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Abstract—This paper models the uniaxial compression of a single crystal of commercial purity aluminum, and
compares the modeling results with experimental data. The problem is solved using a first-type direct model based
on the finite element method. The material behavior is described by a crystal elastoviscoplasticity model that explic-
itly accounts for shearing on crystallographic planes. The main feature of this study is a physically sound descrip-
tion of the geometric nonlinearity associated with crystal lattice rotation. The modeling results show that the origi-
nal homogeneous single crystal is divided into volumes with different plastic shear rate intensity and lattice orien-
tation, which is in satisfactory agreement with experimental data.
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1. INTRODUCTION

Over several decades there has been sustained inter-
est in the experimental investigation of the behavior of
metal and alloy single crystals under various thermal and
mechanical loads [1-6]. A single crystal is an object with
arelatively simple internal structure, due to which the
main (primarily dislocation) mechanisms of inelastic de-
formation can be analyzed in detail. Along with experi-
mental studies, extensive theoretical research has been
conducted in the last 15-20 years based on the use of
multilevel crystal plasticity models of single crystal de-
formation [7—-17]. These models reveal the inelastic de-
formation processes and mechanisms that are not ob-
served experimentally, especially in the bulk of the stud-
ied samples. The combined efforts of the physics and
mechanics community seeking to develop physically
sound theories lead to better single crystal behavior mo-
dels and to better experimental research methods. As a
result, the models describing the inelastic deformation of
single crystals can be refined and supplemented, as well
as a more accurate description of polycrystalline behav-
ior can be obtained. In the last 10—15 years, some indus-
tries (primarily aircraft engine manufacturing) have
been actively pursuing the development of single crystal

parts and structures, so theoretical and experimental me-
thods for analyzing the behavior of single crystals under
various thermal and mechanical loads are also needed to
study the manufacture and operation of real single crys-
tal structures.

It is known that the behavior of deformed single crys-
tals as well as their defect structure evolution strongly
depends on the mutual orientation of the characteristic
loading axes and lattice axes, which is due to the motion
of edge dislocations on different sets of slip systems at
different orientations. The total number of such systems
depends on the type of crystallite (e.g., 12 slip systems
for fce crystals, 48 for bee) and is completely determined
by its crystallography [18, 19]. As aresult of slip on dif-
ferent sets of slip systems, the evolution of the stress
state and defect structure in a single crystal differs sig-
nificantly.

Experimental investigation of loaded single crystals
revealed a number of general features. Shear deforma-
tion behavior strongly depends on the crystallite orienta-
tion with respect to the compression axis [1, 20-22].
Single crystals have the tendency to shear localization
[20,23-25]. Studies on the fragmentation of compressed
fce single crystals revealed the formation of specific
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zones with different sets of active slip systems within an
initially homogeneous single crystal [24]. The location
and configuration of these zones substantially depend on
the boundary conditions, such as the position and orien-
tation (relative to the characteristic loading directions)
of the free and contact surfaces of the single crystal, the
conditions on the contact surfaces of the crystal and the
die, the mutual orientation of the single crystal faces and
crystallographic slip systems.

Since the boundary (and especially contact) condi-
tions have a strong influence of the inhomogeneous de-
formation behavior, the larger part of Sect. 5 is devoted
to their formulation. Contact boundary conditions are
formulated as mixed, i.e., kinematic for the normal com-
ponent and force for the tangential components. In so
doing, we specify that the contact surface particles may
adhere to the die plate, the contact may break, and slip
may occur (Siebel-Amonton—Coulomb law). However,
it was not our goal to specially investigate the influence
of contact conditions on single crystal behavior; this task
is a subject of a separate study.

The mutual orientations of slip systems and free
faces largely determine the magnitude and distribution
of plastic shear deformation within the crystal. In experi-
ments, initially straight traces of edge dislocations on the
surface are curved and the {111} octahedral planes ro-
tate with increasing strain. All cited works show that
shear strains and hence the stress-strain state are highly
inhomogeneous in single crystals under plastic deforma-
tion.

It is known that plastic deformation of crystals occurs
mainly by dislocation glide on close-packed planes,
wherein moving edge dislocations make the main contri-
bution to inelastic deformation [18, 19, 26—28]. There-
fore, the fragmentation of the single crystal volume is es-
sentially determined by the crystal geometry of the de-
formed sample and by the boundary conditions. Here the
single crystal geometry is used to mean a set of geometri-
cal parameters that describe the mutual orientations of
the loading axis/axes, lateral faces, and slip systems. Dif-
ferent mutual orientations of the loading axes and lattice
axes correspond to slipping on different sets of systems.

As noted above, plastic shearing, dislocation sub-
structures, stresses, and misorientations of some crystal
regions relative to others are inhomogeneous in de-
formed single crystals. At strains of about 3% and higher,
initially homogeneous single crystals are fragmented in-
to regions whose internal structure evolves by different
scenarios. The task is to understand how the local re-
gions with different internal structure emerge and evolve
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under inelastic deformation for different orientations of
loading axes, lattice axes, and single crystal faces. This
paper pays special attention to describing the misorien-
tation of individual single crystal regions under uniaxial
compression. We will consider the problem of isolating
quasi-rigid body motion from the overall motion, which
is of great importance in solving geometrically nonlinear
problems [29, 30].

Currently, the behavior of single- and polycrystalline
metals and alloys is widely described using a hierarchi-
cal approach in which the material is considered as a
multilevel system with features specific to each level
[31-33], down to micro- and nanoscales of description.
This class includes models based on crystal plasticity
(elastoviscoplasticity) theories, which explicitly account
for the motion of dislocations on crystallographic slip
systems and for the anisotropy of the elastic and inelastic
properties of single crystals. In this paper, the inelastic
behavior of individual crystallites is described using an
elastviscoplastic model of the given class [34]. The mo-
del has several advantages, e.g., there is no ambiguity in
the choice of active slip systems (which is inherent in
elastoplastic models) and the counting conditions are
relatively stable. When constructing constitutive equa-
tions to describe the inelastic deformation of single crys-
tals, we should take into account the presence of geomet-
ric nonlinearity [33], including the account of crystal lat-
tice rotations during deformation.

2. MODEL FOR CRYSTALLITE DEFORMATION
DESCRIPTION

Here we briefly describe the crystallite deformation
model based on the crystal elastoviscoplasticity theory
[34]. The total strain rate is measured by the relative ve-
locity gradient z (with respect to the corotational frame
associated with the crystallite lattice), which is an asym-
metric and frame-indifferent [35] tensor of the second
rank [36]:

2= W =W -0, (1)
where V is the Hamilton operator (nabla operator) de-
fined in the current configuration, v, is the velocity of
motion relative to the coordinate system rotating with an
angular velocity determined by the spin tensor @, Vv is
the displacement velocity, and ® is the spin of quasi-
rigid rotation of the rigid coordinate system associated
with the crystal lattice of the material, which will be de-
fined below. The nonholonomic measure of total strains
e is determined by the corotational integration of the in-
troduced strain rate:
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e =ét+e-0-0-e=Vv -0, 2
where () is the corotational (indifferent) derivative.
This measure and its physical meaning are discussed in
more detail in Ref. [37].

The introduced strain rate is assumed to be additively
decomposed into the elastic and inelastic components:
z=7°+7". 3)
The given model assumes that at the initial time point
there is a sufficient amount of edge dislocations in the
bulk of the material which is necessary for the onset of
inelastic deformation. The model does not consider the
nucleation, motion, and annihilation of individual dislo-
cations; the glide of dislocations is described by intro-
ducing shearing on crystallographic slip systems [18, 19].
Each slip system is characterized by the slip plane nor-
mal unit vector n and by the direction or normalized Bur-
gers vector b, which have fixed directions relative to the
crystallographic coordinate system throughout the de-
formation process. At each point in time, the inelastic
component of the relative velocity gradient is deter-
mined as follows: p
Zi" = Z Y(k)b(k)n(k) , (4)
k=1
where 7 is the shear rate on the kth slip system. The
shear rate on the slip system is determined by the visco-
plastic relation [38]
h Y™ _
7 = %(%) HE =), j=LK, ()
TC
where /), 1) are the actual and critical shear stresses
on the jth slip system, 7, is the shear rate on the slip sys-
tem when the actual shear stress reaches the critical
value, m is the rate sensitivity parameter of the material,
and K is the total number of slip systems in the crystal.
The critical shear stresses on the kth slip system can be
found using an evolutionary equation of the form

J _
0= OGO, 4D a0, i, k=N, (6)
j=1
where each term is responsible for a particular hardening
mechanism. Here we do not consider hardening, i.e.,
rgj ) = const for all slip systems. This assumption was
made in order to focus on the analysis of the misorien-
tation of local volumes of the original homogeneous
single crystal.
The constitutive equation is the anisotropic Hooke’s
law in the relaxation form in terms of rates:
6" =6+6-0-0-c=n:(z—z"), (7)
where m is the forth-rank tensor of the elastic properties
of the crystallite.
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3. GEOMETRIC NONLINEARITY

One of the unresolved problems in nonlinear solid
mechanics concerning deformation with large displace-
ment gradients is the isolation of quasi-rigid body mo-
tion from the overall motion, or the decomposition of
motion into strain-induced and quasi-rigid parts. This is-
sue is closely related to the choice of the corotational de-
rivative, which must be introduced into rate-type consti-
tutive equations in order to satisfy the frame indifference
principle. The choice of the given derivative is ambigu-
ous, because formally the number of ways of decompos-
ing motion is as large as the cardinality of the continuum.
The main difference in the decomposition methods used
is the degree of their physical correctness. In particular,
crystal plasticity models are constructed using two main
motion decomposition approaches. The first approach is
based on the polar decomposition of the deformation
gradient. The second one is based on decomposing the
velocity gradient into symmetric and antisymmetric
(vortex) parts. The main disadvantage of these ap-
proaches [39] is the absence of relation between the rigid
corotational frame responsible for quasi-rigid motion
and the crystallographic directions isolated during the
entire process which characterize the symmetry proper-
ties of the material. In this regard, the discussed models
are not physically sound enough for them to be used for
the description of crystal lattice rotation. Earlier we also
showed [30, 33, 39] that correct constitutive equations
for single crystals (i.e., anisotropic materials) can be de-
rived if the quasi-rigid motion is associated with the lat-
tice and the elasticity tensor components in the basis as-
sociated with the crystallographic coordinate system re-
main unchanged when any rigid rotations are imposed.
In this work, we use an approach [33, 39] in which the in-
troduced rigid corotational frame responsible for quasi-
rigid motion is associated with one crystallographic di-
rection and with the crystallographic plane containing
this direction.

Letus consider in more detail the proposed method of
motion decomposition. We introduce a Lagrangian crys-
tallographic coordinate system Oy'y?y* with the basis
{q;} rigidly associated with the crystal lattice. The sys-
tem is assumed to be Cartesian orthogonal in the refer-
ence configuration with its axes aligned, e.g., along the
[100],[010] and [001] crystallographic directions of an
undistorted cubic lattice. During arbitrary motion of the
deformed crystal, the trihedron {q,} will undergo both
rotations and distortions, i.e., its orthonormality will be
violated. Note that for crystalline metals and alloys the
distortions will be small.
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Along with the Lagrangian crystallographic coordi-
nate system, we introduce a Cartesian orthogonal loga-
rithmic corotational coordinate system Ox'x*x* with
the orthonormal basis k;, which coincides with the crys-
tallographic coordinate system in the reference configu-
ration and is associated with the crystallographic coordi-
nate system during the entire deformation process. The
relation is specified as follows: the Oy' and Ox' axes
are assumed to coincide at each point in time (the vector
k, is directed along the vector q,); at each moment of
deformation the vector k, is located in the oy'y? plane
orthogonally to the vector k;. Knowing the position of
the vectors k, and k, at each time point, we can easily
determine the position of the third basis vector of the co-
rotational frame: k; =k, xk,. Since the corotational
frame axes are associated with the crystallite in this case,
any rigid rotation of the crystallite will be reproduced by
the motion of the corotational frame. It is assumed that
plastic deformation does not change the lattice orienta-
tion; lattice rotations and distortions are determined only
by the elastic part Vv® of the velocity gradient. Omitting
the calculations, the spin of the corotational frame @ re-
lative to the fixed background frame will be expressed
by the relation:

o=kk, =—(k, -V -k )k K, (k;-Vv® -k Kk,
+ (K, - Vve KKK, — (K5 - Vv K, Kok,
+ (ky - Vv kKK, + (Ky - VVe Ky Kk, (8)

The obtained expression allows us to determine the
spin tensor of quasi-rigid motion of the crystallite from
the known value of the elastic part of the velocity gradi-
ent. Within the approach used, the quasi-rigid rotation of
the crystal lattice will be determined by the evolution of
plastic shearing in the material and by the total velocity
gradient.

4. AN ALGORITHM FOR CALCULATING
THE LATTICE CURVATURE

The misorientation of single crystal volumes during
deformation can be determined by calculating the curva-
ture and torsion of the crystal lattice. At each point of the
material lattice, we may use the Lagrangian crystallo-
graphic basis {q,} with coordinates {)'}, which was in-
troduced above to determine the lattice spin whose vec-
tors coincide with the selected axes in the crystal. The
crystal lattice rotates as a rigid whole and is elastically
distorted under arbitrary deformation. Plastic deforma-
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tion does not cause lattice distortion. In so doing, elastic
lattice distortions are small compared to the inelastic
strains acting on the single crystal. Therefore, we will
neglect the insignificant elastic lattice distortions when
measuring the curvature, and take into account only the
rotation of the lattice as a rigid whole. Purely rotational
motion is described using the rotation model discussed
in the previous section, into which we introduce an or-
thonormal moving frame with coordinates {x'} whose
basis vectors {k;} are rigidly associated with one crys-
tallographic direction and plane. The orientation of the
corotational frame relative to the fixed background
frame with the basis {e,} and coordinates {X'} is deter-
mined by the orthogonal tensor:

0 =k.e,,
Omn = em 'kiei 'en = em 'kn
=k,, ‘kie; 'k, =e, -k,. 9

In this case, the characteristics of the lattice curvature
and torsion will be completely determined by the differ-
ence in the orientations of the corotational frame at infi-
nitely close points of the crystal lattice. According to
Ref. [40], the curvature tensor is determined by the rela-
tion

K=—%€:(OT -(0V)), (10)

where € is a completely skew-symmetric third-rank
Levi-Civita tensor. The expression for the components
of the lattice curvature tensor in the basis of the fixed
background frame reads:

K=—%e:(0T-(ov))

1 0
= —EG :(Oijejei -(Omnemen a)(_kek jj
1 00,
= —EG:(OU Sk ejenekj

1 00; (1
= —Eepq,epeqe, 3(017 87’]’{’ejenek j
1 00,,
=50 Syt rte
1

ij o Ting=mq an‘

Using the independence of the basis vectors of the fixed
background frame {e;} from the coordinates {X'} and
Eq. (9),, we transform the last relation as
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d(e, -k
K'j =—l€. 0] aO’"” :_l ) (em : n)
L 2 ing —mq aXJ 2 ing "~ mq aXJ
1 ok, 1 ok,
- _Eeinqomqem ox/ - _Eeinqkq €€ 'Wa (12)

) 2 ing g’ a X j

The tensor K at a certain point r of the crystal lattice de-
scribes the curvature and torsion of three material lattice
lines 1,, which are constructed as envelopes of tangent
lines to the basis vectors k; of the corotational frame in
the vicinity of the point r. The diagonal components «;
(i =) of the curvature tensor characterize the torsion of
the curve 1, i.e., the “gradient” (or more precisely, di-
rectional derivative) of the rotation angle of the
trihedron of the corotational frame about the k; axis
along the same axis. The off-diagonal components «;;
characterize the curvature of the curve 1, in a plane or-
thogonal to the vector k;. In other words, the off-diago-
nal components «;; (i #) of the tensor k characterize the
curvature of the crystallographic axes of the lattice.

In order for the lattice curvature and torsion to be ac-
curately determined, we need a continuous field of the
corotational frame orientations associated with the lat-
tice. In real problem solving, however, the corotational
frame orientations are known in a finite set of points, and
therefore the curvature can be calculated only approxi-
mately. The main difficulty in calculating the curvature
tensor components is to calculate the gradient compo-
nents of the orthogonal tensor 90,),, / ox”/.

In this work, the boundary value problem is solved
using the finite element method. We propose to use, with
some shape functions, a finite element interpolation of
the orthogonal tensor values within each finite element:

Oij (r)= Z(P(p) (r)Ol;p) (r(p))’ (13)
p

where ¢*) are the shape functions of a finite element,
Olg-p ) is the value of the orthogonal tensor components in
the pth finite element node, which are determined sepa-
rately below, r is the radius vector lying within the finite
element, and r'?) is the radius vector of the pth finite ele-
ment node. Then the value of the gradient components
0y Within the finite element is calculated as follows:

mn ~ (k) (k) (1 (k)
aX,() ax,ch (O (r®)

(k) a(P (1’)
-Som = (14)
Thus, the value of the components of the curvature ten-
sor K within the finite element is completely determined
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by the value of the orthogonal tensor components in the
finite element nodes and by the shape functions of the
given finite element:

€1ry Oy (F ){20“)8"’ (”) (15)

Kij(l‘) =—

ox "/

Kij(r) = )

Einq [ %:(P(p) (l’) Or(nl;) J

x { s o 2 J
k ox’

where Egs. (11)—(14) are used, and r belongs to the finite

element space.

It should be noted that, in the case of using the finite
element method, the velocity of the lattice-associated co-
rotational frame (determined by model (8)) is calculated
at integration points that are rigidly associated with the
material (i.e., have constant Lagrangian coordinates) and
lie within the finite element. When dealing with orienta-
tions of three-dimensional objects, it is convenient to use
quaternions, whose components are one-to-one related
with the orthogonal tensor components [41]. A quater-
nion has four components, which are expressed through
the angle of rotation ¢ and vector u directed along the
axis of rotation:

q; = {cos%, sin%ul, sin%uz, sin%u3},

¢ . ¢
={C0S—,sin—u ;.
a-fong gl

During solution, the component values of the quaternion
q are calculated only at integration points, after which
(at each solution step) the quaternion component values
are calculated separately at finite element nodes by aver-
aging over the final elements adjacent to the node in the
following way. For each node N, we calculate an array of
integration points I, of those finite elements to which
the considered node belongs. Then, weighting factors
w . are determined for these integration points as fol-
lows:

(16)

S—l

W,=—1, s= Zl,
[, 7L
where /, is the distance from the considered node to the
kth integration point k€ /,. After that, the mean lattice
orientation value is calculated by the weighting factors
and the values at the adjacent integration points:

N =Zwqu’ (17)
k

where q,, q, are the quaternions defining the orienta-
tion in the node with number N and at the adjacent inte-
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gration points, respectively. Equation (17) is a generali-
zation of linear interpolation between two orientations
[41]. To assess the accuracy of this method for obtaining
the nodal values of the corotational frame orientation,
we calculated the mismatch angle & between the orienta-
tion ¢, at the integration point with number 7, which is
obtained directly from the material model, and the orien-
tation at the integration point g,, found by interpolation
of the nodal values:

d =§cp(N>(r,)qN, (18)

where q, is the quaternion that defines the orientation
in the node with number N belonging to the finite ele-
ment with integration point /, which is calculated by
Eq. (17), and r, is the radius vector of the position of the
integration point with number /. It is known that the se-
quence of two rotations specified by the quaternions q,,
q, determines the rotation q =q, oq;, where o is the
quaternion multiplication, the result of which is also a
quaternion. In our case, we may introduce the quaternion
q; that matches the orientations q; and q;: q; =q;°
q,. Hence the angle 8 by which the quaternion qz (16)
specifies the rotation is the desired discrepancy. In the
numerical experiment, we determined the quantity

A= max (5;/9,),
1,0,>0.001

where i is the number of the integration point, and @, is
the angle of rotation of the lattice-associated corotatio-
nal frame at the integration point 7. In so doing, the maxi-
mum was computed in all integration points where the
corotational frame rotation was not less than 10~ rad. As
aresult, the value of A was found not to exceed 15%.

5. DIRECT MODEL. APPLICATION OF FINITE
ELEMENT METHOD

This section will consider the problem of uniaxial
compression of an Al single crystal with orientation D1
[24] (Fig. 1). The lateral faces coincide with the (001)
and (110) crystallographic planes, and the compression
axis coincides with the (110) crystallographic direction.
The commercial purity aluminum single crystal with the
dimensions 6 x 3 x 3 mm is confined between two pun-
ches B and P,. There is friction between the punches
and the sample. The upper punch moves progressively
with the velocity v= {0, 0,—}'}; the lower punch is fixed.

At the time point ¢, the single crystal body occupies
the region Q' with the boundary S’. It is necessary to
determine the fields of velocities v and stresses 6 at any
time point which would satisfy the (rate-type) equilib-
rium equation [29]:
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V-6-V-(v-V6)=0, reQ’, (19)
V is the nabla-operator in the current configuration, and
the constitutive equations of the material model (1)—(8).
The single crystal boundary is represented in the general

case as
Sl — Sfree (t) U Sconl (f), (20)

St (1) is the free boundary, and S°°" (¢) is the contact
boundary (mixed boundary conditions: force and kine-
matic). The faces ABCD and 4,B,C,D, are the areas of
possible contact where the mixed boundary conditions
are specified. The contact boundary S°°"(¢) is a priori
unknown. We determine it using the approach described
in detail in Ref. [29], for which the contact boundary is
divided into three zones: adhesion zone S,,, detach-
ment zone S:d, and slip zone S :S.

Below is the complete set of boundary conditions for
the considered boundary value problem of single crystal
deformation; all components are defined in the basis of
the fixed background frame:

1) the upper punch performs a translational rectilin-
ear motion with a given constant velocity, the lower
punch is rigidly fixed:

V|Pl= {0,0,-V},
VIP2 =10, 0, 0},
2) the lateral faces are under trivial static boundary
conditions (also rate-type ones) [29]:
n-6+m-Vv-nn-6—(Vv-n)-6 =0,
re S5;US, USs USe;
3) contact conditions: the end faces are under the me-
chanical contact condition; friction is determined by the

Fig. 1. Schematic computational domain of a single crystal
with orientation D1 (dimensions are indicated in mm) and the
coordinate axes of the fixed background frame, F, P, are the
upper and lower punches, S, = 4,B,C\D,, S, = ABCD, S;_
are the lateral faces.
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Siebel-Amonton—Coulomb law. The velocity of the
punch points will be denoted by v, and that of the
single crystal surface will be v™. The surface areas of
the geometric contact can be in three states: adhesion
zone, where the velocities of contacting surface points
are

vP(r,7) =v™(r,1), re S,
detachment zone, or the surface area that was previously
in contact and has turned to the free surface by the cur-
rent time point, is determined by the conditions o, =0,
6o 20:

6,(r,0)=0, re S,
slip zone:
Vp(r,0) = vi'(r,0),
VR (r, )= VI(r, 1)

T ive e, - v, )’

) f6, at us <t

v t at po, 21,
where 6, =n-6, 6., =n-6-n, 6, =6, —c, N arethe
stress vector on the surface area with normal n, its nor-
mal and tangential components, v,', vi' are the normal
and surface tangential components of the velocity of the
single crystal points, vP, v? are the normal and surface
tangential components of the velocity of the punch
points, 1, is the rate of change in the yield strength of
the material at the contact point, and W is the friction co-
efficient;

4) initial conditions:
u=0: reQ’,

=0, re QO;

5) displacements u and stresses ¢ for a material par-

ticle are determined by integration (taking into account
the known Lagrangian motion equation r =r(&',7)):

(g, ) =[v(r(g,1),0dt, {&'}e3(0),
0

reS”

cs?

6. (r,n)=-1

@2y

[ (22)
o(&'1)=0)(&)+ [6(r(E, 1), D), (€} B(0),
0

where B is the area occupied by the single crystal mate-
rial.

The formulated problem was solved using a direct
model of the first type [42] based on the finite element
method. In the model, the described object is a separate
single crystal (in the initial state) approximated by a set
of finite elements. Here we used four-node simplex ele-
ments with one integration point; in this case, each finite
element is a crystallite. The response of the given crys-
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tallite is determined using crystal elastoviscoplasticity
theory (1)—(8). The displacement velocities of each
nodal point are calculated when solving the boundary
value problem; the velocity values are used to calculate
the velocity gradients, which are the kinematic input
data for the discussed crystallite model.

A four-node simplex element implies an approxima-
tion using four linear functions of the form

o, 3%, = ol + olOx + ol +alPx’, (23)

any field of values of a quantity 4 is interpolated within a
finite element as follows:

gl(xl,xz,x3,t) =AM (t)(p(k)(xl,xz,x3), (24)

where A is the value of the quantity 4 in the node k.

The total number of simplex elements into which the
computational domain (single crystal volume) was di-
vided was about 164 000; the total number of degrees of
freedom of the solved problem was about 32 000. The
punches were modeled by flat rigid plates; the surface of
each plate was approximated by 150 triangular finite el-
ements.

The finite element solution of the formulated bound-
ary value problem was computed using original soft-
ware. The ANSY'S 18 package was applied to model the
computational domain, to construct the grid, and to de-
termine the boundary conditions. The results were visu-
alized using the free ParaView 5.2.0 software.

6. EVALUATION OF SINGLE CRYSTAL VOLUME
FRAGMENTATION

The main goal of this work was to study the fragmen-
tation of the original homogeneous single crystal into
volumes that differ in the evolution of inelastic deforma-
tion and have different crystal lattice orientation.

Figure 2 shows the intensity distribution of the plastic
strain rate in single crystal regions located in the vicinity
of the face CDD,C; at a relative strain of 0.2—0.35%.
The presented results show that plastic deformations
first appear in the volumes adjacent to the edges of the
sample faces contacting with the punches and then
propagate into the crystal bulk. The initiation of plastic
shearing was investigated in detail in our earlier paper
[43] that focused on the processes occurring beyond a
strain of 1%. There we used the finite element software
ABAQUS with the user defined material subroutine
UMAT. The use of UMAT had some disadvantages be-
cause it was impossible to correctly describe geometric
nonlinearity, and the computation was much more time
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Fig. 2. Plastic strain rate intensity distribution in the single crystal region adjacent to the face CDD, C, atarelative strain of 0.20-0.35%

(color online).

consuming than when using our original software pack-
age. Due to the presence of anisotropy and inhomoge-
neous deformation, the single crystal is fragmented into
7 volumes (of three types) with different plastic strain
intensity, which was also predicted theoretically and ob-
served in a full-scale experiment [24]. As was shown in
Ref. [43], different sets of slip systems are active in these
volumes. The regions adjacent to the boundaries of these
volumes have the largest gradients of plastic strain inten-
sity and the largest differences in lattice rotations.

The distribution and value of the plastic strain rate
intensity changes insignificantly during single crystal
compression, as illustrated in Fig. 3. Note that the shape

3.112

i—

— 22334

1.556

TN

0.778

0.000

of the fragments obtained with the use of ABAQUS/
UMAT was different, e.g., the central fragment had a
shape close to a regular hexagon. The original single
crystal is fragmented into volumes with different inelas-
tic strain intensity, which persists throughout the process
(up to a 6% relative strain). Due to the presence of large
shear strains in zone III, the material moves mainly along
the [001] direction [43], while the motion of the material
in zones [ near the end faces is hindered due to large fric-
tion forces. This way of material deformation leads to
large rotations in zones II.

According to the results depicted in Fig. 4, the maxi-
mum absolute value of the angle of crystal lattice rota-

Fig. 3. Plastic strain rate intensity distribution in the single crystal region adjacent to the face CDD, C, atarelative strain of 1.5-6.0%

(color online).
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Fig. 4. Distribution of the absolute value of the angle of lattice rotation (degrees) in material points about the X, axis of the fixed back-
ground frame on the face CDD, C| at a relative strain of 1.5-6.0%; the arrows indicate the direction of lattice rotation (color online).

tion about the [110] axis (perpendicular to the figure
plane) is achieved in volumes II, while the minimum one
is achieved in zones | and I11. Previous experiments [44]
revealed that traces of shear along the (111), (111) planes
in zones Il (on the CDC|D; surface) make up an angle of
about 3° with the same planes in the undeformed state.
The inhomogeneous rotation of the crystal lattice leads
to its curvature.

Figure 5 shows the distribution of the norm of the
curvature tensor \k:k' (15) for the relative strains
1.5-6.0%. These results indicate that the initially homo-
geneous single crystal is divided into misoriented frag-
ments with a well-defined boundary. The boundary
thickness does not exceed 0.3 mm (the height of the ori-

0.2549
0.1912

0.1275

I II‘H‘IH I\I‘Hm

0.0637

0.0000

ginal sample is 6 mm). The relative position of the frag-
ments remains unchanged during deformation up to a
6% relative strain.

The next figure (Fig. 6) shows the distribution of the
component k,,; ofthe curvature tensor K (for the relative
strain 1.5-6.0%) which characterizes the curvature of
the material lattice line 1, (the envelope of tangent lines
to the corotational frame vector k,) in the plane or-
thogonal to the corotational frame vector k. The maxi-
mum deviation of the corotational frame vector k; from
the vector of the fixed background frame e; does not
exceed 0.5° in zones K, and hence the plane orthogonal
to k; almost coincides with the plane X, X5 ofthe fixed
background frame. The maximum absolute value of the

Fig. 5. Distribution of the norm of the lattice curvature tensor in the near-surface layer of the face CDD, C, atarelative strain of 1.5~

6.0% (color online).
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Fig. 6. Distribution of the lattice curvature component 21 on the face CDD, C, of the single crystal at a relative strain of 1.5-6.0%; the
ellipses denote the zones with the maximum absolute value (color online).

curvature is achieved in zones K (Fig. 6). In a full-scale
experiment, these zones exhibit curved traces (lying in
the plane X, .X;) of edge dislocations that produce shear
onthe (111), (111) planes (Fig. 7), which is an indirect
indicator of the crystal lattice curvature.

It should be noted that there is a close symbiotic rela-
tionship between inhomogeneous plastic shearing and
lattice rotations/torsions, which was discussed in the
works by Panin and colleagues (see, e.g., [45]). Indeed,
lattice rotations are substantially determined by plastic
shearing on slip systems. The higher is the plastic shear
inhomogeneity, the greater is the difference in lattice
rotations, and therefore the higher are the absolute va-

X3
X

0.18

E0.09

0.00

PTTTTT

—-0.09

—0.18

Fig. 7. Experimentally observed surface of the face CDD, C,
of'the single crystal (a) and the distribution of the curvature
component K,; on the same face at a relative strain of 6.0%
(b) (color online).

lues of the components and norms of the torsion-curva-
ture tensor. This statement is fully consistent with the
theoretical results obtained. By comparing the results
illustrated in Figs. 2, 3 and 5, it is easy to see that the re-
gions with the largest curvature/torsion coincide with the
zones of the highest plastic strain gradients.

7. CONCLUSIONS

This study modeled the uniaxial compression of a
single crystal sample. The formulated problem was
solved using a first-type direct model based on the finite
element method. The response of the material was deter-
mined by a crystal elastoviscoplasticity model that ex-
plicitly takes into account shearing on real crystallo-
graphic planes. The modeling results showed that the
original homogeneous volume of the single crystal is di-
vided into 7 fragments during deformation, in which the
shear strain intensity differs by several orders of magni-
tude; the maximum intensity value is reached in the cen-
tral region of the sample, while the minimum one is ob-
served in the regions near the end faces. Inhomogeneous
plastic shearing causes a misorientation of the formed
fragments; the maximum misorientation of neighboring
fragments reaches 8°, and the crystal lattice rotation in
them relative to the undeformed state reaches 4° at a
relative strain of 6%. As a result of inhomogeneous lat-
tice rotation, the lattice in some regions of the single
crystal (between the fragments) is curved. The numerical
experiment showed that the single crystal lattice is
curved in some regions during compression, which
agrees with the results of the full-scale experiment where

PHYSICAL MESOMECHANICS Vol.22 No.4 2019
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curved slip traces of edge dislocations were also observ-
ed on the surface.
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