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Abstract—The present paper investigates the employment of coarse meshes in evaluating the 7-stress with the
displacement method. Several finite element analyses have been carried out with different mesh refinements and
accuracies. Mode I and mixed mode I/II loadings have been considered in finite element analyses. Under mode
I loading, single and double edge notched geometries have been considered, while plate with central crack has
been considerd for mixed mode loading condition. The analyses are compared with the results by the well-nown
stress based approach, and showed that the displacement method permits the evaluation of the T-stress with the
employment of coarse meshes. By the way, several precautions must be taken when dealing with coarse and

Very coarse meshes.
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1. INTRODUCTION

Failure of cracked components is governed by the
stresses in the vicinity of the crack tip. Under small
scale-yielding condition, a single parameter is used to
characterize the crack-tip stress and as a fracture cri-
terion. McClintock [1] clearly showed that a single
parameter might not suffice to characterize the near-
crack tip states under large scale yielding condition,
when the stress triaxiality level is low. Example is given
when considering nonhardening material under fully
plastic condition, since the near-tip fields depend on
the configuration. In such cases, several researchers
have tried to develop new approaches, with the intro-
duction of a second parameter to characterize the crack-
tip condition [2—6]. The importance of the two-param-
eter approaches in linear elastic fracture mechanics
analysis is increasingly being recognized for fracture
assessments in engineering applications. One of such
theories is the 7-stress approach, in which the elastic
T-stress [7] is taken into account in the description of
the near-tip field. Analytical and experimental studies
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have shown that T-stress can be used as a measure of
constraint for contained yielding, see for example [8,
9]. Despite its significance, few methods are available
for calculating 7-stress in case of mixed mode load-
ing. Those methods that do exist are either restricted
to simple geometries or need complex numerical analy-
sis. An extensive review of analytical methods used
for evaluating the 7-stress is reported by Sherry et al.
[10], while the integral equation method for multiple
cracks with T-stress has been addressed by Chen [11].

Larsson and Carlsson [12] computed 7-stress as the
average difference between the o, for a specimen and
the corresponding value obtained from the boundary
layer approach where 6, was obtained from the elas-
tic-plastic finite element method. This analysis was
carried out for mode I only.

Leevers and Radon [13] used a variational tech-
nique based on the theorem of minimum potential en-
ergy to estimate the 7-stress for mode I. A similar ap-
proach was previously applied by [14] for mixed mode I
and II. Knesl [15] also attempted to determine the 7-
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stress, according to the same technique in mode 1. He
used special types of element called crack-tip hybrid el-
ements developed through a Hellinger—Reissner principle.

Using the properties of path independent integrals,
Cardew et al. [16] and later Kfouri [17] suggested a
method to obtain the 7-stress under mode I loading.
The method is based on an unpublished theorem pro-
posed by Eshelby. Fett [18] proposed a closed form
approximation for T for a mode I rectangular cracked
specimen under tension and bending. Maleski et al.
[19] has determined a modified stress difference method
to calculate the 7-stress, with extrapolation method,
for mode I.

Limited number of contributions regard with the
mixed mode. Path independent integrals were em-
ployed by Olsen [20] and Sladek et al. [21], to compute
the T-stress for mixed mode loading using the bound-
ary element technique. Seed and Nowell [22], to de-
termine 7 for mixed modes I and II, represented a crack
as a continuous distribution of edge dislocations. Dis-
tributed dislocation method were employed to derive
the singular equations, which were solved numerically
to find stress intensity factors.

The development of a unified finite element tech-
nique for calculating 7-stress is envisaged. An inter-
esting contribution to the topic has been provided by
Ayatollahi et al. [23] that presented a technique for
evaluating 7-stress for mode I and II, involving finite
element analyses. Moreover, methods for the calcula-
tion of the T-stress for any mixed mode I/II loading
were proposed, without the need to evaluate the stress
intensity factors.

In this paper the method presented in [23] is briefly
recalled and applied by assuming different mesh re-
finements. This study aims to disclose novel outcomes
concerning the reliability of the results by using coarse
to fine meshes for mode I and for mixed mode loading.

2. FUNDAMENTAL CONCEPTS OF 7-STRESS

Westergaard [24] studied the biaxial stress field for
internal cracks in pressurized cylinders. The outcomes
of the research demonstrated that it was possible to
state the stresses and the shearing stress in the x and y
directions as follows:
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For mode 1 cracks, the boundary condition t,, =0
along the x axis is automatically satisfied from the
above equation. Westergaard equations, which were
originally developed for a biaxial stress field, were
subsequently applied for uniaxial loading. However,
they produce a 6., component at the boundary edges
along the crack axis for a purely uniaxial load. To sat-
isfy the boundary condition also under uniaxial load-
ing, Irwin [25] suggested the use of a transverse com-
ponent of stress, namely the 7-stress. This was con-
solidated later by Williams [7]. He showed that the
crack-tip stress fields in an isotropic elastic material
can be expressed as an infinite power series, where
the leading term exhibits a singularity 7 2 the sec-
ond term is constant with r, the third term is propor-
tional to 7 2 and so on. Although the third and higher
terms in the Williams solution vanish at the crack tip,
the second (uniform) term remains finite. This second
term can have a profound effect on the plastic zone
shape and the stresses deep inside the plastic zone [26].

In general, near the crack tip of an isotropic elastic
material, where only the first two terms of Williams
solution are considered, stresses can be written as

follow:
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where K; and K; are the mode I and mode II stress
intensity factors, and 7, 6, x and y are coordinates in
conventional polar and Cartesian systems (with the
crack tip assumed as the origin). The term T repre-
sents a uniform stress in the x direction, parallel to the
crack tip. It is only due to a symmetric component of
loading and vanishes for pure mode II. When 7 = 0,
small-scale yielding can be assumed and the plastic
zone is a negligible fraction of the crack length as well
as of the entire body. The stress intensity factors are,
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in these conditions, able to uniquely characterize the
near-tip fields.

To normalize the effect of T relative to the stress
intensity factor in mode I, a dimensionless parameter
called the biaxiality ratio B is used, as introduced and

defined by [13]
T/
p="" 4)
K;
where a is the crack length. For a through-thickness
crack in an infinite plate subject to a remote normal stress,
B=-1.Thus a remote stress ¢ induces a 7-stress of -G
in the x direction.
The biaxiality parameter B can be extended to
mixed mode if K is replaced by an effective stress

intensity factor
Ko :\]K12 +Kij. (%)

Several numerical methods have been developed
for estimating the 7-stress, such as the weight function
technique and the stress difference method. The weight
function or Green function approach [27] was based
on an analytical representation of the elastic stress on
isotropic material. This method for evaluating 7-stress
results easy to implement with quite accurate results.
The stress difference method [28] evaluates the T-stress
by subtracting the stresses o,, and o, calculated
close to the crack tip. The method is easy to define and
to apply, with a good accuracy.

However the applicability of the above mentioned
techniques, not implemented in finite element codes,
is limited to simple geometry and loading configura-
tions. Ayatollahi et al. [23] provided a technique for
evaluating T-stress for mode I and II, involving a uni-
fied finite element analysis.

3. FINITE ELEMENT METHOD FOR THE
EVALUATION OF 7-STRESS: MODE I AND
MIXED MODE FORMULATION

Considering mode I loading, Egs. (2) show that &,
comprises of the singular term and 7, while higher or-
der terms are negligible. This implies that 7 can be
determined along any direction where the singular term
of o, vanishes or can be set to zero by superposing
with a fraction of o,,. This corresponds to different
angular positions around the crack tip, such as when

O0=-nmor +m: T=0,,. (6)

This approach is very easy and straightforward since
it uses only one stress component. By the way, if ana-
lytical results are compared with finite element analy-

ses, a very refined and accurate mesh is required to
obtain good agreement. Alternative solution to this
problem is to compute the 7-stress using the displace-
ments along the crack faces. Due to traction free bound-
ary conditions along the crack faces, Hooke’s law can
be written for small strains as
,
u
o,=E¢_ = E((lix x (7)

where €, and u, are the strain and displacement re-
spectively parallel to the crack and

E, plane stress,

E={ E . (8)
5 plane strain.
l1-v
For the chosen angular position around the crack
tip of Eq. (6), the singular term of o, in Eq. (2) dis-
appears and Hooke’s law becomes
E'du,

T =

)

Recalling that 7 is constant and replacing the con-
stant slope du,/dx with (u (x)—u (0))/x, T can be
defined as [23]

T = E (u,(x) ~u,(0))/x, (10)
where u,(0) denotes u, at the crack tip.

This indicates that using either u, or its slope along
the crack faces T can be determined directly from fi-
nite element results. This approach permits to obtain
the T-stress for mode I loading with the employment
of a coarse mesh since, as well known, the displace-
ments are in general not affected by the mesh refine-
ment.

Different considerations must be done when mixed
mode loading is considered. In fact, along any radial
direction from the crack tip, there is a singular term
due to either mode I or mode II or both. For this rea-
son, the singular term ©,, never vanishes, and the
method described for mode I is not therefore suitable
for mixed mode I/I1 loading. However, the 7-stress can
be found when the symmetric properties of mode I and
antisymmetric properties of mode II for direct stresses
are used, without the calculation of stress intensity
factors. The stresses in one half of the cracked speci-
men are added to those of the other half. The mode II
stresses vanish and mode I stresses are doubled. As a
consequence, again like under mode I loading, the
T-stress can be determined along any direction around
the crack tip directly from finite element results. The
most convenient direction is 6 = £7 since only one
component of stress is involved

T= 1/2[(0)6)6)9:*7[ + (Gxx)():n]‘ (1 1)
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Following now similar steps presented for mode I
loading, T under mixed mode loading can be deter-
mined employing the displacement method, leading to

|
T=2—E [, (x, —70) + u, (x, ) ]. (12)
X

Since the path independent integral J for mixed
mode loading is usually available from the finite ele-
ment analysis, the biaxiality ratio B for mixed mode

conditions is
B=T|™, (13)
JE

where K =JUE'.

Equation (13) together with Eq. (12) or (11) can be
used to determine B without having to calculate sepa-
rately K; and K and directly from finite element
analysis.

The method developed by [23] was verified to sev-
eral test cases by using ABAQUS. Finite element re-
sults for T were obtained for two different mode I
cracked specimens: a single edge notched (SEN) and
a double edge notched (DEN). For the SEN specimen
the crack length a to width W ratio was 0.4 and for the
DEN specimen a/W was 0.2. Both the stress and the
displacement methods were used to determine 7 for
distances x behind the crack tip and along the crack
face. For identical meshes the stress method did not
provide a constant value for 7/0,,,,, where o, is
the uniform far field tensile stress. For mixed mode
conditions, 7 was calculated for an inclined edge crack
in a large square plate, by applying stress and displace-
ment methods as well. It was found that both the stress
and displacement methods gave results that compare
well with the analytical results from [22].

The outcomes of [23] are based on applications
carried out for the same accurate mesh refinement. A
study on the effects of the mesh refinement is provided
in the present paper, concerning the accuracy of the
displacement methods. The results obtained for mode I
loading and mode I/1I loading are presented consider-
ing SEN, DEN specimens and centrally cracked plate.

4. EVALUATION OF 7-STRESS WITH
COARSE ESHES UNDER MODE I LOADING

4.1. Geometry and Loads

In order to investigate the effect of the mesh re-
finement on the 7T-stress evaluation and to study the
sensitivity to this aspect of the displacement method
as introduced in [23], several finite element analyses
have been carried out. The single edge notched and
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double edge notched specimens which are investigated
for the T-stress evaluation under mode I are shown in
Fig. 1. Three different mesh types are modeled. The
first applied mesh is a fine and detailed mesh. The sec-
ond mesh is a coarse mesh, intended to be less com-
plex and heavy than the previous one. The third mod-
eled mesh is a very coarse mesh: this is done to ob-
serve how the accuracy of the results modifies by re-
ducing the mesh refinement.

The SEN specimen is defined to match the same
non-dimensional properties of the samples used in [23],
where the ratio a/W is 0.4. It is realized by assuming
the crack length @ =20 mm and the width =100 mm.
The height of the specimen 2H is equal to 200 mm so
that the uniform far field tensile stress o, is ap-
plied far enough from the crack. Due to symmetry, only
one half of the SEN is considered.

The DEN specimen [23] presents a ratio a/W of
0.2, and it is obtained by keeping ¥ = 100 mm and by
reducing the crack length to a = 20 mm. In this case
2H =200 mm. Due to symmetry, only one quarter of
the DEN specimens is modeled. Uniform far field ten-
sile stress o, equal to 100 MPa is applied. The ge-
ometries and loading conditions are modeled and ana-
lyzed by means of the finite element code ANSY'S and
Solid 8 node 183 element is used. The analyses have
been carried out under linear elastic and plane strain
conditions. Young’s modulus £ =206 GPaand v=0.3
are assumed.

4.2. Fine Mesh

Very fine mesh is first analyzed for the SEN and
DEN specimens. The mesh is realized by regularly dis-
tributed elements. The number of elements becomes
very high around the crack tip: the smallest element
size approached the order of 10°%, and the number of
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Fig. 1. Single (a) and double edge notched specimens (b).



128 ACANFORA et al.

(b)

—J5 1

Fig. 2. An example of fine mesh for the DEN specimen and variants for the crack tip: fine (a), coarse (b) and very coarse mesh (c).

elements used for meshing the DEN model was about
18000. Example is given in Fig. 2 only for the DEN
specimen, for the sake of brevity.

T Gnom (a)

—0.54 1

—-0.60 . T
-0.10 —-0.08 -0.06

004  xla

7/6 nom

—0.52 1

—-0.60 T
-0.10  -0.08

006 —004 xla

Fig. 3. T-stress results for SEN (a) and DEN specimens (b)
by using a fine mesh: stress method for 6 =0 (/) and 7 (2);
displacement method for 6 =1 (3).

A fine mesh gives more accurate results. The diffi-
culties become more evident when complex geometries
are involved.

Firstly, the stress method is applied along the di-
rection 0 = 0. According to this method, the 7-stress is
evaluated as

I'=o,-0,,.

The stress method is also applied assuming 6 =
for the upper face of the specimen and 7-stress is then
evaluated according to Eq. (6).

The final case is the application of the displace-
ment method for 6 = 1t: T-stress is evaluated according
to Eq. (10).

A comparison of the results for the fine mesh case,
by applying the three different techniques, is presented
in Fig. 3a for the SEN specimen and in Fig. 3b for the
DEN specimen for mode I. The obtained 7-stress di-
vided by the nominal stress ©,,,, is plotted as func-
tion of the distance from the crack tip divided by the
crack length x/a.

For the SEN specimen (Fig. 3a) it is observed for
all the three applied techniques a poor dispersion of
the results that are within the range from —0.54 to
—0.57 for the analyzed range of distances from the crack
tip. It is possible to observe the same behavior also for
the DEN specimen results (Fig. 3b) that remain within

PHYSICAL MESOMECHANICS Vol.21 No.2 2018
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Fig. 4. T-stress for the SEN (/) and DEN specimens (2) modeled by a coarse (a) and very coarse mesh (b); displacement method for

0=m.

the range from —0.50 to —0.56 for the analyzed range
of distances from the crack tip. In [23] 7/o,,,,, calcu-
lated from the displacement method for the SEN and
DEN specimens were equal to —0.55 and —0.506 re-
spectively, for fine mesh.

These outcomes for the SEN and DEN specimen
confirm that the displacement method gives reliable
and accurate results, compared to the stress method,
although this one is more known and applied.

It is also possible to observe that for the SEN speci-
men the curve obtained by the displacement method,
except for some fluctuations of the results, shows a
constant behavior (Fig. 3a).

The displacement method results for the DEN speci-
men show an almost constant behavior with a varia-
tion of 7/0,,, of less than 0.01.

The stress method for 6 = 0 shows an increasing
trend, while for 6 = 7 it has a decreasing trend for both
the SEN and DEN specimens (Fig. 3) with larger varia-
tion of the 7/c,,,, results.

nom

4.3. Coarse Mesh

The second mesh type, realized for the SEN and
DEN specimens, is a coarse mesh. This coarse mesh
refinement is assumed aiming to check if a reliable
estimation of the 7-stress is possible without a detailed
fine mesh. Clearly, a fine mesh is more complex and
requires more computational power and time, thus re-
ducing the number of analysis in the same time frame.

The coarse mesh has a reduced number of elements
that are less dense around the crack tip than the fine
mesh modeling, and the smallest element size is re-
duced to the order of 10!, The number of elements
used for meshing the DEN model was about 4000. Also
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in this case the mesh elements are regularly distrib-
uted, increasing around the crack tip.

The displacement method is based on nodal dis-
placements that are not influenced by the mesh defini-
tion, making this technique suited for any type of mesh.
The same is not true for the stress evaluation. Thus,
for coarse meshes, the stress method is disregarded.

In Fig. 4a the T-stress calculated for the displace-
ment method on the coarse mesh is presented for the
SEN and DEN specimens. The obtained results for the
SEN specimen show that the 7-stress varies signifi-
cantly getting closer to the crack tip. In particular
the ratio 7/o,,, shifts rapidly to an almost constant
T-stress value of —0.50 to —0.52 for x/a greater than
—0.06. For the DEN specimen the coarse mesh results
start diverging from a constant value of 7/c,,, for x/a
greater than —0.08, up to a value of 7/c,,, of —0.3.

4.4. Very Coarse Mesh

The last modeled mesh is a very coarse mesh. The
main aim is to check the accuracy of the results keep-
ing reducing the mesh refinement. The very coarse
mesh is characterized by a sparse distribution of the
mesh elements. Mesh elements are regularly distrib-
uted, increasing around the crack. The smallest ele-
ment size at the crack tip is 1 mm. Only 800 elements
were used to mesh the DEN model. In this case only
the displacement method is applied, assuming 6 = 7.

The T-stress calculated for the SEN and the DEN
specimens on the very coarse mesh is presented in
Fig. 4b. The T-stress varies significantly getting closer
to the crack tip; this behavior, already observed for the
coarse mesh (see Fig. 4a), becomes now more evident.
For the SEN specimen, 7/c,,,, remains constant and
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Fig. 5. Large square plate for mixed mode I/II loading con-
dition.

almost equal to —0.45 for x/a less than —0.06 and then
it diverges. The T-stress calculated for the DEN speci-
men on the very coarse mesh does not show a constant
behavior in the observed ranges of x/a.

5. EVALUATION OF 7-STRESS WITH COARSE
MESHES UNDER MIXED MODE I/Il LOADING

5.1. Geometry and Loads

In this section the applications for the mixed mo-
de I/IT are reported. Plate with a central crack is con-

/S nom (a)
—0.76
. 1
P 00000 20
0 500000000
o 2
—0.78 1

_0.80 T T T T T T T T T 1
-0.81 —0.65 —-049 -033 —0.17 x/a

T/Shom (b)
~0.811 J/
pee
~0.831 2
—0.85+—

-0.10 70108 I 70f06 I70.|04 I70.02 x/a

Fig. 6. Square plate with the crack length 2a = 2 (a) and
40 mm (b); stress method with =0 (/) and +7 (2), fine mesh.
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sidered. The three different mesh refinements are mod-
eled and analyzed. The analysis of the influence of the
mesh refinements on the accuracy of the 7-stress is
conducted only for displacement method. In order to
keep a similarity with the analysis of [23], the only
known dimension is the angle between o, and the
crack direction, denoted by 3 (when B = 0 mode II
condition applies, and when 3 = 90° mode I condition
applies). In the following calculations the angle 3 is
set equal to 70°. The large square plate for the mixed
mode I/II is modeled assuming two different crack
length defined as 2a =2 and 40 mm (Fig. 5). The width
is chosen equal to 2/ =200 mm and the height 2H =
200 mm.

The T-stress evaluation to mode I/II for the two dif-
ferent crack lengths of the square plate is carried out
by applying a uniform far field tensile stress &, equal
to 100 MPa.

The geometries and loading conditions are modeled
and analyzed by means of the finite element code ANSYS
and Solid 8 node 183 element is used. The considered
material is linear elastic isotropic having £ =206 GPa,
and v = 0.3. Plane strain condition is assumed.

Since it is not possible to apply symmetry constrains
to the cracked square plate, the geometry is fully mod-
eled.

nom
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Fig. 7. Square plate with the crack length 2a = 2 (a) and
40 mm (b); stress method with @ = 0 (/) and +mr (2), and
displacement method with 0 = +x (3), fine mesh.
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5.2. Fine Mesh

The mesh is realized by finite regularly distributed
elements becoming denser around the crack tip. The
size of elements and other conditions to define the mesh
as “fine” are the same reported in the Sect. 4.2. For the
fine mesh case, three different techniques for evaluat-
ing T-stress are applied.

The first one is the stress method assuming 6 = 0.
According to this method the 7-stress is evaluated as:

T=(0,—0,,)o0-

The second application is carried out by applying
the stress method assuming 0 = 7 at the upper face of
the plate and 6 = —m at the lower face. This is done in
accordance with Eq. (11).

A comparison of the T-stress results by applying
the stress method assuming 6 = 0 and 6 = £x is pre-
sented in Fig. 6 for the square plate with a crack length
2a =2 mm. The stress method with 6 = 0 and 6 = =7
gives almost the same results for the investigated range
of distance from the crack tip.

The third technique applied to the fine mesh is the
displacement method assuming 6 = 1 at the upper face
of the plate and 8 = —x at the lower face. This is done
in accordance with Eq. (12).

In Fig. 7 the comparisons of the results for the three
different techniques, respectively for the square plate
with 2a =2 mm and 40 mm are shown. 7-stress results
for the displacement method remain generally close to
the stress method results and diverges only in the vi-
cinity of the crack tip. In particular from Fig. 7a for
2a =2 mm, the three applied techniques provide the
same value of the T-stress in the range x/a between
—0.81 and 0.1 and only after x/a =—0.1 the displace-
ment method starts diverging. Also for the square plate
with 2a = 40 mm (Fig. 7b) the three techniques show
almost the same 7T-stress results in the range x/a be-
tween—0.1 and—0.05 with a limited variation of 7/c,,,, .

Is it possible to conclude that the displacement
method gives reliable results also for the square plate
under mixed mode I/Il. The method provides a good
assessment of the 7-stress also in case of a large crack
length, comparable to the plate width.

5.3. Coarse Mesh

The second mesh type, realized for the square plate
with 2a = 2 mm and 40 mm, is the coarse mesh.

The coarse mesh has regularly distributed elements,
increasing around the crack tip but with a reduced num-
ber of elements compared to the fine mesh modeling
(see Sect. 4.3 for the element size).
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The stress method for coarser mesh is disregarded
and only the displacement method is considered.

The displacement method assuming 6 = 7 at the
upper face of the plate and 6 = —r at the lower face is
applied. The T-stress results obtained for the square
plate with the crack lengths 2a¢ = 2 mm and 40 mm
modeled by a coarse mesh are shown respectively in
Fig. 8. In both cases the T-stress results remain almost
constant and diverge only in the vicinity of the crack tip.

5.4. Very Coarse Mesh

The very coarse mesh is characterized by a sparse
distribution of the mesh elements (regularly distrib-
uted, increasing around the crack tip as described in
Sect. 4.4). The main aim is to check the accuracy of
the results by applying the displacement method with
0 = +m keeping reducing the mesh refinement. The
T-stress results obtained for the square plate with the
crack lengths 2¢ =2 mm and 40 mm modeled by very
coarse mesh are shown in Fig. 9. The T-stress results,
for both the crack lengths, remain almost constant and
diverge only in the vicinity of the crack tip. The dis-
placement method applied to the very coarse mesh
seems to provide a reliable 7-stress estimation even
with a very light and easy mesh type.
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Fig. 8. Square plate with the crack length 2a = 2 (a) and
40 mm (b); displacement method with O = £m, coarse mesh.
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Fig. 9. Square plate with the crack length 2a =2 (a) and 40 mm (b); displacement method with 6 =+ , very coarse mesh.

6. SYNTHESIS OF THE RESULTS AND
DISCUSSION

6.1. Mode I Loading

A comparison between the three mesh refinement
results is reported, for the mode I loading in Fig. 10a
for the SEN specimen and in Fig. 10b for the DEN
specimen.

For both cases, it is possible to observe that the
outcomes of the fine mesh, by the application of dif-
ferent methods, remain uniform and characterized by
an almost constant value of the T-stress, in the investi-
gated range of distance from the crack tip. It has been
already discussed that the displacement and the stress
method, applied to the fine mesh, show a fine agree-
ment with the results [23]. For the SEN specimen
(Fig. 10a) coarse and fine mesh results differ of 0.03.
The discrepancy of the two methods remains limited
to this value in a range of x/a between —0.1 and
—0.06. It becomes more evident in the vicinity of the
crack tip. It is also evident that the coarser is the mesh
element size, the smaller are the 7-stress results. In
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particular, the very coarse mesh curve differs of 0.06
from the coarse mesh and 0.11 from the fine mesh, in
the same range x/a.

A more evident discrepancy in the outcomes of the
coarser mesh is also observed comparing the DEN
specimen results (Fig. 10b). The coarse mesh provides
T-stress values that in the range x/a between —0.18
and —0.08 differ from the fine mesh of 0.05. Also in
this case the calculated values of the T-stress reduce
by decreasing the mesh refinement with a difference
of 0.17 with the fine mesh results and 0.12 with the
coarse mesh.

All these considerations for the mode I loading, for
the SEN and DEN specimens, denote that there is a
limit in reducing the mesh refinement: under this limit,
the T-stress results could become inaccurate.

6.2. Mixed Mode I/l Loading

A comparison between the different mesh refine-
ment results is reported in Fig. 11 for a crack length of
2a =2 mm and 40 mm. For both the analyzed geom-
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Fig. 10. Comparison of the results for the SEN (a) and DEN (b) specimens: displacement method with fine (7), coarse (2) and very
coarse mesh (3) refinements; stress method with fine mesh: 0 =0 (4) and & (I-3, 5).
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Fig. 11. Comparison of the results for the square plate with 2a =2 (a) and 40 mm (b): displacement method with fine (7), coarse (2)
and very coarse (3) mesh refinements; stress method with fine mesh: 6 =0 (4) and =n (I-3, 5).

etries, the fine mesh applications by stress and dis-
placement methods provide good and reliable results
of the T-stress. From the comparison between the dif-
ferent mesh refinements it is possible to observe that
for mixed mode I/II the displacement method, applied
to the coarse and to the very coarse meshes, still pro-
vides reliable results. For the crack length 2a = 2 mm
(Fig. 11a), the coarse mesh results and the very coarse
mesh results differ of less than 0.1 from the fine mesh
results in the range of x/a between —0.81 and
—0.31. All the results, far from the crack tip, converge
to the same value of the T-stress.

For the crack length 2a¢ =40 mm (Fig. 11b) the com-
parison of results shows a good agreement of the 7-
stress evaluation by using coarse and very coarse mesh.
In particular in the range of x/a between —0.09 and
—0.03, there are differences of less than 0.05 with the
T-stress obtained by using the fine mesh. The conver-
gence of the results in the same 7-stress value far from
the crack tip is observed also for this case.

In Fig. 11, the results for the very coarse and regu-
lar mesh are introduced and compared with the others.
It is quite evident how the differences in 7-stress val-
ues increase although the behavior is similar to the
coarse and very coarse mesh curves. The regular type
of elements used for the same refinement modifies the
T-stress outcomes. These results are still characterized
by small differences with the others far from the crack
tip.

Generally it is possible to conclude that for the
mixed mode I/l the mesh refinement does not affect
the accuracy of the T-stress far from the crack tip but
in case of the very coarse mesh, the type of mesh ele-
ments used for the same mesh refinement can influ-
ence the accuracy of the 7T-stress results.

PHYSICAL MESOMECHANICS Vol.21 No.2 2018

7. CONCLUSION

In this paper the method presented in [23] for evalu-
ating the T-stress is applied by assuming different mesh
refinements. The final aim is to investigate the reli-
ability of that approach depending on different mesh
refinements for mode I and for mixed mode loading. It
emerges that, despite the stress method is more known
and applied, also the displacement method gives good
and reliable results for evaluating the 7-stress.

All the models showed that discrepancy between
T-stress values becomes more evident close to the crack
tip. This is mainly due to the localized high stresses.

Under mode I loading, reasonable errors are ob-
tained for a coarse mesh and the 7-stress can be evalu-
ated using coarse mesh.

For very coarse mesh and mode I loading, discrep-
ancy on the T-stress evaluation becomes evident. There
is a lower limit on the mesh refinement over which the
T-stress values are not reliable.

For the mixed mode I/II the mesh refinement does
not reduce the accuracy of the 7-stress result far from
the crack tip and the method provides a good assess-
ment of the 7-stress also in case of a large crack length,
comparable to the plate width.

When fine meshes are employed, the 7-stress pre-
sents a very reduced scatter and good results are ob-
tained for all the geometries. The results from displace-
ment and stress method are comparable diverging only
in the proximity of the crack tip.

In conclusion, the displacement method permits the
evaluation of the T-stress with the employment of coarse
meshes. By the way, several precautions must be taken
when dealing with coarse and very coarse meshes.
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