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Abstract—The paper investigates a model simulating crustal fault dynamics and strain wave generation in a 
fault block geological medium, the parameters determining sliding regimes in faults, and the physics of tran-
sitions between different deformation regimes. The model comprises the most important mechanisms respon-
sible for the interaction of fault walls: friction, geometric irregularities (roughness and asperities on the fault 
surface), and external load, which govern sliding along the fault. The results of field and laboratory studies of 
deformation migration on the macro/mesoscale are consistent with the concept of localized deformation pro-
pagation in the form of solitary waves (kinks, solitons) and autowaves. The conditions are defined which 
make possible the transition from the model simulating solitary waves in a conservative medium with low 
“friction” (soliton-like behavior of the system) toward the model of solitary waves in an active medium with 
diffusion (autowave-like behavior of the system). Two possible deformation regimes of the fault block struc-
ture in the high-friction limit are considered. The fault wall displacement is stopped due to this friction, but 
the adjacent blocks move relative to each other in the core of the fault. It is shown that in the high-friction li-
mit a perturbed sine-Gordon equation applied for fault dynamics modeling is reduced to a reaction-diffusion 
equation, whereas the system goes from the soliton regime to the autowave regime. In the case of high fric-
tion and a lack of energy supply to the fault from an external source, the transfer of localized deformation is 
changed by a diffusive dissipation of stress. 
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1. INTRODUCTION 

The problem of deformation and dynamics of 
crustal faults is in the identification of processes and 
parameters governing sliding regimes in faults and in 
the understanding of the physics of transitions be-
tween different deformation regimes.  

Deformation phases and sliding regimes on faults 
are currently classified as interseismic, preseismic, 
coseismic, postseismic slip, as well as episodic tremor 
and slip [1, 2]. Physical mechanisms and signs of 
transitions between deformation regimes were exten-
sively investigated in experimental and theoretical 
papers (see, for example, [3–8] and works of refer-
ences). It is universally accepted that the transition 
from creep to unstable sliding along a fault, often ac-
companied by a tectonic earthquake, is caused by 
geometrical irregularities of the fault walls, decreased 
friction in certain segments of the fault core, and 

anomalies of pore pressure [9]. Seismic slip can be 
also initiated by slow strain waves excited in the crust 
and lithosphere [7, 8, 10]. 

One of the most important and still unsolved as-
pects of the fault dynamics problem is the onset of 
frictional motion or sliding along a fault. The transi-
tion from static to dynamic friction, which is often 
thought to initiate sliding, is an empirical ratio that 
gives no elucidation but presents a convenient heuris-
tic device. 

Numerous stick-slip experiments performed on 
rock specimens and various materials report that dy-
namic slip—the final stage of every stick-slip cycle—
is always preceded by localized deformation propaga-
tion in the form of a slip wave traveling along the 
block contact [11]. Laboratory experiments demon-
strate [12] that slip starts after the passage of three 
types of wave fronts, which are visible at the contact 
of two blocks. In so doing, the predominant mecha-
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nism of contact failure is the slow front propagation 
with the velocity from 40 to 80 m/s. One block does 
not move relative the other one, i.e. the contact is not 
weakened, until the slow front has crossed the contact 
surface of the blocks. Stick-slip experiments disclosed 
solitary fracture fronts propagating with the constant 
velocity about 30–60 m/s [13]. The existence of slow 
strain waves with the properties of solitons was prov-
ed by laboratory experiments [14]. 

The discovered effects of unstable sliding at the 
contact of rock blocks [15] are reproduced using per-
turbed sine-Gordon equations [16]. The calculation re-
sults are in good qualitative and quantitative agree-
ment with the results of later laboratory measurements 
of displacement and slip velocity [6, 17]. 

The idea that slow tectonic deformation and the re-
lated anomalies of geophysical fields also propagate 
in the form of solitary waves has a wealth of direct 
and indirect evidence [18, 19].  

The observed behavior of spatiotemporal migration 
of modern deformations in fault zones [20] and dyna-
mics of seismic activity [21] allows an assumption on 
the autowave pattern of deformation in the fault block 
geological medium. Slow autowave perturbations in 
the form of localized plastic deformation fronts are 
found to propagate in compression of specimens made 
of various rocks [22].  

Thus, the study of migration at the macro- and me-
solevels inevitably leads to the concepts of localized 
deformation propagation in the form of solitary waves 
(kinks, solitons) and autowaves. 

Mathematical models of solitary waves and auto-
wave processes in fault block geomedia can be con-
ventionally divided into two types: conservative (for a 
medium with dispersion) and dissipative (for a medi-
um with diffusion).  

Conservative models corresponding to the classical 
sine-Gordon equation are intensively used to model 
fault dynamics and crustal block motion generating 
strain waves of a soliton type and to interpret the ob-
served seismic and strain-induced effects [18, 23–26].  

Dissipative models are used to describe unstable 
sliding in the excitable block medium with elastic 
bonding [27, 28], slow autowave deformation proces-
ses in the excitable geomedium [20], and seismic mig-
ration in the excitable hierarchical block medium [21]. 
Mathematical models of such processes are reduced to 
FitzHugh–Nagumo and Kolmogorov–Petrovsky–Pis-
kunov–Fischer reaction-diffusion equations and de-
scribe the wave front dynamics.  

The solutions of conservative models correspond-
ing to the classical sine-Gordon equation are kinks 

and solitons. Dissipative models described by reac-
tion-diffusion equations give solutions in the form of 
autowaves. 

The solutions of these models have drastically dif-
ferent features. Thus, the ability of solitons to retain 
their velocity, shape, and amplitude is related to the 
lack of dissipation in the medium, though it can carry 
solitons of various velocity and amplitude. Auto-
waves, in contrast, propagate in the medium with dis-
sipation and retain their velocity, shape, and ampli-
tude due to supply of external energy. All autowaves 
in the active medium are similar and their characteris-
tics depend solely on the medium parameters. 

It is necessary to clarify the mechanism and condi-
tions of the transition from a dispersive (soliton or 
quasi-soliton) behavior of the medium to a diffusive 
(autowave) behavior, which is needed for the under-
standing of the transition between different deforma-
tion regimes on faults. 

2. MATHEMATICAL MODEL OF TRANSITION 
OF THE SLIDING REGIME ON A FAULT AND 
GENERATION OF STRAIN WAVES (FRONTS) 

OF A SOLITON TYPE 

A model of formation and transition of the sliding 
regime on a fault and generation of strain waves was 
earlier presented for the fault block geological medi-
um [29]. This model of solitary waves in the fault cor-
responds to the perturbed sine-Gordon equation and, 
in contrast to conservative [18, 23–25] or dissipative 
[20, 21, 27, 28] block models generating strain waves, 
takes account of both inertia and dissipation, which is 
more realistic in describing the deformation regime in 
the fault block system.  

The model takes account of the three important 
mechanisms of interaction of fault walls: friction, geo-
metrical irregularities (roughness and asperities), and 
external load, which, in this or that time interval, cont-
rol unstable sliding along the fault. The resulting ma-
thematical model corresponds to the perturbed sine-
Gordon equation [29]:  
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Here u is the displacement of blocks periodically 
placed along the fault, a is the distance between the 
block centers, Dt is the tangential contact stiffness, 
m = 4r3s/3 is the block mass, s is the block material 
density, r is the radius (size) of blocks, h is the dis-
tance between the adjacent block layers, g is the gravi-
tational acceleration,  is the viscosity of an interlayer 
between the blocks, d is the contact size between the 
blocks,  is the interlayer thickness,  and  are the pa-
rameters of friction and roughness, H and L are the 
height and distance between the asperities normalized 
to ap/, () is the Dirac delta function, and () is 
the function representing the external action on the 
contact between the fault walls.  

In the right-hand side of Eq. (1), the first term cor-
responds to the restoring force in response to shear 
along the sinusoidal surface of the fault walls, the sec-
ond term stands for the frictional force proportional to 
the velocity of relative displacement, and the third one 
for the corrections to point irregularities placed with 
the special period apL/. 

Numerical experiments based on Eq. (1) disclose 
that strain-induced effects related to decreased friction 
( << 1) at the contact between rough fault walls can 
induce solitary strain waves with velocity V, referred 
to as waves of fault activation [29]. These waves are 
strain localized at the mesolevel  (see Eq. (2)) and 
propagating along the fault with dimensionless veloc-
ity  related to V by ratio (3) and governing the slid-
ing regime on the fault: 
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The calculated block velocity profile v on the fault 
wall surface is shaped to a soliton v(x, t) = vmaxsech(x –
Vt) moving along the fault with velocity V (Fig. 1). 
At low V, the velocity v is insignificant, resulting in 
stable slow sliding (creep). At V of about 1–10 m/s, a 
soliton-like profile of the fault wall velocity v ~ 0.1–
1.0 m/s and a stepwise profile of displacement (kink) 
u(x, t) are observed (Fig. 1).  

Thus, the passage of a solitary wave (2), as in the 
previous experiments [12], weakens the contact, which, 
under constant external loading, leads to displacement 
of the fault walls—dynamic slip. These waves are in 
nature similar to sliding waves observed in numerous 
laboratory stick-slip experiments at the contact be-
tween rock blocks before their relative displacement 
[11]. 

 
Fig. 1. Evolution of activation wave velocity V, dis-
placement u, and slip velocity v on a fault. 

 
At specified fault parameters, a solitary wave chan-

ges to the stationary regime with the velocity V ~  

10–4–10–1
 m/s or 30 km/year–10 km/day corresponding 

to strain waves [18]. Specific combinations of rough-
ness and friction parameters cause the fault to change 
the “excited” state to stable sliding with the velocity 
V = 10–9

 m/s  3 cm/year, i.e. the system switches to 
the “locked fault” regime [29]. 

Hence it follows that an introduction, into the clas-
sical sine-Gordon equation, of perturbations in the 
form of friction and roughness allows an investigation 
of the influence of rheological and geometrical cha-
racteristics of faults on the deformation regime (dyna-
mics of faulting and its special features). 

However, results of numerical modeling based on 
Eq. (1) do not fully elucidate the physics of transitions 
between different deformation regimes, for example, 
the transition from the unstable state of preseismic or 
episodic slow slip to stable aseismic creep or the 
locked fault regime. Within the mathematical descrip-
tion of the system, this corresponds to the transition 
from hyperbolic perturbed sine-Gordon Eq. (1) to 
parabolic equations of reaction-diffusion and diffusion 
types or from the dispersive (soliton) to diffusive 
(autowave) behavior of the system.  

We are to find the conditions under which the tran-
sition occurs from the model of solitary waves in a 
conservative medium with low “friction” to the model 
of solitary waves in an active medium with diffusion. 
The understanding of transition of the system from 
one deformation regime to the other is evidently relat-
ed to the analysis of equations stemming from Eq. (1) 
in this or that limiting case.  

3. DEFORMATION MODELS OF THE FAULT 
BLOCK STRUCTURE IN THE HIGH- 

FRICTION LIMIT 

Let us consider two possible deformation regimes 
of  a  fault  block  structure  in  the  high-friction  limit,
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Fig. 2. Schematic of the structure and position of blocks in the fault core: periodic position of the blocks along the fault walls (a); 
vertical oscillations of separate blocks (b); pendular oscillations (c). 

 
when the amplitude decreases rapidly and the vibrati-
on period increases. The physical model of such a 
structure can be represented as a set of blocks periodi-
cally placed along both walls of the fault (Fig. 2a). In 
the most general case, separate blocks can even exe-
cute vertical oscillations (Fig. 2b) or pendular oscilla-
tions when their lower parts are fixed and the upper 
ones are out of equilibrium (Fig. 2c). High friction 
prevents a displacement of one fault wall relative to 
the other, but neighboring blocks in the fault core rub 
against each other and against blocks of the opposite 
wall. This behavior of the blocks is quite realistic 
when it is considered that, due to different block con-
tact stiffnesses or different effective viscosities of the 
block interlayers, some blocks of the fault core can be 
compressed and some can be unloaded. The block in-
teraction destroys the contact surface structure, and 
dynamic slip can occur in due course, with blocks 
moving along the fault. 

3.1. Transition to a Reaction-Diffusion Model 

We assume that the fault wall surface completely 
lacks asperities ( = 0) and friction (dimensionless vis-
cous damping) in the system is high ( > 1). Then the 
blocks cannot oscillate along the fault near the equi-
librium position, they are in aperiodic motion without 
leaving their places. In this case in Eq. (1), the term 
with the first time derivative corresponding to dissipa-
tive losses significantly exceeds the term with the se-
cond time derivative (inertial term), which can be neg-
lected. Perturbed sine-Gordon Eq. (1) in the high-fric-
tion limit ( > 1) or in the diffusive regime goes over 
into the equation 
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Equation (4) coincides in structure with equations de-
scribing, for example, autowaves in active media with 
energy dissipation and supply [30–32] or excitation 
waves in reaction-diffusion systems [33].  

It is known from theoretical physics that weak 
damping ( << 1) of solitons propagating in a medium 
with “friction” can be compensated by energy suppli-
ed to the soliton from an external source. Such statio-
nary solitary waves in a medium with low “friction” 
hardly differ in their properties from solitons in con-
servative systems [34]. Under these conditions, evolu-
tionary processes in a nonlinear medium with diffusi-
on, where autowaves are generated, are to be describ-
ed not only by parabolic reaction-diffusion equations 
but also by hyperbolic equations [35], among which is 
perturbed sine-Gordon Eq. (1). 

However, with increasing dissipation, i.e. with in-
creasing “friction” in the system, this difference is 
more and more pronounced. The similarity of solitary 
waves in active media with diffusion to solitons re-
mains until the critical damping value c is exceeded. 
After this, the system switches from the soliton to au-
towave regime, with properties of the medium chang-
ing sharply. This primarily refers to the reaction of the 
medium to the interaction of slow solitary strain 
waves, which can serve as one of the tests determining 
a medium model (active or conservative). In collision, 
two autowaves annihilate, i.e. they are either mutually 
destroyed or transformed into an autowave of another 
type (static or pulsating autosoliton) [36]. On the cont-
rary, colliding solitons restore their shape and conti-
nue to move at the same velocity and in the same di-
rections as before interaction. More complex combin-
ed variants are also possible. Thus, from numerical 
experiments [7, 8] it follows that under certain condi-
tions slow strain autowave fronts exhibit a soliton-like 
behavior, passing through each other after the colli-
sion in a loaded elastoplastic medium. 

If the kink and antikink (images of the strain wave 
fronts) move towards each other at a certain equilibri-
um velocity Ve, at which the energy loss due to dissi-
pation is equal to the energy supplied to the kink, then 
according to McLaughlin and Scott [37], the velocity 
can be expressed in the used designations: 
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This case corresponds to the classical autowave be-
havior of the medium. At  << 1, the fronts pass 
through each other after elastic collision with conser-
vation (soliton-like behavior). The only effect of such 
a collision is a phase shift [32]. At sufficiently high 
damping values  > 1, the fronts collide with annihila-
tion (autowave-like behavior). 

To determine critical parameters of damping  and 
source  separating zones of possible autowaves (de-
structive collisions of kinks) and solitary waves (non-
destructive collisions of kinks) is of particular interest 
and requires special investigation, since these zones 
correspond to fundamentally different deformation re-
gimes on faults. 

3.2. Transition to the Model of Diffusive  
Dissipation of Stress 

By isolating the external source () and giving no 
account of the “restoring” force of sin U (fault surface 
roughness), the system goes into the usual diffusive 
regime and Eq. (4) takes the form of the classical dif-
fusion equation: 
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which, by replacing dimensionless quantities with phy-
sical parameters entering initial Eq. (1), can be written 
in the following way: 
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where  is the stress diffusion coefficient. 
Equations of this type were previously used to mo-

del the stress transfer along the lithosphere–astheno-
sphere contact [38] and to describe the migration of 
deformation and earthquakes [39–41]. 

The standard solution of diffusion Eq. (6) has the 
form 

 0( , ) erfc ,
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x
u x t u

t
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where the erfc function is the error integral. Soluti-
on (8) describes a bell-shaped asymmetric single pul-
se, which smears due to diffusion over time and tends 
to the form of a smoothed Gaussian curve. From Eq. (8) 
it follows that the average distance to which the 
perturbation propagates during time t is equal to x = 

2(t)1/2. Under a sinusoidal load with the period T = 

2/, the strain wave velocity Vd is defined as 

 t t
d 02 2 ,

D D
V a

T T T
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where  = / is the specific contact viscosity, and  
is the dimensionless coefficient.  

The wave velocity Vd is largely influenced by the 
specific viscosity of the interlayer , tangential contact 
stiffness Dt, and the wave period T. Kocharyan refers 
to fault stiffness as the control parameter of deforma-
tion [2]. Interlayers separating blocks of the Earth’s 
crust can present fluid-saturated fractured media with 
elastic moduli and viscosity much lower than the mo-
duli and viscosity of the block material. The viscosity 
of contact between the blocks varies in a rather wide 
range:  = 108–1014

 Pa s [42, 43]. The dynamic visco-
sity of the interlayer can even be several orders of 
magnitude lower [2]. 

When studying creep in the San Andreas fault, the 
diffusion coefficient is found to be  = 0.1–1.0 m2/s 
[44]. According to Johnson and McEvilly [45], the 
seismic diffusion coefficient is s = D2/t = DVE = 1–
20 m2/s (D and t are the distance and time between 
two successive earthquakes, and VE is the fracture ve-
locity). The monograph by Scholz [46] states the coef-
ficient of hydraulic diffusion s in the Earth’s crust 
within 0.01–10 m2/s. 

From calculations by (7) and (9) it follows that, at 
the parameters  = 106–108

 Pa s, s = 3  103
 kg/m3, Dt ~ 

106
 N/m, а = 104

 m, 0 = 10–5
 s–1,  = 10–102

 m, d = 

104
 m, and T = 108

 s (~3 years), the diffusion coeffici-
ent is  = 5  10–2–5  10–1

 m2/s and the diffusion wave 
velocity is Vd = 8  10–5–2.5  10–4

 m/s (2.5–10 km/year), 
which is comparable with the velocity of slow strain 
(tectonic) waves of the order of 1–100 km/year [47]. 
At the interlayer viscosity   1010

 Pa s and the other 
fixed parameters, the wave velocity (9) takes on va-
lues Vd  5  10–7

 m/s (10–2
 km/year), which almost 

corresponds to the locked fault regime.  
Thus, in the case of high friction, the transfer of lo-

calized deformation (kink displacement) is replaced 
by diffusive dissipation of stress. The main factor re-
gulating the velocity of slow stress migration is the 
viscosity of the contact zone (interlayer). 

4. CONCLUSIONS 

From the results of laboratory experiments and 
field observations, it follows that kinks, solitons, and 
autowaves can serve, under specified conditions, as  
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adequate dynamic images of strain perturbations on 
faults (slip waves). The idea is gradually formed that 
frictional motion along the contact surface of rock 
blocks or along crustal faults is accompanied by 
slip waves of various types in creep [48–50]. Such slip 
waves can exist in the form of solitary waves (slip 
pulses), periodic waves, or wave fronts. Nevertheless, 
in respect to physical understanding and mathematical 
modeling, it remains unclear how slip pulses or solita-
ry strain waves can be excited during long-term stable 
sliding (creep). 

The analysis of model (1) and the reported labora-
tory data [12, 50] show that with decreasing friction at 
the block contact (in the fault) the regime can change 
from slow slip or creep to stick-slip and can be ac-
companied by the generation of solitary strain waves 
or slip pulses, which, on passing, weaken the contact 
and lead to dynamic slip. 

The model of solitary strain waves on the fault 
[29], corresponding to the perturbed sine-Gordon 
equation, allows for a determination of physical con-
ditions under which the model of solitary waves in a 
conservative medium with low friction can change to 
the model of solitary waves in an active medium with 
diffusion and to models with ordinary diffusion. In the 
high-friction limit and with no asperities on the fault 
wall surface, perturbed sine-Gordon Eq. (1) reduces to 
reaction-diffusion Eq. (4), which means the soliton-to-
autowave transition of the system. At high friction, 
weak external source, and significant roughness of the 
fault walls, the transfer of localized deformation in 
the form of kinks and solitons becomes impossible, 
resulting in the regime of diffusive dissipation of stress 
corresponding to Eq. (6). 

It should be noted that model [16, 29], in contrast 
to conservative or dissipative models, takes into ac-
count both inertia and dissipation, which is characte-
ristic of many natural systems. 

It might appear at first glance that the studies of in-
teraction of soliton-like strain waves and dynamics of 
seismogenic faults are not directly related, but this is 
not the case. It was earlier suggested [51, 52] that a 
strong earthquake can be caused by a collision of two 
large-scale tectonic waves moving towards each other, 
and it was shown that the kink-antikink collision, mo-
deling such an interaction, can lead to a breather—a 
stable long-lived pair—which radiates energy and the-
refore gradually damps [52]. Known also is the solu-
tion of the modified Burridge–Knopov model that re-
presents localized fracture (a breather propagating 
along the fault and damping in a finite fault segment 
[53]). 

In addition, the possibility of interaction [20, 46, 
54, 55] and synchronization [56, 57] of faults was stu-
died in relation to static or dynamic stress transfer. 
According to Scholz [57], interaction and synchroni-
zation are of special significance in systems of subpa-
rallel faults with fairly close sliding velocities. It is 
proposed to take the tectonic fault as a fault-generator, 
the frequency of which is given by the ratio  = v/u, 
where u is the earthquake-related slip, and v is the 
velocity of the “geological” slip. Based on the Kura-
moto group synchronization model, it was suggested 
that faults with comparable slip velocities will synchro-
nize both in frequency and phase over time [57]. For 
characteristic values u ~ 0.1–1 m and v ~ 1–10 cm/year 
the oscillation frequency of the fault-generator is 5  

10–10
 Hz and falls within the frequency range of strain 

waves 10–10–10–9
 Hz [47]. This once again points to 

the wave character of fault interaction. 
Direct geodetic measurements were used to find 

that deformation is transferred from fault to fault in 
the form of an “interfault” wave at a velocity of 20–
30 km/year or more [20]. Strain autowaves are formed 
during the interaction of anomalous local stress and 
strain fields. Constant energy supply due to energy 
distributed in the geological environment, for exam-
ple, tectonic stresses inside the Earth, as well as due to 
regional and global geodynamic processes, ensures 
the generation and maintenance of strain autowaves. 
Therefore, the direct statistical dependence is valid be-
tween the average migration velocity of earthquake 
epicenters (the deformation transfer velocity inside the 
Earth) and the velocity of tectonic plates [58], i.e. slid-
ing velocity along faults and their fragments. 

The formation of sliding regimes on faults is di-
rectly related to the presence of slow dynamics in the 
geological environment, i.e. wave processes signifi-
cantly slower than a seismic wave. Slow dynamics of 
deformable fault zones includes transfer of localized 
deformation in the form of solitary waves and auto-
waves as well as formation of strain waves of various 
types and wave fronts of different scales. Slow dyna-
mics is determined by the interaction of crystal blocks 
and their time synchronization. Physical modeling 
confirmed that slow dynamics in the fault zone de-
pends on its internal fault block structure and the level 
of accumulated stresses [59]. 
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