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Abstract—The stochastic structure of polycrystalline materials causes a high inhomogeneity of the kinematic and
force fields in grains of materials and large fluctuations of these fields. The inhomogeneity and fluctuations are in-
significant in some cases, but they become crucial in the study of various critical phenomena whose occurrence
strongly depends on the type of material microstructure. Fluctuations mainly arise due to the elastic interacti-
on of grains, which has a long-range effect. Therefore, it is necessary to account for the interaction of a large
number of grains, which is difficult to do using conventional methods (direct computer modeling and others). In the
present paper, inhomogeneous mesostrain fluctuations in grains of polycrystalline materials were estimated using
a field-theoretical approach to a boundary-value problem of microheterogeneous material deformation. Particular
attention is paid to the calculation of extreme fluctuations that are important for some critical phenomena, such as,
e.g., crack initiation under gigacycle fatigue when the macrostress amplitude and the mean stresses in grains are
much lower than the quantities included in any macroscopic damage or fatigue criteria. The maximum mesostrains
in grains can exceed several times the macrostrains. Extreme fluctuations in a grain are generated in grain clusters
of specific configuration. The applied approach makes it possible to predict patterns of such clusters. Extreme fluc-
tuations in the bulk grains of a polycrystalline body are much higher than in the surface grains, due to which the
behavior of the material surface layers and bulk volumes is different. Quantitative data are given for the case of

uniaxial tension of polycrystalline zinc.
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1. INTRODUCTION

Polycrystalline materials are heterogeneous on the
mesoscale and have a stochastic microstructure. Their
mechanical and other parameters are highly oscillating
functions of coordinates. Mesostrain and mesostress
fields are random functions. These fields can be studied
either as random coordinate functions in a certain macro-
scopic polycrystalline specimen or as random variables
at a point for the ensemble of polycrystalline microstruc-
tural configurations. These approaches are equivalent in
the context of the ergodic hypothesis. In the present pa-
per, we employ the statistical ensemble method, which
includes the solution of a boundary-value problem for
strain fields at a point for every structural realization
from the ensemble and the study of statistical character-
istics of the derived data array. A conventional solution
of the problem, which treats polycrystals as heteroge-
neous composite solids, faces the two major problems: a
huge number of homogeneity ranges (grains), whose
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geometry should be described explicitly, and the sto-
chastic behavior of material functions, which randomly
change in transition from one homogeneity range to an-
other or in transition to the next microstructural realiza-
tion from the ensemble. To solve boundary-value prob-
lems for a large number of realizations, regardless of the
solution method, is a challenge. In the paper we employ
a field-theoretical approach alternative to widely used
methods of solution of boundary-value problems (finite-
element method, statistical averaging, etc.) [1].
Mechanical properties of polycrystals depend on
many microstructural parameters. Some dependences have
a qualitative character, without rigorous quantification
of the related parameters. The latter are divisible into geo-
metrical (shape and size of crystallites), crystallographic
(anisotropy of grains and spatial orientation of their
axes), physical ones (energy of grain boundaries, equi-
librium angles in triple joints, etc.). The first two groups
of parameters are of interest in continuum mechanics.



14 SHAVSHUKOV

Stochastic fields are most completely described by
the construction of distribution functions or calculation
of stochastic moments of all orders. For the field at a
point of the polycrystal grain, distribution functions can
be plotted by the previously described field-theoretical
method [2]. This is a tedious procedure when calculating
for the value ensemble. However, many phenomena re-
quire knowledge of not the entire distribution function
but fluctuation values or extrema responsible for the
onset of critical events. Here we limit ourselves to the
search for extreme strains in polycrystalline solids.

Estimation of maximum strain fluctuations is very
important in the problem of gigacycle fatigue. In this
mode, time to failure is largely determined by the incuba-
tion period of the first crack initiation. Macrostress am-
plitudes are small, and macrostrains are accurately elas-
tic. Irreversible strains, being a precursor of crack initia-
tion, arise in only a small number of grains, in which
fluctuating resultant stresses exceed critical stresses in
individual sliding systems. A decisive role in high fluc-
tuations is played by the microheterogeneity of polycrys-
tals [3]. It is experimentally found that such fluctuations
exist in clusters of specifically oriented (relative to exter-
nal loads) grains [4]. In the present paper, extreme
mesostrains in grains for the ensemble of all possible
polycrystalline microstructural configurations are calcu-
lated using the field-theoretical method of solution of
grain-boundary problems of mechanics.

A macroscopic specimen of randomly oriented
single-phase polycrystal at the average grain size of
about tens of micrometers and the specimen size of about
tens of millimeters includes about a billon grains. A sta-
tistical ensemble of various microstructures of such a
polycrystal will contain an extremely large number of
possible configurations. It is essential that a boundary-
value problem of deformation of a heterogeneous solid
should be solved for every configuration, and extreme
values should be chosen from the derived data array. Obvi-
ously, no conventional methods can solve this problem.

2. FIELD-THEORETICAL METHOD OF STRAIN
CALCULATION IN POLYCRYSTALLINE
(MICROHETEROGENEOUS) SOLIDS

A conventional method for determining strain fields
in heterogeneous solids is the solution of a boundary-
value problem in the differential form or the equivalent
variational formulation (finite-element method, etc.).
Material properties and mechanical fields in polycrys-
tals are discontinuous functions of coordinates. There-
fore, their derivatives entering the equations of bound-

ary-value problems should be studied separately for each
grain, and the conjugation condition should be intro-
duced at grain boundaries. At a large number of grains,
this presents considerable calculational difficulties. In
the case of polycrystalline solids, direct computer mod-
eling by conventional methods is also a problem due to a
large number of structural elements, i.e. grains. The re-
striction of the model to several thousands of grains (the
limitation of modern computers) raises many questions
about statistical sufficiency, mathematical generation of
microstructural geometry, the influence of boundary
conditions, etc. Many of these difficulties are sur-
mounted in transition from the differential form of the
boundary-value problem to the integral one (note that the
transition from the differential equations to equivalent
integral ones is the main method in quantum field theory).
The integral form finds wide application in dislocation
theory. Let us perform such a transition for the bound-
ary-value problem of linear elasticity of a polycrystalline
solid based on the scheme described by de Wit [5].

Within the continuum model, a polycrystalline solid
presents a multiply-connected domain of volume V" with
external area S consisted of subdomains (crystallites)
with volumes ®; and boundaries S;, which are inter-
granular (phase) boundaries:

N
V = Z (Dé s
&=1

the subscript £ numbers crystallites, and N is the total num-
ber of crystallites in the solid (a macroscopically large
number).

The elastic modulus tensor of the polycrystalline me-
dium has the form

N
Cinn(0) = X A (0)C[), ). (1)
g=1
where A ¢(r) is the indicator function of the Eth crystal-
lite with the modulus tensor C l%n)n (r):
1, if re (’Oé’

Ae(r)=
¢ ) {0, otherwise.
The tensor C;;

;imn(T) 1s constant within any domain @
and changes in a stepwise manner in transition across
boundaries S¢ due to the variation of crystal lattice ori-
entation of the crystallite in space.

The boundary-value problem of the elasticity theory
for a heterogeneous solid in displacements consists of
equilibrium equations and governing relations:

Gij,j (l‘) + fl(r) =0,
Gij (l’) = Cijmn (r)emn (l’), (2)
& (1) =[u,, , (1) +u, ,,(0)]/2,
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where €;(r), 6,,(r), u;(r), f;(r) are the global tensors of
strain, stress and the vectors of displacements, volume
forces. Subscripts after the comma points to a differen-
tiation with respect to the corresponding coordinate. Use
boundary conditions in displacements

u; ()| er= W, (1), 3)
where ;(r) is the smooth coordinate function.

The structure of a polycrystalline solid is set by the
tensor function of elastic moduli Cy,,, (r), whichis a
piecewise constant coordinate function. We decompose
the global tensor of elastic moduli into the averaged and
ﬂUCtuating partS: Cklmn (l‘) = <Cklmn> + C//dmn (l‘),
study the two boundary-value problems: for the displa-
cement vector u,(r) of a heterogeneous solid (the initial
problem)

(Cotge 1 (0) +[Chguy ()] ; + f;(r) =0 “4)
and for the displacement vector u; (r) of ahomogeneous
solid with the averaged elastic modulus tensor

<C,'jk1>”/t,j1 (r)+ f,(r)=0 ()
subject to the boundary conditions u; (r)| .= @,(r).
Introduce Green’s function for Eq. (5)

and, using Green’s theorem, transform Eq. (5) into the in-
tegrodifferential one:

u,(r)= .'.dSr//{i (r/)Gim (r-r’)+ f§d35;<cyk1>

X [MZ,I (r/)Gim (l‘ - l'/) - Ml* (r/)ka,l (l‘ - l'/)]. (7)
A similar transformation is performed for Eq. (4), with
the last two terms taken as a new vector of volume forces:

u,(r)= f dSr/[C;'kl (r/)uk,l (r')]’ J G,,(r— r’)

+ fd3rf(r )G, (r=1)+§dS’(Cp,)

m

“k,l(r )G (r =1~ 11, (r/)ka,l (r-r’]. (8)
With the same boundary conditions @;(r) = y;(r) forboth
problems, the right-hand side of (7) and the second line
in (8) coincide. A subtraction of Eq. (7) from (8) gives

,, (r) = u,, (r)
+ [ &rC, (), ()] (1), (x =), 9)
4
A differentiation in (9) with respect to x, and integration
by parts gives the equation for displacement gradient
Uy, () =11y, (1)

+ [ C (), (K)G,, , (x—1)]
14

+ [ & Clyy (2 (1), i (1 =T, (10)
V
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The first integral in (10) is transformed into the surface
one:

fde;'C;'kl (r/)”k,l (r/)G[m,n (r-r).
s

For a polycrystalline solid, a product of the function

Cjiu (r') highly oscillating near zero by the smooth func-
tion u; (0 )G (1= r’) is under the integral sign. The-
refore, fora large polycrystalline solid this integral van-
ishes in any macroscopic region of the surface and for
the whole solid. Then, we symmetrize over the indices m
and 7z and derive the desired integral equation for the glo-
bal strain tensor in the polycrystalline solid:

e;(r) =g, (r)+ fdrfgukl (r-n)C,,, (e, (r), (11)

where g, = 1/2(le 1+ G ) is Green’s tensor of a
homogeneous medium.

For a polycrystalline solid, Eq. (11) is explicit. Its dis-
tinctive feature is a separation of the influence of bound-
ary conditions (which is studied as an individual prob-
lem for €, (r) of'ahomogeneous solid) and of heteroge-
neities (the volume integral dependent of polycrystalline
structure rather than boundary conditions). Such a con-
clusion can be made only for polycrystalline or granular
solids with highly oscillating material constants in the
presence of a very large number of grains. This feature
will be used below. The solution e; (r) for the homo-
geneous solid is thought to be known, though it can be
inhomogeneous. Given homogeneous boundary condi-
tions,

u; (l‘)| rer' = 8,/ o
where SZ- = const and el.j (r)= (el.j ). These boundary con-
ditions alone are thereafter used.

To study deformation in individual grains, the global
strain tensor is presented in the form of the superposition
oflocal tensors with the use of the indicator functions:

N
g;(r) = g}l A (e (), (12)

and, together with (1), is inserted into (11). As a result,
we derive the system of integral equations for local fields
(é) .
e9 (r):
e () =€), + [ drlg,, (r: —10)Cpie, (0 )els) ()

W

+ Y [ dry g (e —r)CAD (r)E ().

Tl¢u)

(13)

In the field-theoretical terminology [1], Eq. (13) means
that strain at any point is a superposition of external field

Z, interaction with strains at the other points of this
grain (the second term in the right-hand part) and with
strains in the rest polycrystal grains (terms under the
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summation sign). In so doing, contributions from the in-
teractions are additive.

3. FLUCTUATION EXTREMUM SEARCH
ALGORITHM FOR THE ENSEMBLE OF
POLYCRYSTALLINE MICROSTRUCTURES

To find strain extrema at any grain, we take a point in
itand solve a set of boundary-value problems for the en-
semble of all polycrystalline configurations. Then we
choose the extreme value from the derived results and re-
peat the calculation for other points. The ensemble con-
tains an infinite number of possible configurations. If an
infinite set is replaced by a discrete one, statistical sampling
should be extremely large to achieve statistical suffi-
ciency. At such realization, this algorithm is impossible.
Additivity, reducing the necessary sample size by many
orders of magnitude, allows solving the problem.

Let us choose an approximation method for system
(13). For local fields, we use a piecewise constant ap-
proximation. For this purpose, each grain is divided into
a large number of subgrains and local intragranular
fields are presented as the superposition of subgrain
fields, each of which is thought to be constant within the
subgrain, with the use of indicator functions of subgrains
(Latin subscripts number subgrains):

e (r:) = lea(ré el ), (14)
where 7 is the number of subgrains in a grain, and the
grain volume is the sum of subgrain volumes. After this,
the system of integral Eqs. (13) for local fields is trans-
formed into the system of linear algebraic equations for
sublocal fields:

[ [ _plaa® ]em@

ijmn ijmn

n
€]+ 3 BOED® 4 3 3 B | (15)

b#a N#E e=1
where I, is the unit tensor, and the factors
b ’ ’
By(;n)@ f drbgzjkl (r,—1,)- Ckgfz)n’
o (16)
By(;:,i)(n) f dr,g; ijkl (r,— 1) C//cggz)n

describe the interaction of subgrains in the grain and in
different grains, respectively, and are numerically found
for a given polycrystalline microstructure.

System (15) is solved by a method of perturbation
theory [6]. All terms under the summation signs in the
right-hand part of (15) are taken as perturbation. The so-
lution is presented as a sum of various-order corrections
to perturbation. It was previously shown [6] that the cor-

rection values decrease rapidly as their order increases.
Here we restrict ourselves to the first order of perturba-
tion theory. The desired solution is written in the form
y. The desired sglut efo
ij

= gD @AM () 4 gD@PIEN (1), 17)

and for zero- and first-order corrections we obtain the sys-
tem

0 0 *
g0 _ pn®eO® _ " -
1 1 = 0
ggj)(a)(@) _Bl(jz;l)(i)ggrll(a)(i) — Z Béz;l)ggd)(n)’
n#E
where the new factor
I J dr} g, (x, —17)- C3m. (19)

determines the 1ntens1ty of interaction of a subgrain in
the &th grain with the entire nth grain. This factor de-
pends on the position of the subgrain in the Eth grain, on
the mutual position of the &th and nth grains, and on the
orientation of crystallographic axes of these two grains.
We take integral account of the interaction of other grains
with the subgrains, i.e. it is sufficient to divide only the
given grain into subgrains. By reducing the subgrain vol-
ume to zero, we derive a solution at an intragranular point.

System (18) has the dimension NnXx Nn. For a practi-
cal solution, we divide the sum over all grains on the
right-hand side of (18) by the sum over the nearest neigh-
bor grains (the first range of neighbors), over the grains
of the second range, third range, and so on. Such a divi-
sion is convenient for analyzing the mutual elastic influ-
ence in relation to distance and searching for specific
grain clusters. System (18) takes the form

g0 _ gen®g0® g

g _ glang(XaXd

(20)

_ Z Blme® 4 Z Blme®m 4
n#g n#g
Factors in the sums monotonously decrease with dis-
tance, though slowly enough [6]. Elastic interaction is
long-range. However, it will be shown below that, due to
random orientation of crystallographic axes of grains,
we can limit ourselves to the sums over grains up to the
third range of neighbors. Expression (20) proves that the
contribution to the strain at a grain point from the inter-
action with other grains is additive. Therefore it is suffi-
cient to find extreme contributions separately for all
neighboring grains and then summarize the results.
Strain in any polycrystal grain depends on the param-
eters of this grain (shape and orientation of'its crystallo-
graphic axes with respect to external load), the micro-
structure of neighboring grains affecting the intensity of
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elastic interaction, and the grain distance to the polycrys-
tal surface. The latter dependence is governed by a long-
range pattern of elastic interaction, resulting in the inter-
action of the surface grains with a smaller number of
neighboring grains, in contrast to the bulk ones.

4. NUMERICAL REALIZATION
ON A MODEL POLYCRYSTAL

Use a zinc polycrystal as an example. Each grain of
the polycrystal is a small single crystal whose properties
are known. A single crystal of zinc has a crystal lattice
with hexagonal close packing (hcp) and high anisotropy
characterized by the ratio of the lattice constants ¢/a =
1.856 and Zener’s anisotropy factor 4 =(Cy, —Cy,) "'
2C44 = 0.59. The following elastic constants are used in
the crystallographic system of coordinates, in which axis
X, 1is the axis of hexagonal symmetry [7]: Clo 1=
165 GPa, C, =31 GPa, C{; =50 GPa, C5; = 62 GPa,
and CJ, =39.6 GPa.

Let us study a three-dimensional model polycrystal
with cubic grains of equal volumes, which is schema-
tized in Fig. 1 (a central cross section alone is illustrated)
with the axes of the global coordinate system. A grain
under study is in the center and darkened; the first and
second ranges of neighbors are around the grain. The
first range contains 26 grains (eight of them are seen);
the second, 98 grains (16 of them are seen); the third (not
shown), 218 grains, etc.

From (18) it follows that zero-order corrections are
determined exclusively by the shape and orientation of
the grain. They correspond to the neglect of intergranular
interactions and account of intragranular interactions.
This approximation was earlier studied [2]. The maxi-
mum zero-order corrections are derived when the crys-
tallographic axes of the grain are symmetrically oriented
relative to the load direction. We consider uniaxial ten-
sion of a polycrystal along the X axis of the global co-
ordinate system: (O33)=33.6 MPa, the rest (6;)=0,
which corresponds to the macrostrains (€,;)=3 X 1074,
(g,)=-0.75x10"*, and (g,,)=—0.75x10"*. We will search
for strain extrema Sg‘g)@) (r) at different grain points for
the ensemble of all possible polycrystalline microstruc-
tures. In the given model, the ensemble of possible mi-
crostructural configurations is reduced to a set of all pos-
sible orientations of the crystallographic axes for each
individual grain. In a randomly oriented polycrystal, the
orientation of each grain is set by a continuous distribu-
tion of Euler angles subject to the equal probability of all
orientations. Zero-order corrections Egg)@) are maxi-
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Fig. 1. Model polycrystal with cubic grains.

mum when the hexagonal axis of the grain is parallel to
axis X, of the coordinate system. Therefore, we are to
search for extrema at points of a grain with such orienta-
tion. These are absolute extrema for the entire polycrys-
talline solid.

By problem symmetry, it is sufficient that strains be
studied only at points of the vertical section through the
grain center (Fig. 2).

Zero-order corrections are almost constant for all
grain points within an inscribed sphere with the 90% di-
ameter of the grain cube edge and equal eg%) =
4.55x107*. In the vicinity of the edges and cormdrs ot a
cubical grain, singularities typical of continuum models
can arise, which makes the proposed approach (similarly
to conventional ones) inapplicable. Extreme contribu-
tions from the interaction with the neighboring grains are
found in the following way. For every neighboring grain
an array of Euler angle triples is set using the random
number generator subject to the equal probability of all
orientations. The array size is 5x 10° angle triples. For
every angle triple of the array, we solve system (18) with
one grain in the right-hand part of the second equation
and choose the maximum (positive) and minimum
(negative) corrections 8%13)(“)@) (r). The procedure is re-

-~ e

Fig. 2. Cross section of a grain.
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peated for every surrounding grain. Then extreme contri-
butions of all grains are summed, which gives the abso-
lute extremum. Additivity of contributions from the in-
teraction cardinally reduces the size of necessary statisti-
cal sampling. The developed algorithm also finds angles of
the extreme orientation of every grain. The calculations
reveal that in uniaxial macrotension at any grain point
the maximum first-order corrections due to every neigh-
boring grain are always positive, and the minimum ones
are always negative, with the average value being zero.
In so doing, the absolute values of these extrema are non-
zero and differ strongly for different grains, even of the
same range around the chosen grain. Thus, only a part of
the neighboring grains provide a major contribution.
Maximum strains Sg‘g)@) (r)= Sgg)(“)@) (r)+ 8%13)(“)@) (r)

are attained at the grain periphery, i.e. at the outer surface
of the inscribed sphere; at all points of this surface the
maximum values are almost similar (but they are gov-
erned by different structures of the neighbors). The cal-
culation results for a point in the grain center and at the
periphery of the inscribed sphere are listed in the table.
The calculations are performed with consideration for
the interaction with 26 grains of the first range of neigh-
bors, 98 grains of the second range, and 218 grains of the
third range. For illustration, contributions of the grains
of these ranges are given separately.

From the tabulated data it is seen that the maximum
possible strain (11.3423 x 10~%) exceeds the macrostrain
(3.0 x 10*) by 3.78 times. It is achieved in a grain whose
neighbors have a specific orientation and form a specific
grain cluster in the polycrystalline microstructure. The
probability of realization of such a cluster in the poly-
crystalline macrospecimen containing about a billion of
grains can be finite. The minimum strain is similarly
achieved in a grain with another type of the surround-
ings. In this case, the interaction with the neighboring
grains generates compressive local strains in the grain
despite the polycrystal tension.

The table also shows that the contribution from the
elastic interaction decreases slowly enough with dis-

tance to the interacting grains. The calculation of contri-
butions of remote grains presents no difficulties. How-
ever, to calculate corrections to numerous grains of the
fourth and farther ranges is meaningless from the follow-
ing considerations. The maximum contribution of each
grain corresponds to a certain orientation that has a cer-
tain finite probability of realization. The probability of
simultaneous realization of certain orientations of a large
number of statistically independent grains tends to zero.
Therefore, the total contribution of grains of remote
ranges tends to zero with the probability close to unity.

The tabulated extreme contributions correspond to
specific orientations of each of the interacting grains.
The mutual orientation of these grains has an interesting
geometrical symmetry. Figure 3 demonstrates extreme
orientations of grains of the first three ranges of neigh-
bors, which generate the strain maximum in the grain
center, in the vertical and horizontal sections of a poly-
crystal. A hexagon conventionally represents a plane of
hexagonal elastic symmetry of single crystals of grains.
The symbol O corresponds to the position of the sym-
metry plane in the figure plane; the symbol «» stands for
the position perpendicular to the figure plane, and its in-
clination shows a rough angle between the normal to the
elastic symmetry plane and axis X;; the symbol {) depicts
the inclined position to the figure plane at a certain angle,
but the normal to the symmetry plane is perpendicular to
axis X;.

In the extreme configuration, clusters of neighboring
grains form symmetrical patterns. In hep crystals, any
direction in the transverse isotropy plane (an angle of
90° to the hexagonal symmetry axis) corresponds to the
maximum of the ratio between the Young modulus in this
direction and the Young modulus in the transverse direc-
tion (angle 0° to the hexagonal symmetry axis). For zinc,
this ratio equals [8]

Egpe 119047 MPa

Ey 34843MPa

Note that the absolute maximum of the Young modulus
in the single crystal of zinc is 124 100 MPa, at an angle of

=3.4166.

Extreme strains and contributions from different groups of grains

Corrections
Total strain &,
egg) Egls) 26 Egls) log Egls) [218

. Maximum 2.8716x107%|1.9449x107* | 1.2968x107*| 10.6668x10~*
QGrain center

Minimum ~3.6581x1074-2.1001x 1074 -1.4382x 107 -3.6629x10™*

- : 4.5535%10™ ) ~ ) —

Grain Maximum 3.6731x107*(1.8857x 107 | 1.2301x10 11.3423%10

periphery |\ pimum ~3.7850x 1074-2.1683x 1074 -1.4002x 1074 -2.7998x10~*
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Fig. 3. Extreme orientations of the neighboring grains: horizontal (a) and vertical sections (b). Designations are given in the text.

about 70° to the hexagonal symmetry axis. However, for
this direction the ratio equals

Eqpe 124100 MPa
Ey. 42358MPa

In the horizontal section, all neighboring grains are ori-
ented so that the maximum stiffness directions (coinci-
dent with the arrows in the figure) are precisely aligned
with a beam from the center of the chosen grain. A single
extreme orientation exists for each grain (with accuracy
to the reflection across the hexagonal axis). In the verti-
cal section the pattern is somewhat different. Grains in
outer quadrants (nine grains per each) have two equiva-
lent orientations, which are shown by solid and dashed
arrows in Fig. 3. Hexagonal symmetry axes of these grains
lie in the section plane but the directions of maximum
stiffness form certain fixed angles to the load direction
(axis X;). Grains in the central vertical column are per-
pendicular to the load direction by their hexagonal sym-
metry axis and random in other respects; their contribu-
tion is independent of the rotation about the vertical (rela-
tive to the figure) axis. Grains in the central horizontal
column are identically oriented. We have been interested
to find a flat disk-like cluster of similarly oriented nine
grains immediately around the central grain (marked in
grey in Fig. 3), whose plane is perpendicular to the load
direction. Tensile stiffness of these nine grains is mini-
mum in the load direction, while that of their surround-
ings is maximum. They form a certain weakening zone
with the diameter equal to three grain diameters. An in-
troduction of a weakening zone with the five grain dia-
meter into the model decreases the strain in the central
grain. It was experimentally found that gigacycle fatigue
cracks are generated in clusters of similarly oriented
grains [4]. In the vertical (aligned with loading) direction
and in the two orthogonal horizontal directions the

=2.9297.
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neighboring grains form chains of maximum tensile
stiffness. They play the role of forces enhancing defor-
mation of the central grain. This resembles the formation
of force chains in granular media, where forces acting on
the medium localize [9].

The microstructural configuration shown in Fig. 3 is
a combination of well-defined orientations of the surround-
ing grains. In a real polycrystal, an almost correct confi-
guration in respect to the symmetry of elastic axes of
grains (though they may have a rather arbitrary geomet-
ry) can be realized in a random manner. Computational
experiments show that the dependence of the contribu-
tion of one interacting grain to the strain of the other grain is
arather flat function of Euler angles near the extrema. In
so doing, the dependence on the anisotropy type is much
stronger than that on the grain shape. Therefore, there
exist many close configurations providing almost similar
contributions, and the probability of realization of such
microstructures can be finite in a large polycrystal.

The amplitude of fluctuation is different for bulk and
surface grains of a polycrystal. A grain on the surface in-
teracts with a halved number of neighbors as compared
to a grain deep within the specimen. As a result, maxi-
mum strains in the surface grains are 40% lower than
those in the bulk grains. The fluctuation amplitude also
decreases. Figure 4 plots the maximum strain in a grain
as a function of the distance from its center to the speci-
men surface. Thus, surface grains form a special material
layer. In a certain sense this is an unloading region in the
polycrystalline solid. The thickness of the surface layer
is approximately four average grain diameters.

The mentioned feature of surface layers of polycrys-
talline solids stems from their heterogeneity. For homo-
geneous solids, this effect vanishes. This conclusion is
deduced from the equations of continuum mechanics. It
neglects additional surface energy of solids related to in-
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Fig. 4. Maximum strains €55 as a function of the distance to
the surface.

teratomic interactions, which also can be a source of sur-
face effects. Thus, even in terms of classical continuum
elasticity, the mechanical behavior of surface layers of a
polycrystal differs from that for the entire volume. This
complies with the concept [ 10] on the special role of the
solid surface.

5. CONCLUSIONS

A characteristic feature of polycrystalline materials is
a high inhomogeneity of kinematic and force fields in
combination with a stochastic internal structure. This in-
homogeneity is insufficient in some cases, but becomes
crucial in the study of various critical phenomena whose
occurrence is highly dependent on the type of material
microstructure. The stochastic nature of heterogeneities
dictates a probability-theoretical method of investiga-
tion. In many cases, a complete description of random
fields, i.e. construction of distribution functions or cal-
culation of all statistical moments can be replaced by
marginal values of fields for the set of all random events.
In this paper, we study extreme strains in polycrystal
grains using the field-theoretical approach. In the zinc
polycrystal with highly anisotropic grains, the maximum
strains in a grain are 3.7 times higher than the macro-
strains. This concentration is due solely to the elastic in-
teraction of heterogeneities. Maximum strains in the
bulk grains are 40% higher than those in the surface
grains. This may be the reason for the displacement of
damage foci from the surface into the specimen in transi-
tion from high-cycle to gigacycle fatigue.

The calculations were carried out for model poly-
crystals with cubic grains. The calculations for polycrys-
tals with differently shaped grains (spherical and others)
give similar results. Due to geometrical symmetry, the
models clearly demonstrate patterns of the extreme mi-

crostructure of the surrounding grains generating ex-
treme strains. A pattern depends on anisotropy of grains
and the type of loading. In particular, it is theoretically
predicted that maximum strains during uniaxial tension
arise in the center of the cluster formed of the nearest
neighbors with the same orientation, i.e. a large grain of
a specific shape. In uniaxial tension, it is a disk-shaped
cluster with a plane perpendicular to the load. For other
loading types, clusters are of a different form.

The paper presents the calculation results on extreme
strains for a macroscopically isotropic polycrystal. The
method is applicable to textured polycrystals.
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