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Considering Propagation of Matrix Microcracks

Sudakshina Dutta and J. M. Chandra Kishen*

Department of Civil Engineering, Indian Institute of Science, Bangalore, 560012 India
* e-mail: chandrak@jiisc.ac.in

Received November 15, 2018, revised November 15, 2018, accepted November 22, 2018

Abstract—Based on the tenets of continuum micromechanics, a damage model is developed in the present
work to investigate the effect of microcracking on the constitutive relations of cement based materials such as
concrete. The model considers concrete as a two phase particulate composite consisting of coarse aggregates
and mortar matrix. The microcracks are assumed to be present in the matrix material. Making use of Eshelby’s
solution for equivalent inclusion, the stress and strain fields are evaluated at the mesoscale. A two step homog-
enization scheme is adopted to obtain the effective response of the composite. The crack density parameter is
used as a damage variable in the formulation. Strain energy release rate, obtained from the micromechanical
analysis, is used as the criterion for describing the propagation of microcracks. The effect of various mesoscopic
parameters, such as aggregate content, elastic properties of the phases, microcrack density and fracture resis-
tance of the matrix, on the overall behavior of concrete is demonstrated through a parametric study.
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1. INTRODUCTION

Damage induced in different engineering materials
can be attributed to energy dissipative, permanent changes
in their microstructure. The internal structure of these
materials is marked by the presence of various flaws
or defects which, typically, act as precursors to dam-
age. Nucleation and growth of microcracks have been
identified as the major dissipative mechanism occur-
ring in quasi-brittle materials such as concrete, rocks
and ceramics. They are also responsible for various
complex phenomena at the macroscopic scale, such as
degradation of elastic properties, load induced anisot-
ropy, etc. [1]. In plain concrete, microcracks may exist
as bond cracks (at the interface between mortar matrix
and coarse aggregates) or as cracks randomly distrib-
uted in the mortar matrix. The present work aims at
analyzing the effect of microcracks present in mortar
on the mechanical behavior of concrete under tensile
loads.

Microcracks develop in concrete during the early
stages, primarily due to shrinkage, bleeding, cement
hydration, etc. When external loads are applied, these
cracks propagate resulting in inelastic strains, thus
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imparting nonlinearity to the resultant macroscopic
stress—strain response [2, 3]. The propagation of micro-
cracks followed by their coalescence are important
mechanisms that deserve much attention in predicting
the response of concrete at the macroscopic scale. Sig-
nificant advances have been made to numerically mo-
del the behavior of concrete by considering damage
caused by microcracking. Continuum damage mechan-
ics is a convenient tool to describe the behavior of
materials in which distributed or smeared microcrack-
ing occurs. However, the choice of an arbitrary dam-
age variable and heuristic nature of the damage evolu-
tion law restrict the applicability of such models. The
actual damage phenomena occurring in the material
are described only qualitatively. Moreover, for a ma-
terial like concrete, the microstructural attributes play
a significant role in deciding its macroscopic response
and cannot be neglected. Alternately, micromechanics
based damage models account for the inherent hetero-
geneity in composites and are best suited to model the
behavior of such materials.

Micromechanical analysis of damage in concrete
is an area of active research to describe the response
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of cementitious composites by modeling the specific
damage mechanisms at the microscale. Considering
distribution of penny shaped microcracks in the ma-
trix, constitutive relations for quasibrittle materials
have been derived by several authors [1, 4—8]. The
interaction between microcracks and the unilateral ef-
fect are described by homogenization based models.
Principles of irreversible thermodynamics are em-
ployed at the microscale to describe crack growth or
the evolution of damage. Conditions of crack closure
and friction between crack faces are also accounted
for in these models. A combined fracture mechanics
and micromechanics approach has been adopted by
Pichler et al. [9] to obtain the softening response com-
monly observed in geomaterials. The damage evolu-
tion law is obtained by implementing concepts of lin-
ear elastic fracture mechanics. Propagation of the mic-
rocracks results in strain softening at the macroscopic
scale. While capable of addressing the physical modes
of damage in the material adequately, the models do
not consider the presence of an inclusion phase, which
is an integral part of the composition of plain concrete.
The presence of the coarse aggregates influences the
response of concrete substantially and thus, should not
be neglected in formulating the constitutive relations
of the material.

In this study, a micromechanics based damage model
is developed in order to simulate the mechanical re-
sponse of plain concrete in which the mortar matrix is
weakened by randomly distributed microcracks. The
homogenized stiffness tensor is computed based on the
classical solution of a matrix—inclusion system as put
forward by Eshelby. Based on thermodynamical con-
siderations, local damage variables characterizing the
state of microcracks are defined. The kinetics of dam-
age growth is governed by the strain energy release
rate. The evolution of damage at the mesoscale and
the corresponding macroscopic response are obtained
by an incremental analysis. A highlight of this work is
to assess the effect of each of the mesoscopic param-
eters on the behavior of concrete under uniaxial ten-
sion and a parametric study is carried out to this end.

2. MICROMECHANICAL MODEL

In order to determine the mechanical properties of
composites, it is necessary to evaluate the stress and
strain fields within the inclusions or inhomogeneities
present in the material. An inclusion, in this context,
is defined as a subregion (volume V) which experi-
ences an eigenstrain or stress-free strain within a ho-
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mogeneous material (volume V). The elastic proper-
ties are uniform throughout the composite material.
The eigenstrain may be generated as a result of ther-
mal expansion, phase transformation, initial strain,
misfit strain etc.

Making use of the principle of superposition and
Green’s function, Eshelby [10] elegantly derived the
strain field within the matrix and an ellipsoidal inclu-
sion due to the eigenstrain. The resultant constrained
strain €° in the inclusion and the matrix is related to
the eigenstrain £" by the relation ¢ =L:g". Lis a
fourth order tensor, known as the Eshelby’s tensor. For
the ellipsoidal inclusion considered by Eshelby, the
tensor was shown to be a constant, thus resulting in an
uniform strain field within the inclusion. Eshelby’s
tensor is a function of the geometry of the inclusion
and the elastic properties of the matrix in which the
inclusion is present.

For a large class of composites, the commonly en-
countered problem is that of an inhomogeneity lying
in a matrix and being subjected to external stress or
strain fields. An inhomogeneity refers to a second phase
material with different elastic properties (elastic stiff-
ness tensor C’) than that of the surrounding matrix
material (stiffness tensor C). An additional disturbance
strain incurs in the material owing to the mismatch of
the elastic properties of the constituent phases. Based
on the solution of the inclusion under eigenstrain, the
stress and strain fields in a material containing an in-
homogeneity under external loads can be systemati-
cally deduced by the “equivalent inclusion method”.

In the equivalent inclusion method, the inhomoge-
neity is replaced by a homogeneous inclusion subjected
to a fictitious eigenstrain. The eigenstrain is introduced
to account for the difference in the elastic properties
of the two different phases. When subjected to a far
field strain €, the strain in the equivalent inclusion
can be expressed as:

€= +e=¢"+L:¢", (1)
where £° is the disturbance strain arising due to the
difference of the elastic properties and ¢” is the equiva-
lent eigenstrain. The stress in the equivalent homoge-
neous inclusionis 6' =C:(¢” +&° —¢") and that in the
inhomogeneity is ¢' =C’:(¢” +£°). Assuming the
elastic state of the inhomogeneity and that of the equi-
valent inclusion to be identical, the resultant stress
fields are equated as follows:

C:(e”+e°—€)=C": (" +£°). 2)
From Eq. (2), the eigenstrain is obtained as
g =[(C-C)-L-O)"'(C'-0O)]:&” =T:£", (3)
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where the expression ((C—C')-L—-C)™'-(C'-C) is
substituted by the tensor T. Using the expression of
the eigenstrain from Eq. (3), the strain field of the in-
homogeneity is given by

¢ =(I+L-T):&", 4)
where I is the fourth order identity tensor. The result-
ant stress field in the inhomogeneity is

¢ =C-[I+(L-1)-T]:&"
=C-(I+L-T):&". (5)

Thus, the strain and stress fields in an inhomogeneity
are obtained from Egs. (4) and (5), respectively. The
results from the equivalent inclusion method have
proved to be the stepping stone of an impressive amount
of research in predicting the behavior of composites
which have been applied to a diverse range of physi-
cal problems. Eshelby tensor can be used to obtain the
stress and strain fields in heterogeneous materials con-
taining reinforcements or defects such as voids, cracks,
dislocations etc. Since the original work of Eshelby, a
lot of research has been done to derive the analytical
forms of the Eshelby’s tensor for inclusions with dif-
ferent shapes and matrix with various elastic symme-
tries.

In the present work, the stress and strain fields of
plain concrete containing matrix microcracks is com-
puted by employing the solution of equivalent inclu-
sion for the matrix—inclusion system. It should be men-
tioned here that the term “inclusion” has often been
used to refer to the second phase particle or “inhomo-
geneity”.

Concrete is considered as a two phase composite at
the mesoscopic scale—the mortar phase and the ag-
gregate phase designated by superscripts m and a, re-
spectively. In addition to the coarse aggregates, micro-
cracks are assumed to be distributed randomly in the
mortar matrix. The orientation of a family of micro-
cracks is identified by the normal to the crack face.
The macroscopic constitutive relations are established
through a two step homogenization procedure as illus-
trated in Fig. 1. In the first step, the homogenized
stress—strain relations are obtained for the system con-
taining coarse aggregates embedded in the mortar ma-
trix. Employing the equivalent inclusion method and
the Mori—Tanaka homogenization procedure, the mac-
roscopic quantities are derived from the mesoscopic
fields by consideration of nondilute distribution of
coarse aggregates. The macroscopic behavior is sig-
nificantly influenced by the microcracks present in the
matrix which is addressed subsequently in the devel-
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Fig. 1. Two-step homogenization of concrete with matrix
microcracks.

opment of the model. The additional compliance due
to the system of microcracks is added to the homog-
enized properties of the aggregate—matrix system de-
rived in the first step to obtain the final macroscopic
constitutive relations. The matrix cracks contribute to
the inelastic strain £™, thereby imparting nonlinearity
to the overall response of the composite. The govern-
ing equations of the numerical model are given in the
next two sections.

2.1. Homogenized Stiffness due to Aggregate—
Mortar System

Description of the macroscopic relations between
the stress and strain of plain concrete containing mor-
tar cracks involves a two-step homogenization as dis-
cussed previously. As a first step, a representative vol-
ume element consisting of circular coarse aggregates
and the mortar matrix is considered. The assumption
of an infinitesimal strain field allows for the additive
split of the macroscopic strain € into an elastic part
£ and an inelastic part ™. The relation between the
macroscopic stress and the elastic part of strain is de-
scribed in this section. The overall stiffness of the com-
posite comprising of the mortar matrix and coarse
aggregates is obtained by the equivalent inclusion method.

The strain and stress fields of a single inclusion
present in an infinite matrix subjected to external strain
are given by Eqgs. (4) and (5) respectively. For a com-
posite material, containing inclusions whose volume
fraction is given by f, the macroscopic stress X and
macroscopic strain € are expressed in terms of the
average stresses and strains of the phases (distinguished
by superscripts m and a for matrix and aggregate) as:

E=(1-/)"+fo", e=(1- )"+ .  (6)

The average strain of the aggregates is given in
terms of the applied far field strain by Eq. (4). In the
Mori—Tanaka method of homogenization, the interac-
tion effects between the relatively high volume frac-
tion of inclusions is incorporated in an approximate
way by assuming that each of the inclusion is subjected
to the average matrix strain instead of the far field
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strain. Replacing the far field strain ¢ in Eq. (4) by

the average matrix strain, the resultant strain field in
the aggregate phase is expressed as

g =(I+L-T):g™ (7)

Substituting €* in Eq. (6), the average matrix strain

¢™ can be obtained in terms of the macroscopic strain

€ as
" ={f/U+L-T)+(1-/I}":5. (8)

Under the assumption of each of the phases being
elastic and isotropic, the macroscopic stress is ex-
pressed in terms of the average mesoscopic strains as

T=fC*":g"+(1-f/)C":e", )
where C* and C™ are the stiffness tensors of the
coarse aggregates and mortar matrix respectively. Us-
ing the relations between the aggregate strain and ma-
trix strain with the macroscopic strain field, the mac-
roscopic stress—strain relationship is finally obtained

as
E=[{f(C"-A+L-T)+(1-/H)C"}

x{fA+L-T)+(1- HL']: = (10)

The homogenized stiffness tensor Ci°™ for the
composite consisting of mortar matrix and coarse ag-
gregates is thus given by:

Cr*" = {f(C*-(I+L-T) +(1- /)C"} .
x{fA+L-T)+(1- OB\ o

The inverse of the homogenized stiffness yields the
: . hom hom™

homogenized compliance tensor S;” =C;™ . Itcan
be seen from Eq. (11) that the overall behavior of the
composite, which is governed by the tensor Ci™, is
dependent on the elastic properties of the constituent
phases, the volume fraction of the phases and the shape
of the inclusion considered for the analysis. The effect
of the shape of the inclusion enters into the formula-
tion through the Eshelby’s tensor L. The components
of L for a circular inclusion under plane stress condi-

tions are

3v™ -1
Lijk = TSUSH
3—y™
+ e (5,0 et d j,Sik), (12)

where v™ is the Poisson’s ratio for the matrix mate-
rial and 8;,' is the second order identity tensor or the
Kronecker delta.

C°™ is the undamaged stiffness tensor which does
not consider any inelastic effects. The randomly dis-
tributed mortar microcracks are the source of damage
considered in the present analysis which result in in-
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elastic strains and alter the macroscopic stiffness of
cementitious materials. In the next section, the contri-
bution of the matrix microcracks to the overall stiff-
ness of the composite is estimated.

2.2. Additional Strains due to Microcracks
in Mortar

The mortar matrix in cement based composites is
characterized by the presence of a number of arbitrarily
aligned microcracks. The cracks weaken the matrix and
are responsible for the nonlinear behavior observed at
the macroscale. The propagation and coalescence of
the microcracks eventually lead to softening and final
failure of the composite material. The inelastic strains
and the additional compliance arising due to the pres-
ence of microcracks are deduced in this section.

The cracks are assumed to be line cracks or slit
cracks in two dimensions with the length of the cracks
being 2c¢. For simplification of the present analysis,
all the cracks are assumed to be of the same size. Fur-
ther, since the response of the composite is considered
under uniaxial tension, the cracks are assumed to be
open at all stages of loading. The crack faces are as-
sumed to be frictionless. Figure 2 shows a single micro-
crack inclined at an angle of 6 with the x, axis. The
local coordinate system of the crack is represented as
x; — x5. The local coordinate system is chosen in a way
such that the centre of the crack is at the origin of the
coordinate system and the normal to the crack face
coincides with the x} direction.

The effective elastic moduli of a composite mate-
rial consisting of planar cracks in two dimensions are
estimated by the procedure given by Nemat—Nasser
and Hori [11]. The applied tensile stress o, along x,
direction can be resolved into normal component o7,
and o5, in the local coordinate system. The crack thus
experiences both tensile and shear stresses. The crack
opening displacements in the normal and tangential
directions in terms of the local stresses under plane
stress conditions are

X
2 x,l

X1

Fig. 2. An arbitrarily oriented mortar microcrack.
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- x? o (13)

o) = <=
wherei=1,2and —c<x<c, E™ is the Young’s modu-
lus of the matrix.

The resultant inelastic strain €° for a single micro-
crack is given by

€

1 ¢ ,
C:C_z,[(niH”jH+||”i||nj)dx1a (14)

where n; and n; are the components of the unit nor-
mal on the crack face. Substituting Eq. (13) into
Eq. (14), the inelastic strain can be expressed as a func-
tion of the locally applied stress fields as

H l.'jk, is the additional compliance resulting due to the
presence of microcracks in the matrix. The nonzero
components of the tensor H' are
2n
Hyyp = F >

(16)

H1212 H2121 - H1221 - H2112 -

2E™

The components of H are transformed from the local
coordinate system x| —x} of the cracks to the x, —x,
coordinates through an orthonormal tensor Q.

When a number of microcracks are present in the
matrix, each of the cracks contributes to the inelastic
strain as given by the previous equations. In order to
obtain the total inelastic strain engendered by multiple
microcracks, the crack density parameter d as intro-
duced by Budiansky and O’Connell [12] is used. For
two dimensional formulations, the crack density pa-
rameter is d = N¢?, where N denotes the number of
cracks of length 2¢ present per unit area of the repre-
sentative volume element, d is the internal variable used
in this micromechanical formulation to characterize
the damage caused by microcracking.

In the present analysis, microcracks are assumed to
be isotropically distributed, i.e., the same number of
microcracks are present in all directions considered.
The additional compliance due to the presence of mic-
rocracks in all possible directions is obtained from the
following equation:

H—— j Q'H'Qde. (17)

The equation yields the components of the addi-
tional compliance tensor H as
1 00
nid

H=—-0 1 0| (18)
00 2

The overall compliance tensor S™™ of the com-

posite includes the contributions of the coarse aggre-
gate—mortar system and that of the randomly oriented
microcracks and is given by

ghom = ghom 4 |, (19)

The existence and propagation of microcracks re-

sult in a reduction of the stiffness of the material. The

homogenized stiffness tensor of concrete comprising

of coarse aggregates, mortar matrix and matrix micro-
cracks is

Chom — C?Om +Ci10m 2J,

J=H:C".

In the initial stages of loading, when the applied
load is small, the cracks remain stationary and the
macroscopic constitutive relation can be obtained by
¥ = C"™:%. However, as the intensity of the applied
load increases, the cracks begin to propagate and the
kinetics of crack propagation should enter into the for-
mulation. A thermodynamic based framework is adopted
in the present model in order to incorporate the growth
of microcracks in the constitutive relations. The crite-
ria determining the progress of damage at the mesos-
cale are discussed in the following section.

(20)

3. EVOLUTION OF DAMAGE

The propagation of microcracks at the mesoscale
and the corresponding macroresponse of concrete is
treated within a damage mechanics framework. The
selection of the damage variable and its evolution are
guided by micromechanical arguments, thus preserv-
ing the mechanistic basis of the model. The propaga-
tion of microcracks is an irreversible process which is
accompanied by an increase of the inelastic strain in
the material. The crack density parameter d has been
used in the previous section to consider the effect of
microcracks in the overall behavior of plain concrete.
With increase in the applied load, the microcracks be-
gin to propagate causing further damage in the mate-
rial. The evolution of the damage variable d is obtained
in this section. Energetic considerations based on dam-
age mechanics, similar to some previous works [1, 5],
are adopted in the present analysis.

The thermodynamic potential or the free energy of
the composite material is expressed in terms of the
effective stiffness as [1, 5]

1
W=5§:Ch"m:§, (21)
where W is the free energy potential or the Helmholtz

PHYSICAL MESOMECHANICS Vol.22 No.2 2019



MICROMECHANICAL DAMAGE MODEL FOR PLAIN CONCRETE CONSIDERING PROPAGATION 101

energy, € is the macroscopic strain and C™™ is the
effective stiffness tensor of the composite. C™™ in-
cludes the effect of distributed microcracking. The
derivative of W with respect to the macroscopic strain
yields the constitutive relation as

5=V _crom g
Je

The degree of damage is dependent on the align-
ment of a crack with respect to the direction of the
applied load. For example, the family of cracks lying
perpendicular to the direction of the applied external
loads is the most critical and begins to propagate first.
Therefore, it is pertinent to define certain representa-
tive directions by considering isotropic distribution of
microcracks. The damage state in each of the direc-
tions is given by a damage variable d,;. For a given
direction i, the thermodynamic force associated with
the damage variable d; is derived from the free en-
ergy function W, as a conjugate of the damage vari-

1
able given by )
a__oW
fi od;
The damage driving force E-d is the strain energy re-
lease rate of the ith crack which is used in the damage
criterion to describe the growth of microcracks. The
damage criterion is given by
[, d)=F'~R(d)<0. (23)
Here R(d,) is the resistance offered by the matrix ma-
terial to the growth of microcracks at the mesoscopic
scale. The R(d;) curve is dependent on the state of
damage and is capable of accommodating the local re-
sistance due to the probable presence of some hetero-
geneities in the mortar matrix which cannot be distin-
guished at the mesoscale. The crack resistance func-
tion should ideally be obtained for different matrix
materials by conducting experiments on mortar speci-
mens. However, owing to the scarcity of experimental
results, the exact form of the function is lacking at
present. Similar to several studies available in the lit-
erature [1, 5, 6], in the present analysis, the crack re-
sistance is assumed to depend linearly on the state of
damage and is given by R(d,) = ¢, + ¢,d;. By using this
relation, two variables ¢, and ¢, are introduced in the
model, ¢, represents the initial damage threshold and
can be interpreted as the fracture toughness of the
matrix material. When the value of the damage vari-
able is small, as in the case of initial stages of loading,
damage begins to propagate when the strain energy
release rate reaches the critical value given by ¢,. With
increase in the value of the damage variable, the resis-

(22)
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tance to the extension of the crack increases which is
controlled by the variable ¢;, depicting the kinemat-
ics of the damage evolution. An envelope of all the
damage surfaces given by Eq. (23) gives the macro-
scopic damage criterion for the composite material
considering various orientations of microcracks.

By imposing the normality rule, the damage evolu-
tion is finally obtained as

g =3¢ i 5,
OF;

;|0 if f;<0 and £, <0,
AL if f,=0and f =0,

X? is the damage multiplier of the ith family of micro-

cracks. By making use of the consistency condition,

fi =0, the damage multipliers for K families of micro-
cracks considered (i = 1, 2, ..., K) can be computed as

(24)

i

. of = Ko . oF .
=L Ll =—L":
D YR L
K(oF% od -
e =L |d =0. 25
+§‘§—:1( p) ds a p) dYJ s ( )

Accounting for the response of all the microcracks
oriented in various directions, the above equation re-
sults in a system of equations which can be represented
by

[M]{d} = {F} € (26)
The components of the matrix M are
oF'  9d,
M, =—| ———c¢,—+|. 27
A ( a ds Cl a dS ) ( )

The vector {d} consists of all the damage variables in
the rate form for the K different orientations of micro-
cracks considered. The components of ' are given by
oF¢ / 0€. Thus, the solution of the set of equations
provides the values of the damage variables associ-
ated with the respective microcrack family. The rate
form of the constitutive relation can be written as
S=CM™:g CM™ is the tangential stiffness tensor
which is obtained for each incremental step of load-
ing.

Therefore, the macroscopic response can be pre-
dicted at each load step as damage progresses. The
damaged state of the material is represented by a set
of damage variables. Initially, damage in all the direc-
tions are assumed to be identical (assumption of iso-
tropic distribution). However, as the applied load in-
creases, the behavior of the microcracks vary depend-
ing on their orientations, which is encapsulated in the
damage model described.



102 SUDAKSHINA DUTTA, CHANDRA KISHEN

4. NUMERICAL IMPLEMENTATION

The damage model developed is suitable for mate-
rials in which the matrix contains a number of ran-
domly aligned microcracks in addition to a second
phase material or inhomogeneity. For application of
the model to predict the response of composites, the
crack density function d needs to be specified in all
possible directions. The effect of microcracks is ob-
tained by integration of d over all the directions. In the
present formulation, certain discrete orientations are
considered and numerical integration is performed over
the chosen directions to obtain the effective behavior
of the material. The Gauss quadrature is generally
implemented to evaluate such integrals [1, 13, 14]. For
the present problem, sixteen evenly spaced directions
are taken and the appropriate weight functions are used
for the evaluation of the integral. The weight function
and the directions are dependent on the integration
scheme adopted. A global damage variable D is de-
rived by accounting for the damage d; in all the direc-
tions as D = w;d; where o; is the weight function re-
lated to the particular direction.

The nonlinear set of equations is solved by the fol-
lowing incremental iterative procedure.

Step 1: For load step p + 1, increase macroscopic
strain € by A€.

Step 2: Initialize damage variables d; for each of
the K orientations of microcrack families considered,
by taking the values of the previous converged load
step p.

Step 3: Check damage criterion £ for each direc-
tion and obtain the matrix [M].

Step 4: Solve [M]{Ad}={f} for Ad for K directions.

Step 5: If Ad; < 0, update [M] as f; =0, M, =
M ; = 0 for i #s. Repeat previous step with updated
values of [M] until Ad, >0.

Step 6: Obtain the current values of damage vari-
ables Ad?*' =d, +Ad,.

Step 7: Obtain the macroscopic stress in terms of
macroscopic strain.

Step 8: Repeat steps 1 to 7 to obtain the complete
stress-strain response.

5. RESULTS AND DISCUSSION

5.1. Model Validation: Response under Uniaxial
Tension

The predictive capability of the proposed damage
model is assessed by simulating the behavior of plain
concrete under uniaxial tension. The results of the nu-

merical simulations are compared with experimental
data available in the literature. The data from the
uniaxial tensile tests of Hordijk [ 15] and Gopalaratnam
and Shah [16] are used for this purpose. The different
material properties used for the analysis are listed in
the table.

The damage variables d;, i=1, 2, ..., K, represent-
ing the density of microcracks present in each direc-
tion in the material, is chosen to have an initial value
of 0.01 for both sets of experimental data. The mate-
rial resistance to the growth of microcracks is charac-
terized by a curve similar to the R-curve adopted in
fracture mechanics as described previously. The resis-
tance curve consists of two terms ¢, and ¢, ¢, de-
picts the initial resistance of the material while ¢, con-
trols the evolution of damage. For the present numeri-
cal analysis, the resistance is assumed to be constant
and ¢, is set to 0. The constant value of the resistance
curve R represents the critical value of the strain en-
ergy release rate of the mortar matrix G.' and is best
suited to describe the behavior of a brittle matrix. The
approximation is made to simplify the computations
involved.

Figures 3 and 4 show the comparison of the results
obtained from the numerical model with the experi-
mental stress-strain response of plain concrete pre-
dicted by Hordijk [15] and Gopalaratnam and Shah
[16] respectively. The strain represents the average
strain considered in a material volume present in the
damage zone or the fracture process zone wherein dam-
age in the form of microcracking takes place. The re-
sults are able to reproduce the mechanical behavior of
concrete at the macroscopic scale considerably well.

The corresponding evolution of the global damage
index D with the macroscopic strain is presented in
Fig. 5 for the experimental data of Hordijk [15]. It can
be observed from the figure that initially the damage
variable remains constant. This implies that all the
microcracks, if any, that are present in the material,

Table. Material properties

Property [15] [16]
Young’s modulus of coarse
aggregate E°, GPa 70 55
Young’s modulus of mortar £, GPa 25 28
Poisson’s ratio of coarse aggregate v* 0.20 0.20
Poisson’s ratio of mortar v™ 0.21 0.19
Aggregate diameter 2a, mm 24 10
o *107, J/m? 1.5 1.1
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Fig. 3. Macroscopic stress—strain response under uniaxial
tension compared with experimental results [15].

are stationary. The stress—strain response is linear upto
48% of the peak stress recorded as seen in Fig. 3. Fur-
ther increase of the strain causes microcracks in cer-
tain favorable directions to propagate as a result of
which an increase in the global damage variable is
observed. The gradual increase of the damage index
with increasing strain is reflected in the nonlinearity
in the macroscopic response before the peak stress fol-
lowed by post-peak softening.

5.2. Parametric Study

The micromechanics based damage model devel-
oped to describe the behavior of plain concrete under
uniaxial tensile loads involves different mesoscale
parameters. It is essential to analyze the effect of each
of the parameters on the macroscopic constitutive re-
lationship of the composite material to gather suffi-
cient knowledge about the influence of the microstruc-
ture. The different parameters involved in the proposed
micromechanical damage model are the mix propor-
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Fig. 4. Macroscopic stress—strain response under uniaxial
tension compared with experimental results [16].
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Fig. 5. Evolution of global damage with macroscopic strain.

tions or the volume fractions of the constituent phases,
their elastic properties, the initial damage parameter
and the material resistance provided by the mortar
matrix to the growth of microcracks. The response ob-
served at the macroscale is dominated by each of these
parameters. This section presents the findings of a se-
ries of numerical experiments conducted to evaluate
the influence of the mesoscale properties on the stress-
strain behavior of concrete.

5.2.1. Aggregate volume fraction

The coarse aggregates form 40—80% of the total
volume of plain concrete and, as demonstrated by ex-
perimental studies, tensile strength and fracture behav-
ior of concrete are significantly affected by the vol-
ume fraction of coarse aggregates in the concrete mix
[17, 18]. The inclusion of the aggregate phase in the
present model is an improvement over the models avail-
able in the literature [1, 5, 6] which have dealt with
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Fig. 6. Effect of aggregate volume fraction on the macro-
scopic response of plain concrete under uniaxial tension.
Aggregate volume fraction = 0.45 (1), 0.60(2), 0.80 (3).
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microcracks distributed in mortar without consider-
ation of the presence of aggregates. Figure 6 shows
the macroscopic stress—strain response of concrete for
three different values of aggregate volume fraction f
considered. The effective stiffness of the material is a
function of the stiffnesses of the constituent phases.
For plain concrete, the coarse aggregate particles are
much stiffer than the mortar matrix. Thus, increasing
the volume fraction of aggregate particles in concrete
results in an increase of the overall stiffness of the
material. The tensile strength is observed to decrease
with the increase in the aggregate content. The stress
distribution in the matrix is perturbed by the presence
of the aggregates which is accounted for in the model.
The variation in the elastic properties between the
phases results in stress concentration, thereby increas-
ing the average stress of the matrix. This leads to the
lowering of the strain at which damage begins to propa-
gate; thus a lower tensile strength is recorded for the
composite as a whole.

5.2.2. Elastic modulus of mortar

The relative stiffness of each of the phases has a
considerable effect on the macroscopic behavior of a
composite. In the present analysis, concrete is mod-
eled as a two-phase material. To understand the role
played by the elastic properties of the phases, the
Young’s modulus of mortar E™ is altered and its ef-
fect on the overall stress—strain response is analyzed.
The results are illustrated in Figure 7 for two different
values of E™ considered. The derived homogenized
stiffness of concrete is a function of the elastic moduli
of both the phases. Hence, increasing the value of E™
results in an increased value of the overall stiffness of
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Fig. 7. Effect of elastic modulus of mortar on the macro-
scopic response of plain concrete under uniaxial tension.
The Young’s modu.lus of mortar E™ = 10 (1), 25 GPa (2).

concrete. The crack opening displacement or the dis-
placement jump across the crack faces ||u;|| is inversely
proportional to E™. As the mortar matrix is made
stiffer, the crack opening displacement reduces thereby
resulting in lowering the inelastic strain €™. The con-
tribution of €™ to the added compliance is decreased
and the stress at which the propagation of the micro-
cracks start increases. As a result, a higher macroscopic
tensile strength is achieved with an increase of the elas-
tic modulus of the mortar.

5.2.3. Initial damage in mortar

The crack density parameter d is an important vari-
able which characterizes the damage caused by the
randomly distributed microcracks. The macroscopic
behavior of concrete is governed by the evolution of
the crack density parameter. The damage parameter is
a function of the number of cracks N present per unit
area of the representative volume element and the
length of the crack 2¢. Through microscopic analysis
of cored cylindrical specimens subjected to uniaxial
tension, Dhir and Sangha [19] have given an estima-
tion of the microcrack density in plain concrete. Fig-
ure 8§ presents the effect of variation of the density of
microcracks N on the overall response of the compos-
ite for three different values considered. Keeping the
size of the microcrack constant, increasing the value
of N implies an increased value of the initial damage
in the material. The effective stiffness of the compos-
ite material is reduced with an increased value of N.
This is evident as increasing the damage d of the ma-
terial makes it more compliant. Increasing the initial
damage also results in lowering the tensile strength of
the material as the initial resistance to crack growth
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Fig. 8. Effect of microcrack density on the macroscopic
response of plain concrete under uniaxial tension.
Microcrack density N = 10°(1),10%(2), 2x 10* m™ 3.
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Fig. 9. Effect of parameter ¢, on the macroscopic response
of plain concrete under uniaxial tension. ¢, = 0.5x 107 (1),
1x107 (2), 2x107° N/m (3).

decreases. The slope of the post-peak curve is observed
to be steeper for a lower value of N. This is because
increasing the value of Nresults in much more distrib-
uted microcracking in the matrix, which dissipates
higher energy, which is manifested in the post-peak
response.

5.2.4. Fracture resistance of mortar

In this work, the damage mechanism under consid-
eration is the growth of microcracks present in the
mortar matrix. As the intensity of the applied strain
increases, the cracks begin to propagate, resulting in a
nonlinear macroscopic stress—strain response. The cri-
terion for initiation and propagation of damage used
in the present analysis is based on the strain energy
release rate which is obtained from the free energy po-
tential of the material. The matrix material offers re-
sistance to the growth of the microcracks which is rep-
resented by the crack growth resistance curve R(d,).
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Fig. 10. Effect of parameter ¢; on the macroscopic response
of plain concrete under uniaxial tension. ¢; = 107 D),
107 (2), 3x107° (3).

PHYSICAL MESOMECHANICS Vol.22 No.2 2019

Due to lack of experimental studies which relate
the resistance of the material at the mesoscopic scale
with the corresponding state of damage d;, the R curve
is assumed to depend linearly on the damage index.
The two constants appearing in the relation are ¢,
which is the initial threshold of damage (comparable
to the fracture toughness of the mortar matrix) and ¢,
which influences the kinetics of the damage. The val-
ues of ¢, for plain concrete are variously reported to
be in the range of 0 and 3x107* in the literature under
tension [1, 5]. The macroscopic stress-strain behavior
with the variation of ¢, and ¢, is depicted in Figs. 9
and 10 respectively. The initial stiftness is not altered
as the parameters enter into the formulation once dam-
age start to evolve. The tensile strength increases with
an increase in the value of ¢, and c¢,. This is because
the resistance to the propagation of microcracks in-
creases, as a result of which a higher stress is required
for damage to initiate. The evolution of damage is de-
termined by the value of ¢; which can be seen from
the variation in the resultant post-peak softening curve.

6. CONCLUSIONS

A micromechanical analysis is carried out to un-
derstand the effect of damage caused by the propaga-
tion of microcracks randomly distributed in the matrix
on the response of cementitious materials under ten-
sile loads. The mesoscale model consists of a number
of slit cracks in addition to the aggregate phase and
the mortar phase. The crack density parameter is used
to define the state of damage at the mesoscopic scale.
The strain energy release rate at the mesoscale serves
as the criterion for damage. Different orientations of
the microcracks are considered and the cumulative ef-
fect on the macroscopic constitutive relation is estab-
lished. The model is used to simulate the behavior of
plain concrete under monotonic load and the results
are in good agreement with experimental data from
the literature. The model involves a quantity, known
as the fracture resistance of mortar, similar to the R-
curve commonly used in fracture mechanics, which is
used to formulate the condition of damage evolution.
The curve should be determined by conducting experi-
ments at the pertinent material scale, i.e., the mesos-
cale in the context of the present problem, to describe
the dependence of the fracture resistance on the state
of damage. However, owing to the deficiency in ex-
perimental data, a precise form of the resistance curve
is unavailable and it is assumed to be a linear function
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of damage. This introduces an additional parameter
¢, in the model. With the exception of ¢;, all other
parameters appearing in the model can be obtained
from mechanical tests performed on concrete. The
damage mechanism occurring at the mesoscale is ex-
plicitly modeled and its manifestation at the macroscale
is studied in detail. An advantage of the model is its
ability to enunciate the role of different microstruc-
tural properties such as the aggregate content, elastic
properties of the constituent phases, microcrack den-
sity and the mesoscopic resistance to damage on the
fracture and fatigue behavior of plain concrete, thus
providing a scope to design the material optimally.
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