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Abstract—This study presents modeling results on fatigue wear of elastomers. A contact problem solution has
been derived for the sliding of a system of asperities over a viscoelastic half-space. The mechanical properties of
the viscoelastic half-space are described by relations between stresses and strains given by the Volterra integral op-
erator. The contact problem is solved by the boundary element method using an iterative procedure. Stresses in the
subsurface layers of the viscoelastic material are analyzed. The damage function of the surface layer is calculated
using a reduced stress criterion, the parameters of which are determined on the basis of available experimental data.
The wear process is studied under the assumption that the accumulated damage can be summed up. Within the ap-
plied frictional interaction model, the wear process presents the delamination of material surface layers of finite
thickness at discrete points in time and continuous surface wear by fatigue mechanism. A model calculation of
contact fatigue damage accumulation has shown that the time to the first material delamination (incubation period)
depends on the sliding velocity and the viscoelastic properties of the material. By analyzing the dependence of the
wear rate on the input parameters of the problem, it was investigated how the sliding velocity affects the time of fa-
tigue damage initiation and the run-in and steady-state wear rates in materials with different rheological properties.
Model calculations revealed that the wear rate of material surface layers after the incubation period increases
smoothly and then stabilizes. The presence of the steady-state wear rate agrees well with experimental data. The
developed method for studying fatigue damage accumulation in the surface layers of viscoelastic materials in fric-

tional interaction can also be applied on the macrolevel to determine possible crack initiation sites.
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1. INTRODUCTION

Modeling and experimental study of wear of elasto-
mers is an important stage in the development of wear
resistant materials, which provide increased durability of
friction components operating under specified conditions.

Russian scientists were the first to demonstrate that
one of the main polymer wear mechanisms is the fa-
tigue failure of the surface layers of friction materials
[1-6]. The fatigue nature of wear was also confirmed
by other researchers [7, 8]. Although the fatigue type of
wear is the least intense, it is the main one for particu-
lar friction units. Kragelsky and Nepomnyashchy [5]
studied the sliding of a spherical indenter on a rubber
disk. They found that initially the sliding ball leaves a
barely visible friction trace on the disk, then the indenter
slides for a long time without significant changes, and
finally the most intensive entrainment of debris from
the path begins after a certain number of cycles. Thus,
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the stage of damage accumulation (so-called incuba-
tion period) and the stage of intensive wear were dis-
tinguished. The authors revealed a correlation between
the results of frictional contact fatigue tests and con-
ventional bulk fatigue tests under cyclic loading (curves
of the number of cycles to failure versus the applied
load were parallel). Eiss [9] investigated fatigue wear
during sliding of a metal ball on specimens made of
various polymers (polycarbonate, polyvinyl chloride,
ultra-high molecular weight polyethylene, etc.). His in-
vestigation results showed that the number of cycles to
the onset of wear is inversely proportional to the ratio
between tensile stress in the contact area and tensile
yield strength. The rate of wear after the incubation
period was found to be proportional to the modulus of
elasticity.

Strains are most often taken as criteria of defect nu-
cleation in the experimental investigation of the fatigue
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process under uniaxial loading and torsion, because they
can easily be determined experimentally through displa-
cements [10]. The most used strains are the maximum
principal strains [11-13], and the less used are the octa-
hedral shear strains [10]. The results of conventional fa-
tigue tests, especially those obtained under multiaxial
loading, can be applied in fatigue wear modeling [ 14—
16]. The theory of strength of materials considered the
reduced stress as one of the criteria for the occurrence of
a highly elastic state [17]. The reduced stress was used in
the fatigue failure criterion in the experiments of Kra-
gelsky and Nepomnyashchy [5] based on Saverin’s solu-
tion of a contact problem [18].

The main reason for the fatigue failure of the material
surface layers is the surface roughness of the contacting
bodies, which causes a cyclic variation of the stress field
in the surface layers of the material.

Approaches to the modeling of fatigue wear of elastic
materials are overviewed in Ref. [19]. Our earlier papers
discussed wear models based on the maximum shear
stress criterion for an elastic half-space [20, 21] and for
coated materials [22]. We also proposed a wear model
based on considering a thermokinetic model of damage
accumulation in the surface layers of the contacting bod-
ies in sliding friction [23].

This paper reports the modeling results on fatigue wear
of elastomers obtained with the use of the reduced stress
criterion, which was confirmed experimentally in Ref. [5].

2. THE MAIN STAGES OF FATIGUE WEAR
MODELING OF ELASTOMERS

According to Ref. [19], the main stages of fatigue wear
modeling are:

—solution of a contact problem between sliding de-
formable bodies with rough surfaces, and determination
of stresses in the surface layers of materials;
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—selection of a damage accumulation criterion that is
usually related to the stress amplitude values, calculation
of the damage function at different points in time;

—modeling of fatigue crack initiation and growth af-
ter the critical damage value is reached, and modeling of
wear debris separation;

— determination of the shape of the formed surface,
and calculation of the damage function for the rest of the
material, taking into account the stresses at the contact of
surfaces with changed microgeometry and the damage
present in the contacting bodies with changed microgeo-
metry;

— calculation of linear or mass wear as a function of
time or distance covered.

This paper considers a simplified model of contact
interaction: the sliding of a system of spherical asperities
(rough surface model of a rigid counterbody) over a vis-
coelastic half-space (elastomer model). The model, on
the one hand, reflects the main contact interaction fea-
tures of rough bodies associated with the cyclic deforma-
tion of the surface layers of the contacting bodies and
leading to fatigue damage formation in the subsurface
layers of the material and wear. On the other hand, it de-
scribes the effect of the main process parameters (me-
chanical and strength properties of contacting bodies,
surface microgeometry, load, sliding velocity) on the
rate of material wear by the fatigue mechanism.

2.1. Solution of a Sliding Contact Problem for
a System of Asperities on a Viscoelastic Half-Space

Let us consider the sliding of a system of n identical
punches (asperities) over a viscoelastic half-space with
constant velocity V' (Fig. 1). The surface shape of the as-
perities is described by the functions f;(x, y) obtained
by transforming the function f(x,y)= (x> + %) / (2r)
(7 is the asperity radius) by shifting along the Ox axis. The
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Fig. 1. Scheme of contact.
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system is subjected to vertical force P and horizontal force
Tto provide a constant sliding velocity. The mutual spa-
tial arrangement of the asperities is unchanged. For defi-
niteness, we consider a configuration in which the sym-
metry axes of the asperities are in the same plane at a dis-
tance L from each other. The Cartesian coordinate sys-
tem is associated with the system of moving asperities, and
its center is at the point of intersection between the axis of
a fixed asperity and the undeformed surface of the half-
space.

The following conditions hold at the half-space boun-
dary:

z=0:1,.(x, =0, 7,.(x,») =0,

ZWiq(XaJ/)=fi(xa)’)—D 5 (X, y)e Qi’ i=1,..., n,

g=1 €))

6.(x,»)=0, 1.(x »)=0, 1,.(x, »)=0,(x, Y& Q,,
—00 < X< 400, —00 < P < +oo,

where Q; (i =1, ..., n) are the contact areas of the asperi-
ties, wy, (x, y) (i, ¢ =1, ..., n) is the vertical displacement
of the half-space boundary inside a fixed ith region €,
due to pressure inside the contact areas, D is the distance
between the contact surfaces, and 6, T,,, T,, are the
normal and tangential stresses. Tangential stresses are
assumed to be absent in the contact area.

The equilibrium equation reads:

P=3 [[ p,(x, y)dxdy, @)

i=1Q,
where p;(x, ») is the contact pressure on the contact
area between the ith asperity and the half-space.

The mechanical properties of the viscoelastic half-
space are described by the following relations between
stresses and strains given by the Volterra integral operator:

To(== Txy(f)+ fTry(T)K(t 1)dr,
¥, (0)= G yz(l)+ nyZ(T)K(t 1)dr,
Vo (t) = sz(f)+ szx(T)K(t )dr,

e () =— [c () =V(o,(D) +0.(1) | (3)

t

+% | [Gx(f) - V(5 (1) +Gz(t))]K(t —1)dr,

—oo

e,(0)=[0,()=V(o,(+0.(1)]

+L [ [0,0 -0, (0 +0.0) JK (-1,

—oo
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e ()=— [c ()= V(o () +0,(1) ]
+% jm [0.(1)~V(o,(1)+0,(1) |K(t-1)dr,
K{)= Zk exp[—k—J

i=1 i
where v is the Poisson’s ratio, e,, e,, €., V., Vyzs Vo
are the strain tensor components, £ and G are the Young’s
modulus and shear modulus, respectively. The creep ker-
nel K(¢) is a combination of exponential functions with
the relaxation spectrum 1/k; and retardation spectrum
A

The problem is solved using the boundary element
method described elsewhere for the case of one indenter
[24, 25] and two indenters [26]. The method was modi-
fied in this study to reduce the computational time by
taking into account the short- and long-range effects for
the asperities spaced at a large distance.

For each asperity, we choose a rectangular region Q?,
i=1,...,n of size a,xb, that contains a contact area.
Meshes of size Na;x Nb, = N,,i=1, ..., n are generated
inside the regions, with a constant pressure pj- Ji=1, ...,
n, j=1,..., N; inside each element. The vertical displa-
cement of the half-space boundary at a point is a super-
position of displacements at this point caused by the pres-
sure in each mesh element. Let us consider the column
| w|| of vertical boundary displacements inside the re-
gion Q? due to the pressure || p?|| inside the region Qg.
The dependence of the vertical displacements on the con-
tact pressure can be expressed using the matrix || 4| of
N; XN, elements:

A1 p? 1=l P71 - 4)
The matrix coefficients Aiq, i=1,...,N,[=1,.
N,, are the vertical dlsplacement atthe center ofthe el—
ement j of the region Q caused by the unit pressure in
the element / of the region Q° ¢~ They can be calculated
using the expression derived in Ref. [24]:

w(x’, ') = 5
'KS

1
X d&dy’
”{J(x &)+ - y)z} "
__J'J' 2 { e Aj(X'—é')

TCCQ}]

X T ¢ du dg'dy’,

4y Ju? + A2 - )
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Ccy&m

x/’ /’ /’ ’ = b ;I b
sy, 8m) . Y7
r C .
szkj';’ ka}\‘—, J=1,...,S, (5)

P, )
PIZG ’p(x’y)zp(x y)

The parameter c relates the relaxation and retardation
times. Using boundary conditions (1) and equilibrium con-
dition (2), we come to the following system of linear equa-
tions:

11 11 1n 1n
Ay AN11 4 AN,,I
. . . 1
11 11 1n ln
Auvl ANINI AlNl ANan
1n 1n nn nn
A AN11 4 AN,,I
. . 1
1n 1n nn nn
Aan ANan Aan ANnNn
(s' o sh (s" - 5" 0]
_ T ]
b A
1 1
Py, S N,
X =
n n
b A
n n
Py, /i N,
D || P (6)

Here, s',i=1,...,n are the element grid areas in the cor-
responding regions Ql , P ; isthe pressure inside the jth
element grid of the region Q and f is the value of the
function f;(x,y),i=1,...,n atthe center of the jth ele-
ment grid of the region Q?, After the iteration procedure,
which included the solution of the system and the subse-
quent reduction of the rank of its augmented matrix by
zeroing elements with negative pressure, we determined
the unknown contact areas, pressure distribution, and the
depth of system penetration D’ = D/r.

2.2. Calculation of Stresses with Taking into Account
the Interaction of Asperities

The considered boundary conditions (1) imply the
absence of tangential stresses in the contact area, so we

can use the solution of the Boussinesq problem [27] to
calculate stresses in the half-space. By summing over all
loaded surface elements, we can determine the stress
components at any point inside the half-space:

1-2v

o8] g
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2.3. Calculation of Damage Accumulation
and Contact Fatigue Wear

Damage accumulation, which is characterized by the
function Q(x, y, z, f) nondecreasing in time, can be stud-
ied using a linear damage summation model (the damage

PHYSICAL MESOMECHANICS Vol.22 No.1 2019
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increment at each time point does not depend on the
amount of accumulated damage) [19]. Failure occurs at
the time point #°, when this function reaches a predeter-
mined threshold value.

The damage accumulation rate depends on the mate-
rial properties and contact interaction conditions. The
choice of a damage accumulation model is usually based
on experimental data. For elastomers, the results ob-
tained in Ref. [5] are classical and can be used to con-
struct a model of damage accumulation in the surface
layers of elastomers. In this paper, the number of cycles
to failure is associated with the values of reduced
stresses. In accordance with the hypothesis of linear da-
mage summation, we write the following relation for the
damage accumulation rate [ 19]:

00(x, v, z,t)
ot

Acsp(x, V, Z,t) "
E

where g and m are experimentally determined constants,
and Ac » (x, y, z, t) are the amplitude values of reduced
stresses at the point (x, y, z). To calculate the reduced
stresses [17], we first determine the stress tensor compo-
nents based on Eq. (7) and then determine the principal
stresses G,,0,,0; (0, >0, >0;) as the roots of the
equation:

q(x,y,z,t)=

) ®)

6,-C T, T,
det| 7, o©,-0 1, |=0. )
T, T, 0,-0

Then the reduced stress is defined by the formula
1
o, =ﬁ\/(cs1 ~0,)* +(0,-03)* +(0;-6,). (10)

In sliding of the considered system of punches, the
damage function is independent of the x and y coordi-
nates and is a function of only the z coordinate and time
t, which can be expressed in terms of the number of
cycles N, i.e., 0= 0(z, N).

By calculating the stress distribution in the viscoelas-
tic half-space, we determine the maximum values of re-
duced stresses along the Ox axis, which coincides with
the sliding direction of the system of indenters. The
maximum amplitudes of reduced stresses referred to
Young’s modulus £ will be denoted as &, (2). They are
attained in the plane passing through the geometric cen-
ter of the contact area.

Based on Eq. (8), we can calculate the damage O(z, N)
accumulated at an arbitrary fixed point z for N cycles using
the relation
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0(z, N)=]qun(z, mAtdn+ Qy(2), 3y
0

where Q,(z) is the initial damage distribution in the ma-
terial, At is the time of one cycle, and g, (z,n) is the da-
mage accumulation rate independent of the x and y coor-
dinates.

Failure will occur when damage at some point reaches a
critical value. In a normalized reference frame, this con-
dition can be written as

Q(Z » N *) =1,
where N* is the number of cycles to failure.

Equations (8), (11), and (12) yield a relation for cal-
culating the number of cycles to failure under an alter-
nating stress field:

-
[ &(8,(2)"Atdn+Qy(2) =1.
0

(12)

(13)

At zero initial damage, the number of cycles to the
first failure occurring at depth /4, where the reduced
stresses reach a maximum, can be determined using the
relation that follows from Eq. (13):

N* =(gAt(max 5,(z))") ",
0"(z)=N"gAt(&,(z)", z<—h.

Here, Q" (z) is the damage that should be further taken
into account in the study of the accumulation process.

Since after delamination and removal of the material
the value of the function Q" (z) on the newly formed sur-
face is very close to critical, surface wear necessarily
occurs after the first failure event. It should be noted that
the function G, (z) can have a maximum on the surface
and hence the value of / is determined only by the calcu-
lation mesh size.

As was shown earlier [19, 20], surface wear can also
be accompanied by subsurface failure, i.e., a discrete
change in the layer thickness; the probability of such a
scenario is determined mainly by the value of the param-
eter m. So, at m =2 (and at lower parameter values), after
the first subsurface failure event there occurs only sur-
face wear.

Analysis of the results obtained in Ref. [S] suggests
that the experimental findings can be described by
Eq. (8), and the parameter m for the elastomers consid-
ered in Ref. [5] is almost the same and close to 0.3, while
the parameter g is significantly different.

(14)

3. ANALYSIS OF CALCULATION RESULTS

Analysis of stresses, contact fatigue damage accumu-
lation, and wear kinetics was carried out using the fol-
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Fig. 2. Distribution of reduced stresses in the XZ plane.
7»1’2’3 = 0.001, 0.005,0.0002,c=5,v=0.47, P’=0.12,L'=
1.0, V" = 1.25 (color online).

lowing dimensionless parameters for three retardation
times:

(x/a y’, Z/) &/; Y]’) = (xa Y, 2z, E.:’ ﬂ)/ra

vt 4" gy’
r / XJ-V / Ty
(15)
/ 4 x’
c,?»j, P= p(x,y):p(—y),

G’ G,
V'=(W/r)1s, j=1,2,3.

The stresses arising in the case of a single indenter slid-
ing along the boundary of a viscoelastic half-space were
analyzed elsewhere [28, 29]. Particularly, it was shown that
the maximum tensile stresses occur on the surface,
which can lead to surface cracking if the threshold val-
ues determined by the strength properties of the material
are exceeded. In this study, the function of contact fa-
tigue damage accumulation is associated with reduced
stresses, so we will analyze only the function &, here.

The distribution of reduced stresses under the half-
space surface in the XZ plane is demonstrated in Fig. 2.
The contact area boundaries of three asperities are

Sp

024/ \3

0.0 T T T T

0.0 -02 -04 -06

Fig. 3. In-depth distribution of maximum reduced stresses.
7»1’2’3 = 0.001,0.005,0.0002,c=5,v=047, P =0.12,L' =
1.0, 7'=0.5 (1), 1.25(2), 3.5 (3) (color online).

shown on the surface. The stress distribution is asym-
metric relative to the center of the contact areas because
the material is viscoelastic. The points of maximum re-
duced stresses are located at a distance from the half-space
surface under the asperity contact areas. Figure 3 illus-
trates the dependence of the maximum reduced stresses
on the 2z’ coordinate for different sliding velocities. The
maximum stress values increase with increasing sliding
velocity.

The effect of the parameter ¢, which characterizes the
viscoelastic properties of the half-space material, on the
distribution of maximum reduced stresses is shown in
Fig. 4. For comparison, the figure illustrates the results
obtained for an elastic material (curve 7). As c increases,
the values of reduced stresses increase and the maximum
point shifts closer to the half-space surface.

The fatigue wear kinetics was analyzed by calculat-
ing the contact fatigue damage accumulation. The linear
dependence of damage on the parameter g in Eq. (8) al-
lows it to be included in the dimensionless group §” =
gNAtL’, which characterizes the friction path. The value
of m, as noted in the previous section, can be taken equal
to 0.3 for some rubbers and used in the calculations.

Figure 5 displays the calculation results on the kinet-
ics of contact fatigue wear at different sliding velocities.
A common feature caused by the concentration of reduced
stresses under the surface is the presence of an incuba-
tion period, observed experimentally [5]. The higher is
the sliding velocity of asperities, the shorter is the fric-
tion path to the first failure event followed by the separa-
tion of a finite thickness layer. The lower is the velocity,
the larger is the thickness of the detached layer at the
beginning of the wear process. Then comes the stage of
continuous surface wear, and the wear rate in the early

700 -02

Fig. 4. In-depth distribution of maximum reduced stresses.
Ay s 5= 0.001,0.005,0.0002, ¥ =3.0,v =047, P=0.12,
L'=1.0,¢=5(2),20(3),50 (4), curve I corresponds to the
elastic half-space (color online).
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Fig. 5. Surface displacement due to wear depending on the
friction path at different sliding velocities: V" =0.5 (1), 1.25
(2),3.03),¢=5,v=047,P'=0.12,L'= 1.0, & , ; = 0.001,
0.005, 0.0002.

stage is higher in the case of a longer incubation period.
At a later stage, the dependence of the surface displace-
ment on the friction path tends to be linear, which means

26 S8

Fig. 6. Surface displacement due to wear depending on the
friction path for different viscoelastic properties of the mate-
rial for two sliding velocities: /" =3 (a) and 10 (b), c=1 (1),
5(2),20(3),50(4),v=047, %, , , = 0.001, 0.005, 0.0002,
P'=0.12,L'=1.0.

PHYSICAL MESOMECHANICS Vol.22 No.1 2019

the tendency to a steady-state wear rate; the value of this
steady-state wear rate for the considered set of param-
eters weakly depends on the sliding speed.

The viscoelastic properties of the material are essen-
tially characterized by the value of the parameter c. For
an elastic material, ¢ = 1. We calculated the wear kinetics
for different values of ¢ at two fixed sliding velocities
(Fig. 6). It should be noted that the longer is the incuba-
tion period, the larger is the thickness of the layer de-
tached after the completion of this period. In the case of
an elastic material (compared to a viscoelastic), the incu-
bation period is longer and the steady-state wear rate is
lower. At higher sliding velocities, the effect of the rheo-
logical properties of the material is more pronounced,
which has an impact on the duration of the incubation
period and the detached layer thickness. Interestingly,
the transition from an elastic to viscoelastic material, for
which ¢ =5, is characterized by significant changes in
the wear kinetics, especially at the run-in stage, while a
further increase in ¢ to 50 has a smaller effect.

4. CONCLUSIONS

A method has been developed for the calculation of
contact fatigue damage in the surface layers of elas-
tomers in sliding friction conditions, including:

—solution of a sliding contact problem for a system of
spherical asperities on the surface of a viscoelastic half-
space,

— analysis of stresses in the surface layers,

— calculation of the damage function in accordance
with the chosen damage accumulation criterion.

A model calculation of contact fatigue damage accu-
mulation under the assumption of the validity of the lin-
ear damage summation hypothesis showed that the fric-
tion path, which implies the incubation period, depends
on the sliding velocity and viscoelastic properties of the
material. By analyzing the dependence of the wear rate
on the input parameters of the problem, we established
the effect of the sliding velocity on the time of fatigue
damage initiation and the wear rate at the run-in and steady-
state wear stages for materials with different rheological
properties. It was found that the surface wear rate after
the incubation period increases smoothly and then stabi-
lizes. The presence of the steady-state wear rate agrees
well with experimental data [5].

The proposed method for studying contact fatigue in
viscoelastic materials can also be applied on the macro-
scale to determine the possible crack initiation site. Me-
chanisms of further crack propagation can be studied
using Barenblatt’s methods [30].
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