied fields. 
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