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Abstract—Active control of friction by ultrasonic vibration is a well-known effect with numerous technical
applications ranging from press forming to micromechanical actuators. Reduction of friction is observed with
vibration applied in any of the three possible directions (normal to the contact plane, in the direction of motion
and in-plane transverse). In this work, we consider the multi-mode active control of sliding friction, where
phase-shifted oscillations in two or more directions act at the same time. Our analysis is based on a macroscopic
contact-mechanical model that was recently shown to be well-suited for describing dynamic frictional pro-
cesses. For simplicity, we limit our analysis to a constant, load-independent normal and tangential stiffness and
two superimposed phase-shifted harmonic oscillations, one of them being normal to the plane and the other in
the direction of motion. As in previous works utilizing the present model, we assume a constant local coefficient
of friction, with reduction of the observed force of friction arising entirely from the macroscopic dynamics of
the system. Our numerical simulations show that the resulting law of friction is determined by just three dimen-
sionless parameters. Depending on the values of these parameters, three qualitatively different types of behavior
are observed: (a) symmetric velocity-dependence of the coefficient of friction (same for positive and negative
velocities), (b) asymmetric dependence with respect to the sign of the velocity, but with zero force at zero
velocity, and (c) asymmetric dependence with nonzero force at zero velocity. The latter two cases can be inter-
preted as a “dynamic ratchet” (b) and an actuator (c).
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1. INTRODUCTION cillations for the correct understanding of friction.

Both static and sliding friction can be significantly
reduced by vibration. This is a well-known phenom-
enon with numerous technical applications, e.g. in
metal forming [1] or ultrasonic machining [2], as well
as in stabilization of system dynamics, e.g. suppres-
sion of brake squeal. Since the 1950s the influence of
vibration on friction has been studied experimentally
[3] and various theoretical models have been proposed
[4]. Reduction of friction has been observed both un-
der the influence of oscillations in the contact plane
and perpendicular to the plane [5]. Tolstoi [6] was one
of the first to emphasize the importance of normal os-
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Extensive studies have been carried out in [4, 7] and
in a series of dissertations [8—10]. Various configura-
tions (oscillations in the sliding direction and perpen-
dicular to the sliding direction in the contact plane;
oscillations perpendicular to the contact plane (out-
of-plane oscillations)) as well as a microscopic inter-
pretation of the phenomenon are discussed in [11]. In
a series of recent papers, it was shown experimentally
that an important parameter in the problem of active
control of friction is the contact stiffness [12, 13]. This
influence was analyzed in detail in [14] and [15] for
the case of normal oscillations. In the present paper
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we consider the more general case of superimposed
oscillations in normal and tangential directions (“dual-
mode” active control of friction). We will show that
this significantly changes the situation compared with
“single-mode” control. In the case of dual-mode con-
trol a qualitatively different behavior can be observed,
which we call “dynamic ratcheting”.

2. SPRING MODEL AND THEORETICAL
ANALYSIS

We consider an elastic body sliding on a flat plane
with a constant velocity v,, which is subjected to a
superposition of external normal and tangential oscil-
lations. It is assumed that Coulomb’s law of friction
with a constant local coefficient of friction p,, is valid
within the contact. Similarly to [14], we model the
contact as a single linear spring with constant normal
and tangential stiffness 4, and k.. This model corre-
sponds to the contact of a flat-ended cylinder with a
plane. The unstressed state in contact with the plane is
chosen as the reference state. The vertical and hori-
zontal displacements of the upper point of the spring
are denoted as u, and u ., and the horizontal displace-
ment of the lower point as . The upper point expe-
riences a forced oscillation according to

u, =u, o —Au, cos(wr) (1)
in the vertical direction, and a composition of transla-
tion with constant velocity and a harmonic oscillation
with the same frequency ® and a phase difference @

u, = vt + Au, cos(wt + @) 2)
in the horizontal direction (Fig. 1), where u,, corre-
sponds to the average indentation depth and Au, and
Au, are the amplitudes of oscillation. We assume that
the spring is always in contact with the plane, i.e.
Au, <u,,. The main difference compared to [14]
is the presence of the tangential oscillation Au, x
cos(wt + @) in Eq. (2). This change results in qualita-
tively changed, ratchet-like or actuator-like behavior.

2.1. Critical Velocity

One of the characteristics of reduction of friction
by vibration is the existence of a critical sliding veloc-
ity, above which the reduction is no longer possible
and the average coefficient of friction is equal to its
local value . In[14] and [15], it was shown that this
critical velocity can be calculated from the contact-
mechanical model for fairly general system configu-
rations. These calculations were based on the obser-
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Fig. 1. A single-spring model of frictional contact under
superimposed oscillation in normal and tangential direc-
tions.

vation that reduction of friction must be due to inter-
mittent stick states during sliding, since the tangential
force is less than the ordinary sliding friction force
only during stick. The critical sliding velocity is thus
determined by considering the point where stick be-
comes impossible and the system transitions into con-
tinuous sliding. In [16] this analysis was further gen-
eralized for the case of simple viscoelastic contacts.
In the following we will calculate the critical velocity
of controllability for dual mode control of friction.

As described above, the upper point of spring is
forced to move according to Egs. (1) and (2). How-
ever, the movement of lower point is unknown and
can be either in stick or slip state. The normal and tan-
gential force of the spring are given by

S =ku, =k, (u, y—Au, cos(wr)), 3)
fx = kx (ux - ux,c) = kx (vOt
+ Au, cos(0r + Q) —u, ). 4)

If the tangential force of the spring is smaller than the
normal force multiplied by the coefficient of friction,
/i <Wof., the lower point will be in a stick state. Oth-
erwise, it will slip relative to the plane and in this case
fx = Msz :
k,(vot + Au, cos(wt+¢)—u, )
= Uok, (u, o — Au, cos(wr)). (5)
To find the critical velocity for continuous sliding, we
assume that Eq. (5) is fulfilled at all times. Derivation
of (5) with respect to time gives
U, . =0y~ 0Au, sin(0f + @) —sgno,
X Wo (k, [k, )oAu, sin(wt) (6)
or
i, . = vy —0[(Au, cos@+sgn o,
X o (k. [k, )Au_)sin(ot) + (Au, sin @) cos(wt) ]. (7)
The lower point will slide continuously in one direc-
tion if its velocity does not change sign or turn to zero
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at any point. By looking at Eq. (7), we see that this is
the case if the constant part of the velocity is larger
than the amplitude of the oscillating part. The latter
will also be equal to the sought critical velocity:

vy > U, = ©[(Au, cos@+sgno,

12
X Uo(k, [k, )Au_)? +(Au, sin @) ] /

= (u[(Aux )+ 20, (k, [k, )Au Au_ sgno,

L2
XCos@+ (“’O (kz/kx )Auz) ] . (8)

For v, >0, the critical velocity is maximal
vaaX = (’O(Aux + Mo(kz/kx)Auz)ﬂ (9)

when the phase difference is zero, and reaches its mini-
mal value

Vemin = O |Au, — o (k, [k, )Au, | (10)
at ¢ = m. For v, <0, the corresponding phases are
swapped.

It is interesting to note that for positive v, if Q=7
and Au, =p,(k,/k,)Au,, the critical velocity is equal
to zero, which means that the coefficient of friction
remains unchanged at any velocity v,,. Since only the
ratio of the stiffness appears here, this result should be
independent of the indenter shape at least for small
oscillation amplitudes.

cmin

2.2. Static Friction

Another distinctive feature of the influence of vi-
bration on friction is the static force of friction at zero
sliding velocity. This can also be calculated analyti-
cally in many cases. The static force of friction is the
largest force that does not result in slip. For this to be
true, the lower point of the spring must not move from
its initial position: u, . =0 and the tangential force on
the spring must remain less than the force of friction
at all times:

|fel<uo 1] (11)

|k, (”x,o + Au, cos(wz +@))|

or

<W |k, (u, o — Au, cos(wt))|. (12)

Here u, is the equilibrium tangential displacement
of the spring, around which u_(¢) oscillates. Remem-
ber that we assumed that the spring is always in con-
tact with the substrate and the normal force thus al-
ways nonnegative. For this reason we can drop the
modulus on the right hand side of Eq. (12). For the
following analysis we will also drop the modulus on
the left hand side. This makes our calculations less
than perfectly rigorous and numerical simulations con-

firm that this results in incorrect static force for some
values of @. Nonetheless, this assumption seems to be
valid in most cases, which is why we present the fol-
lowing, admittedly incomplete, analysis.

With the above assumption, we solve for u, , and
obtain:

U o <MK %”z,o - ]]z—z Au_ cos(mt)

X X

—Au, cos(wt+@) =W, % U,

X

—cos (wt)[uo % Au, + Au, cos (p)

X

+ Au sin(w¢)sin @. (13)

Thus, the stick condition is satisfied if

2
Upo <M %”z,o - [Mo %A”z +Au, COS(PJ

X X

. k

S koY
+Auy Sinz(P} =Ml k_Z”z,o - [Mo _ZA”ZJ
P 12

+ 2= A A, cos<p+Au§} : (14)
The maximum equilibrium displacement is maximized
when ¢ = T

k
U, o <WUg—=U, o —|Ug—=Au, —Au 15
x,0 <M k. 2,0 ~ Mo o x (15)
and is minimized at ¢ =0
ux,O < MO%MZ,O - MO%AuZ + Aux . (16)

The static friction force is obtained by multiplying u, ,
with the tangential stiffness:

2
k k
F =k —Zy = —Z Au
S x[MO kx z,0 [MO k ZJ

X

12
+2u0%Au2Aux cos<p+Auf} . (17)

X

Dividing by the average normal force finally gives us
the static coefficient of friction:

2
M _ F, 1 Au,
MO kzuz,O uz,O

+iﬂ—A”ZA2”x COS(p+( kB ] . (18)
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Once again, for v, >0, if@=mand Au_/u,, =k Au, x
(MOkzuz,O)_1 or kxAux/(MOszuz) = 1: then Ug =Uop-

Note that the above is valid if the force is applied
in the positive x direction. If the force acts in the op-
posite direction without changing the polarity of os-
cillation, then Eq. (14) becomes

2
k k
< _Zu — —ZAM
|”x,o| Wo P [Mo 2 ZJ

X X

12
—2u0%Au2Aux cosQ+ Auf} , (19)
with equivalent changes to Eqgs. (17) and (18). The
maximum displacement (15) is reached at ¢ = 0 and
the minimum displacement at ¢ = .

3. NUMERICAL SIMULATION

While the critical velocity and the static coefficient
of friction can be calculated in closed form in our
model, the overall dependence of the coefficient of
friction on sliding velocity cannot. The detailed de-
pendences were therefore obtained numerically (by
explicit integration). The macroscopic coefficient of
friction was determined as the average value of tan-
gential force divided by the average normal force in
one oscillation period:

w=Cfo/(f2), (20)
where the normal and tangential force are calculated
according to Egs. (3) and (4) in every time step. It
should be pointed out that by this definition u has the
same sign as the sliding velocity, since we do not take
the modulus. Also, as will be shown in a moment, in
some cases WL can have a sign opposite to that of the
velocity, which allows the system to function as a vi-
brational motor or actuator.

During integration, the coordinate of the contact
point is updated whenever the tangential force exceeds
the current maximum frictional force. In such a case
the contact point is moved such that the spring is short-
ened and the two forces match. It should also be noted
that results are only presented for the steady state. It
may take several cycles of oscillation for the tangen-
tial force or stress to reach its equilibrium value. Espe-
cially at low velocities this may take a relatively long
time. Any such kinetic effects are not subject of this study.

3.1. Single-Mode Oscillation

We first present results for single-mode control with
either purely normal or purely tangential oscillation.
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Fig. 2. Dependence of the macroscopic coefficient of fric-
tion on sliding velocity for the case of purely normal oscil-
lation (Au, =0), for details see [14].

Figures 2 and 3 show the dependences of the macro-
scopic coefficient of friction on sliding velocity for
these two special cases. In Fig. 2, only normal oscilla-
tion is applied (Au, =0). This case was already dis-
cussed in detail in paper [14], where the following
numerical approximation (accurate to within 1%) for
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Fig. 3. Dependence of macroscopic coefficient of friction
on sliding velocity for the case of purely tangential oscilla-
tion (Au, = 0): for small values of k Au, / (Moku, o) (@);
for large values of k Au/(uok_u,,) (b). The solid lines
correspond to the approximation (24) and the dots repre-
sent numerical results.
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the velocity dependence of the coefficient of friction
was obtained:
2 4
Mo B i[ﬁ_lJ +l[ﬁ_ J . @
MO uz,O 4 O 4 U
Letus now turn to purely tangential oscillation. This
case has been considered in the literature for very small
system stiffness [5], but it has never been completely
analyzed for a stiff system and a soft contact. Results
for this case (with Au, =0) are presented in Fig. 3. In
this case, the critical value of sliding velocity, accord-
ing to Eq. (8), reduces to
v, = WAu, (22)
which is simply the velocity amplitude of tangential
oscillation. Numerical simulations show that the coef-
ficient of friction in this case is a function of only two
dimensionless parameters v,/v, and (Mokx”z,o)_l X
(k,Au,):

B B kb 23)

MO vc MOkzuz,O
Furthermore, for small values of the parameter & Au, X
Kok, )"' <1, the curves are exactly the same as in
the case of purely normal oscillation (Fig. 2), and can

therefore be described with a very similar approxima-
tion: 5

U k Au, i[ vy _IJ

Ko Mok.u o | 4| 0Au,

4

1 v,

+— -1 for k Au ku )<l. (24
4[03Aux J Du [(uok.u, o) @4)

for Au, =0.

The results of numerical simulation and the approxi-
mation (24) are compared in Fig. 3a. For values of
k.Au, [(uoku, o)>1, the dependence still coincides
with Eq. (24) at large velocities, but at low velocities

or very large values of k Au, /(uoku, ), there are
significant deviations. This is shown in more detail in
Fig. 3b. For very large values of the dimensionless pa-
rameter it can be seen that the dependence becomes
roughly linear.

3.2. General Case: Bimodal Oscillation

In the two cases considered above, the dependences
are symmetric for positive and negative sliding veloc-
ity. In the following we will consider more general
cases, which produce some interesting phenomena.
First, both dimensional analysis and numerical results
show that the coefficient of friction can be presented
in the most general case as a function of four dimen-
sionless parameters:

v, Au. k. Au
i:f _0’_2,4&, (25)
) U, U,y Mok,
or
vy, Au k_Au
ﬂzf S - A s S ¢ (26)

b b b
MO vc uz,O MOszuz

if this choice is more convenient. It is clear that Eq. (23)
is just the limiting case of (25) for Au, =0.

Qualitatively different behaviors for the case of zero
phase shift are shown in Fig. 4, where the normalized
coordinates u/u, and v,/v, are used. The depen-
dence of the coefficient of friction on sliding velocity
becomes asymmetric and sometimes qualitatively dif-
ferent for the positive and negative sliding directions.
At small positive velocities (still with ¢ = 0), a nega-
tive coefficient of friction (opposite frictional force)
is observed, especially if the amplitude of normal os-
cillation is large.

Note that the critical velocity v, is different for
positive and negative sliding velocities (see Eq. (8)).

Wi
(b)
0.5 L _
kAu/(pokzuz p) = 1 KA/ (Hgkz“z,o) 2
= Au/u, o =
Aultizo > =0.0,0.2, ... 1.0
0.0}=0.0,02, .., 1. L =0.0,02,..., 1.
-0.5 o°°:::°: S5 w';'éw”"::‘,:“ r 2,0.
g oonoe __ﬂﬂ{){y:}
2% o % oozeuoo 2N
10 I - )L . . | Lo .
10 05 00 05 v/, 1.0 0.5 00 05 vylo, —1.0 0.5 00 05 vy/o,

Fig. 4. A few examples of dependences of the coefficient of friction on velocity with phase difference ¢ = 0, Au, / Au,;=0, ..., 1 and

ke Au, [(uok.u_ o) =1 (a), 2 (b), 0.5 (c)
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The two sides of Fig. 4 are normalized to these two
different critical velocities, resulting in a visible “kink”

at v, /v, =0 in many of the curves.
In Fig. 5, on the other hand, we use dimensional

(non-normalized) velocity to get a clearer physical pic-
ture. These figures show the dependence of the coef-
ficient of friction on the sliding velocity for different

values of k Au,/(Wok,Au,) and different phase shifts

while Au_/u., is fixed.
No.1 2018
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Fig. 5. Velocity dependences of the coefficient of friction for different phase shifts ¢ for the case k Au, / (Mok,u, o) =1(a), 2 (b),

In Fig. 5a corresponding to k Au_/(WokAu,)=1,
for ¢ =m/2 the dependence is symmetrical with re-
spect of change of the sign of the velocity. For other
phase shifts the dependencies are asymmetrical and

become extremely asymmetrical at ¢ = 0 and ¢ = 7.
The first and the last subplots correspond to the par-
ticular cases v, =0 for k,Au,/(Wok,Au,)=1,and ¢ =

T at positive velocity and ¢ = 0 at negative velocity

(see Egs. (10) and (18)).



30 POPOV, LI

The dependences of the coefficient of friction on
the sliding velocity presented in Figs. 2 to 5 can be
classified in three qualitatively different categories:

I. Active control of friction. If the dependence is
symmetrical with respect to reversing the sign of ve-
locity, we have a classical “law of friction”. The exter-
nal oscillation influences the static force of friction
and the velocity-dependence but does not change the
basic character of the force as a dissipative force which
is always directed opposite to the velocity. This case
is found (always) with single-mode oscillations (Figs. 2
and 3) as well as with dual-mode oscillations when
¢ =0.57 (Fig. 5).

II. Dynamic ratchet. Into the second class fall de-
pendences that are asymmetrical with respect to change
of the sign of velocity but remain “dissipative” (thus,
the force of friction is still directed opposite to the
velocity). The most extreme case in this category is
represented by the first and the last subplots in Fig. 5a.
In these extreme cases, the static coefficient of fric-
tion for backward movement is p, and zero for for-
ward movement at ¢ = 0 and vice versa at ¢ = 7. This
means that if the substrate is subjected to a low-fre-
quency tangential force, it will move forth in the posi-
tive half-period and will stick in the negative half-pe-
riod, thus resembling the action of a mechanical ratchet.
We therefore call this class a “dynamic ratchet”.

III. Drive or actuator. Finally, we have the cases
where the “law of friction” is not only asymmetric but
“active”, in that the direction of the average tangential
force is the same as the direction of movement at small
velocities. This is functionally equivalent to a vibra-
tional drive or actuator. This case is represented by all
curves in Figs. 4a and 4b with the exception of the
upper-most curve, which corresponds to a purely hori-
zontal oscillation. The same situation can be found in
Fig. 5b for ¢ # /2.

4. CONCLUSION

We considered bimodal control of friction by a su-
perposition of normal and tangential (in the direction
of motion) oscillations. In the presence of oscillations
in both directions, the dependence of the macroscopic
coefficient of friction (which is here formally defined
as the normalized tangential force and can assume both
positive and negative values) on the macroscopic slid-
ing velocity becomes asymmetric in the general case.
While the asymmetry as such is understandable from
general considerations (see e.g. [17]), the detailed form

of the laws of friction and their classification seems to
be nontrivial and has not been described earlier. In
particular, apart from known effects of active control
of friction on one hand and oscillation induced actua-
tion on the other hand, we predict a third, intermediate
type of behavior which we call “dynamic ratchet”.
Dynamic ratchets are realized for values of the gov-
erning parameter k,Au_/(Wyk,u,) smaller than 1 while
drives result with & Au, /(uok,u,)> 1.

Finally, let us note that the one-spring model is not
an essential assumption for the described qualitative
behavior. As any contact can be mapped to a contact
with a one-dimensional elastic foundation [18, 19], this
analysis can be easily generalized.
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