ISSN 1029-9599, Physical Mesomechanics, 2018, Vol. 21, No. 4, pp. 283-296. © Pleiades Publishing, Ltd., 2018.
Original Russian Text © P.V. Makarov, M.O. Eremin, 2016, published in Fizicheskaya Mezomekhanika, 2016, Vol. 19, No. 6, pp. 62—76.

Rock Mass as a Nonlinear Dynamic System. Mathematical

Modeling of Stress-Strain State Evolution in the Rock
Mass around a Mine Opening

P. V. Makarov'2?* and M. O. Eremin'?

! National Research Tomsk State University, Tomsk, 634050 Russia
2 Institute of Strength Physics and Materials Science, Siberian Branch,
Russian Academy of Sciences, Tomsk, 634055 Russia
* e-mail: pym@ispms.tsc.ru

Received June 08, 2016

Abstract—The paper briefly reviews the fundamental (general) evolution properties of nonlinear dynamic sys-
tems. The stress-strain state evolution in a rock mass with mine openings has been numerically modeled, including
the catastrophic stage of roof failure. The results of modeling the catastrophic failure of rock mass elements are ana-
lyzed in the framework of the theory of nonlinear dynamic systems. Solutions of solid mechanics equations are
shown to exhibit all characteristic features of nonlinear dynamic system evolution, such as dynamic chaos, self-
organized criticality, and catastrophic superfast stress-strain state evolution at the final stage of failure. The calcu-
lated seismic events comply with the Gutenberg—Richter law. The cut-off effect has been obtained in numerical
computation (downward bending of the recurrence curve in the region of large-scale failure events). Prior to cata-
strophic failure, change of the probability density functions of stress fluctuations, related to the average trend,
occurs, the slope of the recurrence curve of calculated seismic events becomes more gentle, seismic quiescence re-
gions form in the central zones of the roof, and more active deformation begins at the periphery of the opening.
These factors point to the increasing probability of a catastrophic event and can be considered as catastrophic fai-

lure precursors.
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1. ROCK MASS WITH MINE OPENINGS

IS A TYPICAL NONLINEAR DYNAMIC

SYSTEM. IS IT POSSIBLE TO PREDICT
CATASTROPHIC FAILURE?

1.1. Basic Properties and Simulation Models
of Nonlinear Dynamic Systems

At present, the problems of risk prediction and
assessment are relevant for most human activities.
Among them is the problem of predicting dangerous
rock pressure events, including rock bursts. In a broader
context, this is the problem of predicting catastrophic
failure of elements in the Earth’s crust (geomedia), in-
cluding earthquakes, as well as fracture of any solids and
structural elements. From the theoretical view point,
these problems can be solved with a deep understanding
of the general laws of evolution of nonlinear dynamic

systems, among which are geomedia and solids. The
main task of studying the stress-strain state evolution in
the loaded solid as a dynamic system is the prediction of
extreme events or critical states. Currently, both the loca-
tion and time of possible major earthquakes and rock
bursts are empirically predicted, for example, by time-
series analysis [1, 2] or from monitoring data and pre-
CUrsors.

A basic model of the geomedium evolution is usually
the sandpile model that would be touched on below.
Dangerous dynamic events of rock pressure, including
rock bursts, are predicted using the data derived during
mining and geophysical monitoring. Prognostic theories
based on the fundamental laws of evolution of nonlinear
dynamic systems are intensively developed [3—6]. The
idea of scale invariance and self-similarity of fracture on
different scales makes it possible to use extensive data
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on earthquakes as well as laboratory findings on fracture
of small samples for the analysis of catastrophic failure
of a rock mass with openings. There appear numerous
works on the development of the fundamental theory of
the seismic process regardless of the scale of events.
Most works use the well-studied basic equations of non-
linear dynamics for this purpose. However, they lack de-
tails on the generation of the catastrophic failure source
as well as on the seismic process. No commonly accept-
ed physical model of fracture is available. This gave rise
to simulation models that demonstrate some of the pro-
perties of real dynamic systems, for example, blow-up
modes, power law distributions, and other important evo-
lution features of dynamic systems [2]. The most popular
are models of thermal structures based on the nonlinear
heat transfer equation [7-9] as well as various modifica-
tions of the sandpile model proposed by Bak et al. [10].

The use of the model of thermal structures as a basic
model of the theory of nonlinear dynamic systems stems
from the following fundamental properties of solutions
of the nonlinear heat equation: (i) the possibility of self-
organization, i.e. the formation of thermal structure; (ii)
the presence of blow-up modes, i.e. catastrophes. Blow-
up modes were first investigated when studying the pro-
perties of nonlinear heat equation solutions [9].

From our point of view, the use of the nonlinear heat
equation for simulating and explaining autocatalytic ca-
tastrophic failure is poorly argued. The following form
of the equation provides the analysis of the general pro-
perties of the solutions:

T, =(k(D)T), +O(T), (1)
—co<x <00, T(x,0)=1)(x),
where k(T)=k,T° is the nonlinear heat source and
oT)=q,T P is the nonlinear function of heat conduc-
tivity, whereby f=c+1 and §>1.

The system of hyperbolic dynamic equations of solid
mechanics cannot be reduced to the single simulation
equation of a parabolic type, and consequently deforma-
tion processes, including failure, are not reduced to such
an equation.

As Akhromeeva et al. state [ 7], the model of thermal
structures lacks two important features inherent to many
nonlinear self-organized systems: (i) no new extrema
can arise in it, and therefore no new structures can form;
(i1) stable are only the simplest structures, and complex
ordered structures do not form (at the predetermined ini-
tial conditions only).

To simulate complex stable structures and their for-
mation process, it is necessary to pass to systems of
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equations (for example, to the system of solid mechanics
equations).
The equation of the type
dU
dr

also leads to blow-up modes.

The inequality in (2) means the finiteness of the
blow-up time and is a necessary and sufficient condition
for the existence of the blow-up mode [7].

In Eq. (2), Q(U) stands for the source, for example, of
damages in a loaded deformable medium. It is this equa-
tion that is used in our calculations of the stress-strain
state evolution and failure in geomedia to set the damage
accumulation rate in the medium [11, 12].

Various modifications of the sandpile model provide
amore improved prediction of major earthquakes. Their
quantitative algorithms developed around different
earthquake scenarios, for example, activation and anti-
activation ones, are adapted to the prediction of major
earthquakes as well as rock bursts. An example is the wi-
dely known M8 algorithm [1, 13]. Sandpile model vari-
ants exhibit self-organized criticality; their evolution re-
sults in power law distributions of the number of avalan-
ches N over their sizes (energies) £ [2, 13—15]:

N(E)~E™, 3)
where the exponent b is close to unity at the given para-
meters, which meets the fundamental Gutenberg—Rich-
ter recurrence law. Power law distributions (3) are uni-
versal; they are characteristic of the evolution of the mul-
titude of dynamic systems with complex behavior and
are valid practically without exceptions in describing va-
rious catastrophes and natural disasters [ 16—18]. As will
be shown further, any multiscale fracture of rock mass
elements with openings corresponds to power laws.
Seismic events calculated by solving the system of non-
linear equations of the deformable solid mechanics also
fall into a typical recurrence diagram of seismic events
(the Gutenberg—Richter law) that reflects the power law
distribution of seismic events of different scales. This
fact, firstly, means that the stress-strain state evolution in
the rock mass with openings corresponds to typical evo-
lution scenarios of nonlinear dynamic systems and, se-
condly, convincingly proves that solutions of the solid
mechanics equations reflect dynamic system scenarios
fitting power law distributions (of fracture scales in this
case). It is common knowledge that the physical content
of power laws is in the mutual dependence of events oc-
curring in the system, which is impossible without infor-
mation exchange between the dynamic system elements.

= Q(U) with the constraint f Q( ) =c<o (2)
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It is the information exchange between different parts of
the system that provides its self-consistent coherent res-
ponse to actions.

Self-organized criticality of nonlinear dynamic sys-
tems is considered to be a universal mechanism of cata-
strophes [7, 10, 16]. Catastrophes are an inevitable and
intrinsic feature of an evolving dynamic system. From a
statistical viewpoint, this feature is indicative of scale-
invariant processes occurring in the system [17].

Thus, the leading scale cannot be determined in the
evolving dynamic system characterized by self-organiz-
ed criticality. In such a system, processes, including frac-
ture, develop throughout the scale hierarchy in a self-si-
milar manner. Though the system as a whole is stable, its
elements never reach equilibrium, evolving from one to
another metastable state.

Self-similarity and scale invariance are fundamental
evolution features of dynamic systems exhibiting self-
organized criticality. These features are represented in
some way by the basic simulation sandpile model as well
as its various modifications. However, there is an opi-
nion that self-organized critical systems are unpredic-
table [7, 16, 19]. Being of fundamental importance, this
problem was first raised in the Nature journal [20] con-
cerning the Bak—Tong—Wiesenfeld sandpile model [10]
and the related theory of self-organized criticality. In
fact, the debate was held (and periodically resumes)
about the possibility of major event prediction using the
Bak-Tong—Wiesenfeld model and its modifications.
This debate was extended to the question of whether it is
possible to predict catastrophic events, first of all earth-
quakes, in real natural and other systems characterized
by power law distributions and therefore exhibiting
scale invariance and self-organized criticality.

In some authors’ opinion, the currently available sand-
pile model variants are much more predictable as their
modified procedures are based on precursors adapted to
the developed model dynamics. In these models, both
activation and anti-activation scenarios are used [2, 19, 21].

As for the prediction of earthquakes and dangerous
dynamic events of rock pressure in real media, including
rock bursts, its horizon is unknown. For this reason, the
problems of long-term and medium-term prediction of
catastrophic failure are very debatable.

Another acute problem is a short-term prediction, in-
cluding from multiple precursors of different nature. We
will dwell on possible mechanical precursors formed du-
ring deformation and small-scale fracture that generate
seismic noise prior to a large-scale catastrophe; the noise
will be numerically reproduced.
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1.2. The Cut-Off Problem

When analyzing empirical data and studying various
simulation models of self-organized systems, resear-
chers meet with the so-called cut-off problem or energy
cutoff, which is expressed in the downward bending of
the recurrence curve in the region of major seismic
events [2, 7, 22]. This effect means a decrease in the pro-
bability of large-scale catastrophic events. Behavior of
the tail of the seismic event distribution in the region of
the rare largest earthquakes is of paramount importance
for their prediction [22]. However, observations are un-
helpful in solving this problem because the empirical
data are extremely limited. This lays special emphasis on
numerical experiments performed with different models.

In the theoretical analysis of various simulation mo-
dels, the cut-off effect may be related to the fact that the
system reaches the scale limit in the specified computa-
tional domain. Power law distributions for many real
nonlinear processes also demonstrate the cut-off effect.
Figure 1 shows the statistics of catastrophes and disas-
ters [23] with the same effect. Similar dependences are
characteristic, for example, of the statistics in computer
virus infection, epidemic spread, etc. [7].

From the aforesaid, we can conclude that the cut-off
effect is an intrinsic evolution feature of a variety of non-
linear dynamic systems exhibiting self-organized critica-
lity. This behavior is traced to special features and natu-
ral restrictions of processes that develop in real systems
and are described by parameters of the corresponding mo-
dels. For geomedia, the cut-off effect may be related to
their rheology and fracture as well as to the restrictions
imposed by the strength characteristics and structural or-
ganization on the maximum scale of a possible catastro-
phe. Evidently, a decisive role belongs to the long-range
action of stress concentrators. This phenomenon also de-
pends on the linear size L of the system: cut-off ~L 22,
but this dependence is of a model nature and probably
cannot be extended to systems with very large L [24, 25].
In the present numerical calculations of fracture based
on solid mechanics equations, this effect is also seen in
the recurrence diagram of the calculated seismic events.

1.3. Flicker Noise

The fundamental property of all nonlinear dynamic
systems (real and artificial) is the generation of flicker
noise 1/ f in them. The power spectrum of flicker noise
on low frequencies obeys the power law

S(H~ 1P, (4)

where $~ 1.
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Fig. 1. Exponential statistics of catastrophes and disasters according to the database [23]; man-induced disasters ranked by the number
of deaths (2047 major events) (a); natural disasters ranked by the number of the wounded (1084 events) (b). x(r) is the dimension, r is

the rank in the x descending order.

The physical nature of 1/ f noise is thought to be un-
clear despite extensive studies of this phenomenon and a
huge number of publications on this subject. For example,
in electrical circuits, 1/ f noise is associated with the
presence of impurities. Intensive broadband noise is ob-
served in regions of the critical nonequilibrium phase
transition. The power law behavior of the power spect-
rum means the absence of characteristic frequencies in
the system, and hence of characteristic times. It also
shows that most of the energy results in slow processes
corresponding to fluctuations of very high intensity, i.e.
large-scale catastrophes. Additionally, the requirements
for recurrence and periodicity of events are not met in
systems for which the power spectrum obeys the power
law. The system lacks a characteristic time that could be
responsible for the most important (catastrophic) events.
For this reason, long-term prediction is totally impossib-
le in such systems [ 17]. Whatever extensive the accumu-
lated information on the system evolution might be, no-
thing can be said about future important processes, with
the preparation time comparable with the time required
to study the system. That is obviously why the well-
known project of the late 20th century on the San And-
reas Fault was unsuccessful. Major earthquakes could
not be predicted.

Thus, methods of medium- and short-term prediction
as well as the study of numerous phenomena accompa-
nying the formation of the source of catastrophic failure
(precursors) acquire special importance.

In our model, we will analyze noise that accompanies
failure, i.e. statistics of stress fluctuations around the
average trend during the medium fracture or stress tre-
mor (the analogue of seismicity and acoustic emission in
geodynamic monitoring of the rock mass). On low fre-
quencies, it exhibits properties of flicker noise (P is
close to unity).

Presently, the prediction of evolution of self-organiz-
ed critical systems is associated with a new trend in non-
linear dynamics—the theory of channels and jokers
[16]. We will not dwell on this poorly investigated sub-
discipline of the theoretical nonlinear dynamics, espe-
cially with regard to the analysis of real dynamic sys-
tems. We mention only that the general idea of the pre-
diction stems from the hypothesis of existence of regions
of much smaller dimension in the phase space (channels)
and a small number of variables (order parameters) res-
ponsible for the course of evolution on a certain time in-
terval. These ideas are believed to be useful in the const-
ruction of simple models and local forecast. Areas where
atrend is difficult to identify and the behavior looks ran-
dom are called joker areas, and the corresponding rules
for the system functioning are jokers. By managing jo-
kers, you can change the game rules and investigate pos-
sible evolution scenarios of the system, which makes nu-
merical simulation methods the most important tool for
studying evolution processes.

In our model calculations, we will follow methods of
seismic and acoustic monitoring of real systems. From
the general set of dynamic variables describing the geo-
medium deformation, we set apart the stress-time varia-
tion, assuming that, owing to information exchange in
the studied mass, stress fluctuations quite fully reflect
the evolution pattern of the stress-strain state in the me-
dium, including the formation of different-scale failure
foci.

1.4. Integrity of Dynamic Systems

Nonlinear dynamics says that self-organized critical
states and catastrophes can arise only if the system fea-
tures integrity or achieves it during the evolution. This
means a self-consistent cooperative response to loading
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of various subregions of the dynamic system. From the
statistical point of view, the system integrity is ensured
by power-law spatial and temporal correlations between
the system parts, which provide long-range interaction.
In conventional systems with characteristic time and
length scales, the correlations rapidly decrease (short-
range interaction); the information about previous
events and neighboring areas is rapidly forgotten.

In classical models of a sand pile, blocks and others
[10, 16, 17], itis believed that the system achieves its in-
tegrity through the self-organization to a critical state.
The mechanism providing the interaction in the whole
system is the presence of two opposite processes, name-
ly, natural evolution of the system (for example, an in-
crease in local slopes of the sandpile due to added grains)
and a selection process (avalanches). It is necessary that
the rate of selection be much greater than the rate of na-
tural evolution. There is no actual direct information ex-
change in such models. In our opinion, this is a signifi-
cant disadvantage of the most simulation basic models of
dynamic catastrophic events.

Solid mechanics equations that underlie the develop-
ed evolutionary approach to the description of deforma-
tion and catastrophic failure of a geomedium are without
this drawback. In a real geomedium, deformation is al-
ways a slow process as compared to the information ex-
change rate in the medium.

The information is exchanged via stress waves with
sound velocity. Every local disturbance generates stress
waves in a loaded solid. The larger the scale and ampli-
tude of a local disturbance, the larger the radius of its
long-term action that can affect the stress-strain state
evolution in the surrounding medium. The information
exchange provides migration of the deformation activity
when in one regions the strain rate slows down conside-
rably due to relaxation while in other regions it in-
creases. That is how seismic quiescence zones form
when the deformation process moves to the periphery of
this zone where the catastrophic failure source starts to
actively develop.

In the presented numerical model, the time compres-
sion parameter KX is introduced, which makes it easy to
convert from the conventional calculation time to the
real deformation time:

lreal = Ktcalc‘ (5 )

For the stability of numerical calculations, time steps
are very small; the total time of the calculated deforma-
tion process does not exceed a few seconds or minutes
on modern computers at the total number of time steps
~nx10° (of course, we do not mean the computational
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time that can make up days in 3D modeling). Parameter
K is chosen for reasons of the system integrity. At each
loading step (for example, face advance), the generated
stress wave must make 1-3 passes through the calcula-
tion region, thus ensuring the information exchange in
the medium and appropriate adjustment of the stress-
strain state in the entire computational domain, as with
real life.

In the evolutionary model of a deformable medium as
a dynamic system, integrity is also provided by negative
and positive feedbacks. Negative feedback stabilizes the
deformation process, which is due to stress relaxation in
local regions during inelastic deformation and/or frac-
ture. Positive feedback acts as the process destabilizer, it
accelerates the fracture process in the autocatalytic ultra-
fast mode (selection). This mechanism works in the mo-
del as follows. The deformation nonlinearity leads to lo-
calization of inelastic deformation, localization causes
degradation of mechanical properties in these regions,
which enhances localization processes and subsequent
degradation. All this refers to local processes in small
elements of the geomedium. A self-consistent coopera-
tive response as a self-organization process in the self-
organized critical system leads to major catastrophes.

1.5. Geophysical Monitoring of the Rock Mass
with Openings

The necessary safety of mining in modern conditions
of high productivity and the acceptable risk level were
ensured by the development and arrangement of techno-
logical and organizational measures based mainly on
years of experience in mining engineering. Fundamental
scientific studies on such new geomechanical problems
as evolutionary scenarios of the failure foci formation
have hardly been performed.

The geodynamic situation in a rock mass with ope-
nings is monitored using geodynamic methods, the most
important of which are monitoring methods for micro-
seismic events and the geoacoustic method [26].

As there are no standardized account for the time of
geomechanical processes and estimates of the nonstatio-
nary damage growth in a rock mass (particularly, in the
roof) near the opening, methods of real-time forecast of
dangerous rock pressure events are gaining an impor-
tance. For example, seismic estimation methods based
on monitoring systems are actively used in mines of Rus-
sia, Germany, Japan, Australia, the USA, South Africa,
and China [18, 27, 28]. Many complex problems of cont-
rol of geomechanical processes, which emerge under the
modern conditions of high loads to mine faces, are also
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solved using methods of physical modeling of the geo-
mechanical situation [26, 29], including rock bursts [30],
which is extremely important but lacks a common me-
thodology, in particular, quantitative evaluation of the
proposed criteria. Mining engineering focuses on how to
allow for the corrections to loading nonstationarity of
the rock mass in order to take account of the dynamics of
geomechanical processes, to estimate risks of negative
dynamic phenomena, and to develop measures and tech-
nological solutions for their prevention. The main efforts
are concentrated on experimental and theoretical me-
thods, methods of physical modeling, and the develop-
ment of methods of modern geodynamic monitoring.
Though most seismic monitoring systems enable
continuous seismological observations of macroscale
and microseismic processes at the mine as well as moni-
toring of rock bursts, roof caving, and the related dyna-
mic fractures [31-34], there are no reliable methods for
estimating the closeness of the rock mass to the critical
state by the obtained data. Thus, the GITS seismic moni-
toring system developed by VNIMI and implemented at
some Kuzbass mines covers the mine field (5 x5 km)
with the event energy range from 100J and the rate of oc-
currence up to 100 events per day. The output informa-
tion of the GITS seismic monitoring system is seismic
activity maps indicating rockburst hazard zones. How-
ever, criteria for rockburst hazard must be determined
specifically for each mine field, but reliable methods for
their quantitative evaluation are unavailable.
Rasskazov [26] reports modern methods of geo-
acoustic monitoring of a rock mass liable to bursts and
discloses up to 20 predictive signs of the critical state of
the mass in terms of the parameters and character of
acoustic emission. The author states that the effective-
ness of geoacoustic monitoring largely depends on the
objective interpretation of measurement results and the
validity of the used criteria of the rock mass state.
Conditionally it can be said that two tendencies are
outlined to solve the actually common problems of pre-
diction of catastrophic failure in the loaded geomedium
during large earthquakes and in the rock mass with ope-
nings. Causes and mechanisms of fracture during earth-
quakes are often studied with theoretical approaches and
nonlinear dynamics methods [36], while the require-
ments for the operative solution of mining safety prob-
lems force mining engineers and researchers to address
the accumulated colossal empirical experience.
The study of the stress-strain state evolution of a rock
mass with openings and of the formation mechanisms of
failure foci using the modern nonlinear dynamics theory
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forms the fundamental theoretical basis for assessment
of the geomechanical situation. It will provide an
interpretation of a wealth of accumulated empirical data
and result in effective analysis methods of geomoni-
toring data and reliable prognostic criteria.

Basic equations of the nonlinear dynamics theory de-
scribe, at the most general qualitative level, possible
evolution scenarios. In the majority of cases, they are not
mathematical models of real physical processes but their
simulation models. That is why classical nonlinear dyna-
mics, though it has opened a new era in explaining the
laws of the universe and become the first metascience af-
ter philosophy, runs into almost insurmountable difficul-
ties when solving the problems of evolution and predic-
tion of real dynamic systems. The exception is cases
when adequate evolution equations, being quite strict
mathematical models, can be written for real processes.
Unfortunately, such cases are few in number; some
examples can be given from economy and the physics of
phase transitions.

The analysis procedure of the stress-strain state evo-
lution of a rock mass with openings used in the present
paper stems from the mathematical theory of evolution
ofloaded solids and media [6]. The essence of the theory
is the system of solid mechanics equations. These equa-
tions model deformation processes, including fracture.
With the negative and positive feedbacks as well as go-
verning equations for inelastic strain and/or damage ac-
cumulation rates in the loaded medium, numerical solu-
tions of the solid mechanics equations demonstrate all
characteristic evolution features of nonlinear dynamic
systems exhibiting integrity and self-organized critica-
lity, as it was discussed elsewhere [6, 11, 12].

Thus, the developed approach is based on fundamen-
tal ideas of nonlinear dynamics and rigorous mathemati-
cal models of deformation and fracture of solids and me-
dia. The present paper shows that numerical solutions of
the solid mechanics equations reveal the most important
stages of evolution of loaded solids as typical nonlinear
dynamic systems. Consequently, the proposed approach
and methods for the analysis of the stress-strain state
evolution can be used as the basis for the fundamental
prognostic theory of catastrophic failure of solids, in-
cluding the rock mass with openings.

2. MATHEMATICAL EVOLUTIONARY MODEL
OF A LOADED MEDIUM

If the problem of mechanical response of a solid to
loading is formulated as an evolutionary one, solutions

PHYSICAL MESOMECHANICS Vol.21 No.4 2018
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of solid mechanics equations show all characteristic
stages of evolution of nonlinear dynamic systems, in-
cluding the self-organized critical state and fracture on
different scales in the blow-up mode [6, 11, 12]. In fact,
they describe the stress-strain state evolution of the me-
dium, whose state at each loading stage can be used to
understand how close the medium is to the macroscopic
catastrophic failure.

The mathematical model describing deformation and
fracture as evolutionary processes is presented else-
where [6, 11, 12]. In the general case, it includes equa-
tions of the deformable solid mechanics that express the
laws of conservation of mass, momentum, energy, geo-
metric relations (6), governing equations, and responses.
Negative feedback stabilizes the deformation process
due to stress relaxation and positive feedback transfers
the fracture process to the ultrafast autocatalytic stage in
local degradation regions of mechanical parameters of
the medium (Egs. (7)—(10)). In this paper the medium is
considered in the barotropic approximation, which
yields a closed system of equations free of the law of
conservation of energy. In this case, nothing is known
about its thermodynamic state. In fact, we study an iso-
thermal process, which appears to be justified by the re-
lative slowness of the process and the closeness of the
medium to thermodynamic equilibrium (meaning the
thermal state):

PV =pg¥y, PU; =0y ; +pF,

6

2T =0, +0,;, 200, =0, o ©)
Z_K(eT ep) eT ua

o . . . T ~T -p (7)

f(o,)=-aP+J, -7, ®

g(o;)=J, —AP(2Y +aP) +const, ¥ =Y, (1- D).

Hereinafter p, and p are the initial and current densities
of the material, ¥, and V are the initial and current vo-
lumes of the material, v, is the velocity vector components,
Pis the pressure, (o is the stress tensor components, S,-j

is the stress tensor deviator components, F; is the mass
force vector components, @; is the velocity vector rotor,

éi. is the strain rate tensor components 9, is the Kro-
necker symbol, A is the plastic multlpher J | is the first
invariant of the stress tensor, J, =1/25,.S, is the sec-
ond invariant of the stress tensor dev1at0r ep is the in-
elastic strain rate tensor components, 0" is the volumet-
ric strain rate, 6P is the volumetric inelastic strain rate, K
is the bulk modulus, p is the shear modulus, o is the in-
ternal friction coefficient, A is the dilatancy coefficient,
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g(0;) 1s the plastic potential, D is the damage measure,
H(x) is the Heaviside function, o, is the stress tensor
intensity, o and o, are the initial stresses at the elastic
stage after which the material accumulates damages in
compression and tension regions, respectively, U is the
Lode—Nadai coefficient, 0, isthe parameter of the da-
mage accumulation model, S;, S,, S; are the main va-
lues of the stress tensor deviator, 6 is the generalized
Coulomb stress, and Y is the cohesion.

Rotation of the medium element as a whole is ac-
counted for through the corotational Jaumann time deri-
vative (the third equation in (7)); plastic potential meets
the nonassociated flow rule, which makes the dilatancy
process independent of internal friction. Cohesion (shear
strength of the medium under zero pressure) decreases
from the initial value ¥, with damage accumulation D.
The plastic multiplier A in (9) is determined providing
that stresses satisty yield condition (8) (the first equa-
tion). From the basic relation of the plasticity theory
& = =X 0g(c;)/do; follows the relation for the inelastic
strain rate tensor cornponents [22]:

2 .
& =(SU+§A(Y—%J1)6UJK, = (9

A relaxation form of governing Egs. (7) provides
stress relaxation during inelastic strain and damage ac-
cumulation in the medium and serves as a negative re-
sponse.

The damage accumulation process and the corre-
sponding degradation of mechanical parameters are de-
scribed by the damage measure D = D(¢, i, Gy) 0<
D<1) that depends on the stress state invariant 6,, and
the stress state type defined via the Lode—Nadai coeffi-
cient g :
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Fig. 2. Model stratigraphic column of a coal-bearing rock
mass and boundary conditions for gravity and constraint de-
formation.
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Fig. 3. Distribution of localized inelastic strains in the rock mass in the case of elastic-viscoplastic response (a) and fractal failure

in the case of elastic-brittle response of the geomedium (b).

D= j[H(M(,)(Gy — o) +(1-H(u,))

)
x (0, ~ b 02 (H( e + (1~ H(po )T 'dr, (10)
$)=8; _
$1=5;
Oy = Oy — ap,

o} and o, vary during deformation by the law similar to
that in the last formula in (8) (degrade with damage ac-
cumulation). In so doing, oy is higher than &, thus da-
mages in tension-shear regions (U <0) start to accumu-
late at lower stresses than at ;> 0 in compression-shear
regions. Damage accumulation rates for local regions
where W <0 are also much higher (by 1 to 2 orders of
magnitude) than in compression-shear regions (s> 0).
This process is additionally controlled by the parameter
0, in (10), causing a much lower strength in shear-ten-
sion. The degradation function in the system provides a
positive feedback, which leads to instability of the defor-
mation process in damage localization regions and its
strength degradation as well as accelerates the fracture
process in the superfast catastrophic mode.

O. ZGO*(1+M6)2’ “‘6 =2 1

2

The system of Egs. (6)—(10) is numerically solved by
Wilkins® method [37]. All calculations of the stress-
strain state evolution in a rock mass with openings are
preceded by the solution of the problem of setting the
distribution of all geomedium parameters responsible
for a given depth. The presented system of equations is
used to calculate, except for damage accumulation, all
parameters for the selected region of the rock mass under
constrained deformation (forbidden horizontal displace-
ments at the lateral surfaces of the computational do-
main and vertical displacements at the lower surface,
respectively (Fig. 2)) under gravity.

3. MODELING RESULTS OF THE STRESS-
STRAIN STATE EVOLUTION OF THE ROCK
MASS WITH OPENINGS

The main features of the stress-strain state evolution
of the geomedium are demonstrated on the simplest
structural organization of a rock mass with openings.
Such a geological medium is schematized in Fig. 2. The
mass includes a productive coal seam, immediate and
main roof and floor, and overlying sedimentary rocks.

- ,r‘ﬂi‘if!‘,‘lih |

AN

Fig. 4. Distribution of Coulomb stresses in the rock mass during the face advance. The main roof thickness is 19 m, and the face

advance distance is 55 (a) and 150 m (b).
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Fig. 5. Multisensor record of the stress tremor in the rock
mass as the face advances.

From the mining chamber, the face moves to the right, in-
creasing the worked out area. Deformation and fracture
of the rock mass elements occurs under the action of gra-
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vity in accordance with the specified depth of mining.
Tectonic stresses in these examples are given no ac-
count.

Figure 3 displays distributions of localized inelastic
strains in the rock mass in the case of an elastic-visco-
plastic response and of fractal fracture in the case of an
elastic-brittle response of the geomedium. In the first
case, different-scale blocks separated by localized defor-
mation bands are formed in the geomedium. In these
shear bands, the medium is damaged to different degrees
(0<D<1)depending on the local situation. This example
illustrates the possibility of modeling the formation of
fractal structures in the numerical solution of the solid
mechanics equations.

The Drucker—Prager model is convenient for the ana-
lysis of the stress-strain state evolution through the gene-
ralized Coulomb stresses o =1/(Y + aP), where T is
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Fig. 6. Evolution of the PDF-dependence of the stress tremor as the face advances.
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the stress intensity, and P is the hydrostatic pressure. As
Coulomb stresses get closer to unity, the medium appro-
aches the critical state.

Figure 4 gives an example of the Coulomb stress dist-
ribution in the roof and floor at the two time instants: at
the face advance distance of approximately 55 m from
the mining chamber (only the immediate roof and floor
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Fig. 7. Evolution of the amplitude-frequency cha-
racteristics of the stress tremor as the face advan-
ces. A is the amplitude, and F'is the frequency.

are damaged, Fig. 4a) and at the final stage before first
caving (L =150m, Fig. 4b).

All small-scale fractures (growing cracks) generate
stress waves, i.e. the analogue of microseismic events in
the real rock mass. In the calculations, similarly to real
conditions, the corresponding stress tremor is registered
by sensors located in different parts of the modeled rock
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mass (by the sensor we mean continuous stress recording
at the chosen geomedium points as a function of time;
the sensor location is shown in Fig. 4b). Statistical pro-
cessing of the calculated microseismic events allows a
conclusion about the closeness of the medium to large-
scale catastrophic failure. The stress tremor records from
several sensors are shown in Fig. 5 (stress values are re-
corded from every time layer, thus the total number of
fluctuating stress values can achieve up to million).

Figures 6 and 7 display the evolution of PDF depen-
dencies (the stress tremor distribution density for events
of different classes) and the corresponding amplitude-
frequency characteristics, respectively, and correspond
to the stress tremor evolution as the rock mass appro-
aches the critical state. These figures are built using the
results of statistical analysis of stress fluctuations re-
corded by the sensor closest to the failure zone at the
roof caving. The entire time interval is divided into 6
conditional segments, with the construction of PDF de-
pendences and amplitude-frequency characteristics of
the stress tremor for each of them.

At the initial deformation stages, PDF dependencies
are dome-shaped (Figs. 6a and 6b). This indicates both
the power law distribution of the calculated seismic
events and their weak dependence on each other (diffe-
rent-scale events are observed). However, as damaged
areas gain in scale, the dependences drastically change
their form: an inverted-U-shaped distribution (Fig. 6¢)
showing the presence of oscillation packages of the
same frequency in the tremor turns to a pronounced hea-
vy-tailed distribution with an explicit violation of spatio-
temporal symmetry (Figs. 6d and 6¢), which corresponds
to the system in the critical state before first caving. After
caving, the PDF dependence acquires a symmetrical
form indicative of relaxation of a large amount of the
stored energy and restoration of spatiotemporal sym-
metry (Fig. 6f).

Evolution of the amplitude-frequency characteristics
is interesting in terms of the slope change. The calcula-
tions show that, as the rock mass approaches the critical
state ending in first caving, the slope of the amplitude-
frequency characteristics decreases. This means thatin a
sufficiently large range of failure scales, the events are
flattened with regard to released energy. Intensification
of'the fracture process at all scale levels indicates an in-
crease in the probability of large-scale failure (in this
case, first caving).

A recurrence curve of the calculated seismic events is
shown in Fig. 8. Seismic events in the rock mass during
the face advance are calculated as follows. As the work-
ed out area grows, rock mass elements locally lose their
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Fig. 8. Recurrence diagram of the calculated seismic events.
Nis the number of events, and £ is the energy (J).

stability and pass to the inelastic state, as is clearly de-
monstrated by Fig. 4. There occurs dissipation of the ac-
cumulated elastic energy and emission of seismic waves.
In the calculations, the energy released during inelastic
deformation is registered to evaluate the event class by
the well-known formula k= log E, where E is the event
energy calculated by the ratio £ = 3G(d8§1), whereby
de; is the plastic strain rate increment.

It is graphically seen that the distribution of events by
class is multifractal. The final deformation stages at first
caving are characterized by a small number of maxi-
mum-class events, as is also evidenced by Fig. 9. The
cut-off effect is also pronounced (Fig. 8).

Most likely, such a strong downward bending of the
recurrence curve in the region of large-scale catastro-
phes is caused by a highly limited size of the computatio-
nal domain. This phenomenon requires additional re-
search. It should be noted that such behavior of the recur-
rence curve (cut-off effect) is typical for almost all simu-
lation models [2, 3, 25].

The spatial structure of the calculated seismic events
related to the roof and floor failure during the face ad-
vance at the final stage (L = 150m) is shown in Fig. 10.
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Fig. 9. Spatiotemporal distribution of the calculated seismic
events in the rock mass as the face advances.
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Fig. 10. Spatial distribution of the calculated seismic events
in the rock mass for the whole time of mining.

The main events are moved to the periphery to a region
between the roof and the unworked-out area (marked
with asterisks in Fig. 10). A seismic quiescence region is
pronounced in the roof center.

The wavelet analysis of the stress tremor recorded by
one of the sensors reveals the following. When the origi-
nal signal from the sensor in the immediate vicinity of
the failure zone is divided into 9 sublevels using the Dau-
beshies-10 wavelet, which is the standard tool of the
Matlab program, we observe a seismic quiescence re-
gion on all frequencies. This region appears prior to cata-
strophic failure of rock mass elements, which represents
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first roof caving. The corresponding decomposition le-
vels demonstrate peaks of much higher amplitude as
compared to the background activity (Fig. 11). First ca-
ving is followed by peaks of lower amplitude, which are
associated with further failure (aftershocks).

These calculations convincingly demonstrate the ef-
fectiveness of the developed evolutionary approach to
modeling of deformation and catastrophic failure. The
performed statistical analysis of the stress fluctuation
evolution elucidates how close the fracture process is to
the catastrophic stage.

4. CONCLUSION

A real geomedium is a multiscale hierarchically orga-
nized nonlinear dynamic system. This is evidenced by
long-term observations of the seismic process: the Gu-
tenberg—Richter recurrence law, the Omori law for the
aftershock process, and observation of high-frequency
seismic noise.

High-frequency seismic noise differs from both pu-
rely deterministic and random (with an infinite number
of modes) signals; the signal structure is fractal. This fact
indicates that the signal carries information about a cri-
tical nonequilibrium process developing in the medium
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Fig. 11. Wavelet analysis of the stress tremor. Decomposition levels d1 (a), d5 (b), d8 (c), d9 (d) correspond to different frequency

ranges of the original signal.
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[36]. It also bears information about local rearrange-
ments in the geomedium and the kinetics of preparation
of large-scale failure [36].

Works that use the theory of nonlinear dynamic sys-
tems to study numerous observations of various seismic
events and attendant phenomena are continuously in-
creasing in number. However, the fundamental theory of
this complex process has not yet been developed.

Numerous theoretical models of catastrophic failure
in geomedia employ the basic equations of nonlinear dy-
namics, which are not mathematical models of deforma-
tion processes, including fracture. They are more or less
successful simulation models, and for this reason they
cannot be predictive.

Analysis of the solutions of these equations provides
useful information about both possible evolution scena-
rios of critical events and the evolution of nonlinear dy-
namic systems as a whole. However, these results are of
a qualitative nature.

Nonlinear dynamics is ready to solve complex prob-
lems of the evolution of real dynamic systems. For this
purpose, rigorous mathematical models of processes in
them should be developed, the model problem should be
formulated as an evolutionary one, and dynamics of the
corresponding solutions should represent the modeled
process evolution as the real nonlinear dynamic system
evolution.

The present paper attempted to develop such a theo-
ry. It is shown that solutions of solid mechanics equa-
tions have all characteristic features of the nonlinear dy-
namic system evolution if the problem is formulated as
evolutionary.

We are far from the idea that in real situations critical
events can be predicted from a mathematical model
alone. Any structural and physical model is far from the
real medium. From the theory of nonlinear dynamic sys-
tems it is known that small deviations at initial stages can
lead to large deviations at later stages. This argues only
for the qualitative agreement of the model and real pro-
cess. Modeling solves other tasks. They are to study pos-
sible evolution scenarios of a loaded geomedium, to re-
veal catastrophic failure precursors, to develop data pro-
cessing methods and new analysis methods of geodyna-
mic monitoring data, based on the fundamental deforma-
tion theory of the geomedium as a nonlinear dynamic
system, for the prediction of its closeness to catastrophic
failure. Among them are well adopted Fourier and wave-
let analysis methods employed here for the statistical
analysis of fluctuations of rock mass elements with ope-
nings.
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