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Abstract—A two-component model which accounts for electron gas pressure is proposed for describing the dyna-
mics of thermoelastic and thermoacoustics effects in laser-irradiated conductors. The model medium represents two
interpenetrating continua such that interacting particles of both exist at each point of the medium. The electron gas
in the model comprises free and bound electrons of which the former obey the laws for perfect metals and the latter
obey those that account for electron trapping to localized levels and for electron transitions from level to level, i.e.,
for jump diffusion and hopping conductivity. Unlike the classical model of thermoelasticity, the proposed model is
the first to show that the electron gas pressure depends strongly on the temperature difference between the electron
gas and the conductor lattice and on the change in the density of free electrons as localized species become free by
the Mott mechanism. The duration of acoustic pulses in the conductor lattice is essentially dependent on the time
of laser irradiation and on how long the gas and the lattice differ in temperature, with the longest acoustic pulse

falling on a certain localized electron density. The model data are compared with experiments.
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1. INTRODUCTION

Modern methods of nondestructive testing and re-
search in thermophysical and elastic properties of bulk
materials, thin films, and thin film structures widely use
laser irradiation [ 1], which allows one to trace the dyna-
mics of laser energy conversion to heat and then to
acoustic vibrations or waves in various materials. Most-
ly, related theoretical and experimental studies deal with
thermoelastic generation of elastic strains and acoustic
waves in solids. In one of the pioneering theoretical
works on the subject [2, 3], a coupled problem of ther-
moelasticity was considered and its solutions in the li-
near approximation were derived for the spatial and tem-
poral evolution of strains in solids under pulsed irradia-
tion.

Unfortunately, all known theoretical approaches to
thermoelastic processes in metals at the initial stage of
laser irradiation fail to provide even a qualitative agree-
ment with experiments [4, 5] showing that all conduc-
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tors, like most metals, feature a substantial delay of de-
formation compared to the prediction of quite adequate
theoretical models of acoustic pulses in nonconducting
materials under thermal load [4].

The use of pulses ranging from micro- and nanose-
conds to pico- [6—8] and femtoseconds [9] requires a
new and reliable model for describing the dynamics of
thermal and elastic effects in conductors under high-fre-
quency loads.

Here we propose a new model of thermoelasticity
which accounts for the effect of the electron gas dyna-
mics on the time stretching of acoustic pulses in conduc-
tors.

Note that a quite successful attempt to explain this
phenomenon is the model of a thermal piston [5] which
is supposedly created by the electron gas moving in a
conductor. The model has given a qualitative explana-
tion of the delayed thermoelastic response in metals, but
the nature of the phenomenon remains unclear and its
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mathematical interpretation needs correction for apply-
ing the model to other processes.

In our study, a two-component model which accounts
for electron gas pressure is proposed for describing the
dynamics of thermoelastic effects in conductors [10—
12]. The model medium represents two interpenetrating
continua such that interacting particles of both exit at
each point of the medium. The internal interaction forces
O.. and Q,; are equal, and the indices i and e stand for
the ion-electron content in the two-component medium.
The electron gas in the model comprises free and bound
electrons [ 13] of which the former obey the laws for per-
fect metals and the latter obey those that account for
electron trapping to localized levels and for electron
transitions from level to level, i.e., for jump diffusion
and hopping conductivity.

According to the data available [14], the effect of ex-
ternal action, in particular pulsed laser irradiation, is
such that part of the electrons passes from one localized
state to another and their relaxation is much longer than
the relaxation of free electrons at the Fermi level.

Thus, one could expect that the time during which the
electron gas pressure acts on the lattice of a metal will be
much longer than the time of electron—phonon interac-
tion. Such a phenomenon has been described in none of
the papers known to us.

2. PROBLEM STATEMENT. BASIC EQUATIONS

The electron gas (first component) interacting with
the lattice of a metal represents a continuum of variable
density p. =m.n,, where m, is the electron mass and
n, is the electron density per unit volume.

The number of mobile electrons is small and falls on
energy levels higher than the Fermi level. The concentra-
tion parameter is oy = (kg0 /€x)? [13], and its value at
room temperature is very small. Hereinafter, kg is
Boltzmann’s constant, ¥, is the electron gas tempera-
ture, and €y is the Fermi energy. The other part of free
electrons (1-oaiy)p, resides on lower energy levels, and
the kinematics of their mean motion is almost the same
as that of the lattice.

Thus, we have the following balance equations for
the number of free electrons:

ane +Y'(nege) :Jesa
ot

on’ 1 M
e 1 v.-(nFol)y=—=nf +y(®_,9).
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Here n. = OLgn, is the density of electrons at the Fermi
level, QeF is their average velocity, T is their relaxation

time or residence time at the Fermi level, y(9,,9;) is
the source of electron gas excitation which determines
the transition rate of part of the free electrons from lower
energy levels to the Fermi level, and J is the excitation
source of bound electrons which brings part of them to a
localized state.

The momentum flux of free electrons ¢, =n,v,,
where v, is a certain average velocity, has the form

1,0, = n,[(1=09); + 0ty 2, | 2)

The total number of free electrons in a perfect crystal

(Jos =0) has the form
n, = nf 41, (3)
where 1} = oyn,, n, = (1-0oty)n,.

The production of bound electrons (J , # 0) due to
localized zones (defects, dislocations, etc.) increases the
number of free electrons:

n, = neF + 1, + . 4

The transition of localized electrons 7 to their free
state greatly changes the electron gas pressure. Consi-
dering the electron gas as a degenerate gas [15], its pres-
sure has the form

2 (ko Y
P 5neeF+ ; neeF( . j . ®))
In view of the augend in (5), a relative change of or-
der 1073 in the density of free electrons can change the
pressure in a metal by about 100 MPa. It is significant
that such a pressure in the lattice of a metal can exist for
a time much longer than the time of its jump with tem-
perature, which is described by the well-known model of
thermoelasticity.
The number of localized electrons #
from the balance equation
e 19 (12) =~ ©)
where v is their average velocity between localization
events. The source J,,, which describes their transitions

es?

between free and bound states, can be expressed as

Jes:&_(S_SO)’ (7)

S
where 1, is the relaxation time of an electron between its

bound and free states, S is a certain source (generator)
which stimulates the transition of electrons from bound
to free states. Reasoning from experimental data on the
electrical conductivity of disordered metals, the transi-
tion of electrons can be considered to obey the Arrhenius
law [16]. Then, the source S can be expressed as

U
S =A4e — s 8
Xp( kBﬂij (8)

2019

. 1s determined

PHYSICAL MESOMECHANICS Vol.22 No. 1



A NEW MODEL OF THE ELECTRON GAS EFFECT ON THE THERMOACOUSTICS OF CONDUCTORS 15

where 4 is a constant, U is the activation energy. In the
first approximation, provided that U/(kg®9;) <1, expres-

sion (8) can be written as
AV oxp[ - (9
kgBig kgB;g

where ¥; is the lattice temperature, and ¥, is its equi-
librium value.

Thus, the basic balance equations for the number of
free and bound electrons have the form

P 1Y (o) =dus L4V (n0,) =~
ot ot

n (10)
J =—=—B(9; - 0;).

To the system of equations (10) we should add the mo-
mentum balance equation for Fermi electrons

F_F
_ 1 yp 40 ve)
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Equations (10) and (11) supplemented with heat con-
duction equations for electron gas complete the problem
statement. Certainly, the main difficulty in their solution
concerns divergent terms and effect of lattice particle ve-
locities on the total flow of free electrons. This difficulty,
including the temperature and relationship between the
above equations and momentum balance equations,
greatly complicates the problem. However, some simpli-
fication can provide an analytical result. The key point of
the model is that it accounts for the electron gas pressure
as a factor dependent on the kinematics of electrons at
the Fermi level and, what is more important, on the tran-
sition of electrons from localized to bound states. Such a
transition strongly influences the first term in pressure
(5) and radically changes the time dependence of the lat-
tice response.

m

3. PROBLEM SOLUTION AND ITS COMPARISON
WITH AVAILABLE THERMOELASTICITY
MODELS

Without going into the details of solving the heat con-
duction equations, as they are comprehensively analyzed
using a two-temperature model [17—19] and accurate
asymptotic calculations [20], let us proceed from the hy-
pothesis of semi-connectedness and results for the tem-
peratures ¥; and 9,.

The two-component model accounting for the effect
of the electron gas dynamics on the lattice of a conductor
is a natural generalization of classical thermoelasticity
models. Neglect of the electron kinematics at the Fermi
level, which is important at 9, # 9; due to the Cheren-
kov effect [21], means that only electrons residing at
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lower levels contribute to the electron gas reaction with
the lattice. Their kinematics is determined by the lattice
kinematics, and the basic equations of the two-compo-
nent model have the form

—-VF, =0, V-0, =0 +pi%’
where o, is the Cauchy tensor which determines the
stress state of the metal lattice in view of the Duhamel—
Neumann law, p; = m;n; is the mass density of lattice
particles. The effect of the aforementioned electrons is
quasi-static, and the system of equations (12) can be re-
duced to its ordinary form:

V(o —RE)=0.+p;

(12)

%;, (13)
ot

where E is the unit tensor. Assuming rather small per-
turbations of the lattice and electron gas, the balance
equation for the number of free electrons after lineariza-
tion gives

i, =—nV¢,, (14)
because v, = v;. Here €; is the bulk strain of the lattice,
n{?) is the initial number of free electrons.

The second term in the equation of state (5) is quite
small such that the pressure P, varies as

-2 2

(15)

Equation (13), unlike the well-known one, contains a
term with le but its effect appears only through the
bulk strains and the correction is small, measuring about
Ve / E; <1 [15], where E; is Young’s modulus of
the lattice.

Thus, if the duration of thermal processes is much
longer than the equalization time of ¥; and ¥,, their
effect on acoustic pulses in a conductor is inessential;
otherwise, at ¥, # ¥;, the kinematics of electrons at the
Fermi level can affect the quantitative and qualitative
distribution of acoustic pulses in the lattice. From the
basic equations of the two-temperature model it follows
that the lattice is heated with a delay T =p,c;/G, where
¢; is the specific heat capacity of the lattice, G is a coef-
ficient which determines the heat flux from the electron
gas to the lattice [ 18]. In this case, the velocity of elec-
trons at the Fermi level can be higher than the velocity of
sound and they give up energy to the lattice, according to
the Cherenkov effect, and go down to lower energy le-
vels. Thus, the number of electrons is changed by

e LIS By LD
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where c, is the specific heat capacity of the electron gas.
This expression is derived from equation (1) with the
function y(3,,9;) represented as
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y(0,, ) =G0, -9).
Note that (16) is certainly approximate. Generally, the
divergent part should be allowed for, which leads to a
complex diffusion-type equation.
Assuming that T is very small compared to the laser
pulse duration, expression (16) can be rewritten as
~eF: Gt (ﬂe—ﬂi)-
pemece
In view of the definition of 7}, the total density of free
electrons varies as

- Gt
l’le =
pemece

The pressure varies as
~ € 2Gt 0) ~
féz—g{—s (O, —0,)—n )aﬁ}. (19)
0(13 pemece
After some transformations, this expression can be re-
duced to the form

P =G(9,-9,),

(17)

—.  (18)
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(20)
where
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The obtained value coincides with that derived from
a similar expression for pressure [20] based on the data
reported elsewhere [21].

The asymptotic behavior of acoustic pulses in the lat-
tice of a conductor allows us to determine the time stret-
ching of strain waves. However, a comparison of the re-
sults with experiments gives a difference in pulse dura-
tions by more than two orders of magnitude [4]. The
pulse shapes and amplitudes estimated with account of
electron gas pressure (5) provide a good description of
the stress state in thin films [21, 22] when the laser pulse
duration compares with the equalization time of the lat-
tice and electron gas temperatures.

From the initial balance equations for free and bound
electrons (10) and conclusions made elsewhere [23] we
can determine the additional electron gas pressure on the
lattice due to the transition of electrons from localized to
free states. Let us consider the divergent term in the se-
cond equation of system (10). When a laser pulse and as-
sociated temperature gradient act in a metal, the metal
experiences a Dember emf [24] whose typical value
measures several microvolts per degree. Estimates show
that in such fields the drift length of bound electrons du-
ring relaxation will be much smaller than other characte-
ristic lengths of the problem (lengths of acoustic and
thermal waves). Therefore, this equation can be simpli-
fied to the form

(1), 10712

5.
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Fig. 1. Time dependence of pressure.
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Reasoning that the initial density of localized electrons is
nl(o), its value at the next points in time is determined by
the expression

t
Mg (%, ) = 1D = B[ (9, (x,8)—0{V)dE. (22)
0

@2y

S

As the density of localized electrons decreases with in-
creasing temperature, the density of free electrons in-
creases by the same value and their pressure builds up by
virtue of both summands in equality (5). At electron tem-
peratures 7, < 2Eg /(mky), the main contributor to the
pressure will be the first summand. For metals, this re-
lation is validupto 7, = 10° K. In the temperature range
specified, the electron gas pressure will respond to the
release of localized electrons as

P.(x, 1) =2/5¢pi,, =2/5e,BO(2), (23)

where
()= [ (D, (x,8)- 0 )k,
0

Figure 1 shows the time dependence of this function at
T, = 107% s for a laser pulse duration of 1078 s.

Thus, in the general case, the electron gas pressure is
determined by two summands:

P =G (0, -9,)+2/5e,BO(2), (24)
of which the first is governed mainly by the temperature
difference of the electron gas and lattice, and the second
by the number of free electrons. The first summand
shows a substantial effect for about as long as the gas
and lattice temperatures differ, and the second one exists
for as long as jump diffusion provides the transition of
an electron from its localized to free state. As the prob-
lem solution suggests, the time of jump diffusion com-
pares with the travel time of an acoustic wave through
the specimen thickness. A comparison shows that the
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curve in Fig. 1 agrees qualitatively with experimental
data [4], suggesting that the stress state of conductors
under short-term laser irradiation should be calculated
using formula (24) to account for the additional pressure
associated with the Mott phenomenon [23].
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