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Abstract—Dual phase steels are advanced high strength alloys typically used for structural parts and reinforce-
ments in car bodies. Their good combination of strength and ductility and their lean composition render them an
economically competitive option for realizing multiple lightweight design options in automotive engineering.
The mechanical response of dual phase steels is the result of the strain and stress partitioning among the ferritic
and martensitic phases and the individual crystallographic grains and subgrains of these phases. Therefore,
understanding how these microstructural features influence the global and local mechanical properties is of
utmost importance for the design of improved dual phase steel grades. While multiple corresponding simulation
studies have been dedicated to the investigation of dual phase steel micromechanics, numerical tools and expe-
riment techniques for characterizing and simulating real 3D microstructures of such complex materials have
been emerged only recently. Here we present a crystal plasticity simulation study based on a 3D dual phase
microstructure which is obtained by EBSD tomography, also referred to as 3D EBSD (EBSD—electron back-
scatter diffraction). In the present case we utilized a 3D EBSD serial sectioning approach based on mechanical
polishing. Moreover, sections of the 3D microstructure are used as 2D models to study the effect of this simpli-
fication on the stress and strain distribution. The simulations are conducted using a phenomenological crystal
plasticity model and a spectral method approach implemented in the Diisseldorf Advanced Material Simulation

Kit (DAMASK).
DOI: 10.1134/S1029959917030079
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1. INTRODUCTION

Dual phase steels, consisting of a relatively soft fer-
ritic matrix reinforced by strong martensitic islands,
are frequently used for structural parts and reinforce-
ments in car bodies. Their good combination of strength
and ductility is a result of the strain and stress partition-
ing among these two different phases and the individual
crystallographic grains and subgrains [1]. Therefore,
understanding how these microstructural features in-
fluence the global mechanical properties is of very high
importance for the design of improved dual phase steel
grades. Hence, a large number of simulation studies—
starting with Karlsson and Sundstrém [2] in 1974—
has been dedicated to the investigation of dual phase
steel micromechanics. However, even recent (crystal
plasticity) simulations aiming at a better understand-
ing of dual phase steel micromechanics are often per-
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formed on models that are significantly simplified rep-
resentations of the microstructure: Either (a) 2D micro-
structures obtained from measurements of grain mor-
phology and crystallographic orientation [3—5] or (b)
idealized 3D microstructures without crystallographic
orientation information [6—10] and/or simplified grain
morphology, phase distribution, and orientation scat-
ter [7, 8, 11-13] are used. Both approaches have their
drawbacks: Simulations using 2D microstructures re-
duce real materials to artificially extruded, hence co-
lumnar materials and thus leave out a significant part
of the grain and phase neighborhood, imposing local
boundary conditions that are quantitatively and qualita-
tively different than in a 3D situation [12, 14, 15]. Sim-
plified structures obviously miss details associated with
grain morphology, martensite distribution, phase and
texture percolation effects, and in-grain crystallogra-
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phic orientation scatter present in real dual phase mi-
crostructures.! In the present study we, therefore, inves-
tigate the micromechanical behavior of a measured 3D
dual phase microstructure to overcome these limita-
tions. Moreover, sections of the 3D microstructure are
used in the form of extruded 2D models to study how
the reduction of a 3D microstructure into a 2D one
influences the stress and strain distribution.

The study is structured as follows: Fist, the crystal
plasticity model and the numerical method for solving
the mechanical boundary value problem are presented.
Afterwards, details of the microstructure model—start-
ing from the experimental characterization—are given,
followed by the presentation and discussion of the re-
sults. The study finishes with concluding remarks and
an outlook on further work.

2. SIMULATION FRAMEWORK

The simulations presented in this work are perform-
ed by using the Diisseldorf Advanced Material Simula-
tion Kit (DAMASK) available as free and open source
software on https://damask.mpie.de [16]. In DAMASK,
crystal plasticity is modeled within a continuum me-
chanics approach by taking into account the distinct
deformation modes of crystalline matter. The details
of the underlying continuum mechanics description,
the crystal plasticity formulation, and the numerical
technique to solve the boundary value problem for sta-
tic mechanical equilibrium are presented in the fol-
lowing.

2.1. Continuum Mechanical Description

B denotes a body that occupies the region B, in
the reference configuration and B, in the current confi-
guration. The location of the material points in the refe-
rence state is given by x, X € B, and in a deformed
configuration by y, y € B,.

A deformation map y(x): x € By— y € B, maps
points x in the reference configuration to points y in
the current configuration. The displacement u of a ma-
terial point is the difference vector between these confi-
gurations:

u(x, ) =y(x,)—x. 1
Focusing on a point in time, i.e. a fixed deforma-
tion state, allows simplifying the notation to u(x)=

(X)) —x.

! A recent example that shows how most of these features can be included
into artificial microstructures is given by Pagenkopf et al. [13].

A line segment dx in an infinitesimal neighborhood
of a material point x is pushed forward by

y+dy=y+g—ydx+0(dx2). ()
X

Neglecting terms of higher order, dy can be expressed
as

dy = a—ydx = 9 (x) dx= Vy dx, 3)
ox ox ——
=F(x)
where F(x) is the deformation gradient and V is the
“del” operator. The deformation gradient maps the
vector dx at x in the reference configuration to the vec-
tor dy at y in the current configuration.

For a moving body, the position of the material
points varies with time. The material velocity field is
defined as?

du(x) . .

v & u=7y. 4)

u =7y holds because the points in the reference con-
figuration do not change their position, i.e. dx/dz = 0.

The spatial gradient of the velocity field is

L=9Y, (5)
dy
where L is called the velocity gradient. Using the chain
rule, it can be expressed as

L=F-F. (6)

2.2. Crystal Plasticity Formulation

As common in large-strain crystal plasticity mod-
eling, the deformation gradient F is multiplicatively
split up [17] into an elastic part F, and a plastic part
F, as

F=FEF, (7)
to model the combined elastic-plastic response usu-
ally seen in metals.

For small strains (and short loading times), the
behaviour is usually purely elastic, i.e. reversible and
linear (Hookean) elasticity can be assumed. Therefore,
the second Piola—Kirchhoff stress S depends on the
elastic Green—Lagrange strain via the anisotropic elas-
tic stiffness C. This relation is written in an artificial,
only elastically deformed “intermediate configura-
tion™ [17]:

S=C(FF,-1)/2. (8)

2 To simplify the notation, in the following, the argument x is dropped
whenever it is possible, i.e. F(x) is denoted as F only.

3 This is formally equivalent to the stress—strain relation in the reference
configuration. The given relation is therefore a valid approximation for
small elastic strains, where the difference between reference and inter-
mediate configuration is negligible.
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Since C relates two symmetric tensors, it is itself sym-
metric and can be written as a 6xX6 matrix.

The stress S is acting as a driving force for the plas-
tic velocity gradient L. L, depends on the underly-
ing microstructure represented by a state variable vec-
tor & of the plasticity model and possibly other vari-

ables:

L, =f(S,5..) ©)
with f depending on the details of the used plasticity
model which might by sensitive to strain rate, tem-

perature, etc. as indicated by “...
From Eq. (6) follows
F,=LF, (10)
for the evolution of the plastic deformation gradient.

The set of nonlinear Egs. (7) to (10) needs to be
solved iteratively. In DAMASK, a Newton—Raphson
scheme is employed for that. More details about the
implementation are given by Kords [19].

The core of each crystal plasticity model is the for-
mulation shown in Eq. (9). In this equation, the plastic
deformation of the material and its dependence to the
aforementioned influences are incorporated. For the
evolution of the state & a crystal plasticity model needs
to be completed by a second equation:

£§=g(S,§,...). (11)

The two integration schemes are performed stag-
gered, i.e. Egs. (7) to (10) are solved at a fixed plastic
state, followed by a state update, the solution of Egs. (7)
to (10), and so forth until a converged solution is
achieved within the tolerance limits specified.

Using P =F S for conversion from S to P, a crystal
plasticity model (i.e. Egs. (7) to (10)) can be summa-
rized as

P(x)=f(x, F,¢&,...) (12)
which is a stress—strain relation with dependence on
the material state and model dependent parameters
(denoted by “...” in Eq. (12)) such as loading rate and
temperature.

The crystal plasticity model used in this study is
based on a phenomenological description proposed by
Hutchinson [20] for face-centered cubic (fcc) crystals.
Here, it has been adopted for describing the behavior
of body-centered cubic (bcc) crystallites. This model
is based on the assumption that plastic deformation
occurs on a slip system when the resolved shear stress
exceeds a critical value.

The microstructural state is parameterized in terms
of resistances & on N = 24 slip systems of which 12
have a {110} and another 12 have a {112} plane. On
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both families of slip planes (111) directions are densely
packed and serve as slip directions. The resistances on
the k=1, ..., N, slip systems evolve from their initial
value &, asymptotically to a system-dependent satu-
ration value & with shear y” on all slip systems ac-
cording to the relationship

sk _ % . m 1_ém
& =hy 2 1V"|
m=1

m
where £, is an interaction matrix and /4, and a are
system dependent fitting parameters.

Given a set of current slip resistances, a slip sys-
tem shears with a rate

oo

sgn 1——m s (13)
&)

k n
. .| T
7 =olor

gsgﬁ, (14)

with ™ =S-(s* ®n") being (according to Schmids
law [21]) the resolved shear stress for applied stress S
and the unit vectors along the slip direction s* and
along the slip plane normal n*. Non-Schmid contri-
butions [22] are not taken into account.
The sum of shear rates on all systems determines
finally the plastic Veloc]ivty gradient
%=£W¢®ﬂ (15)

2.3. Boundary Value Solver

For general cases, the solution for (static) equilib-
rium and strain compatibility under the given bound-
ary conditions has to be sought numerically. A variety
of numerical techniques exist for solving the differen-
tial equations. Most often, the finite element method
is used. As an alternative solver, a spectral method using
fast Fourier transforms was introduced by Moulinec
and Suquet [23] in the field of material micromechanics
and has gained significant attention during the last
years [24-26]. Limited to periodic boundary condi-
tions, this technique usually exceeds the finite element
method in terms of solution quality because it uses
trigonometric polynomials as ansatz functions. More-
over, since it operates in Fourier space, the use of fast
Fourier transforms allows for a very time- and memory-
efficient iterative solution algorithm. Various improve-
ments and extensions were reported in the recent years:
Lebensohn [27] extended it to the context of crystal
viscoplasticity and showed the capabilities of this ap-
proach as well as several applications in a number of
studies [28—30]. Crystal plasticity-based constitutive
laws have also been successfully employed by, e.g.,
Suquet et al. [31] and Grennerat et al. [32].



314 DIEHL et al.

Simulations of heterogeneous materials, however,
are limited by the slow convergence of the original
fixed-point iterative method when it is applied to ma-
terials with a large contrast in the local stiffness [33].
Several approaches have been proposed to overcome
this limitation. Accelerated schemes have been intro-
duced by Eyre and Milton [34] and Monchiet and Bon-
net [35] for materials with large property contrasts.
Michel et al. [33] suggested a method based on aug-
mented Lagrangians that also works in the case of
materials with infinite property contrast. Using the
original formulation and substituting the fixed-point
method by advanced solution methods is another op-
tion to improve convergence as shown by Zeman et al.
[36] and Brisard and Dormieux [37].

The spectral formulation used in this study is the
one presented by Eisenlohr et al. [38] and its exten-
sion by Shanthraj et al. [39]. Since the reader might
not be familiar with this method, we outline it briefly
in the following.

2.4. Formulation

The deformation map yx(x) is expressed as a sum
of a homogeneous deformation, characterized by a
constant deformation gradient F, and a superimposed
deformation fluctuation field w:

2(x) = Fx+ W(x), (16)
for which periodicity conditions hold, i.e. W™ =w"
on corresponding surfaces 0B~ and 03" on 3.

Equation (16) allows writing the deformation gra-
dient F as the sum of a spatially homogeneous defor-
mation part F and a locally fluctuating displacement
part F:

F=F+F. (17)

The material response, Eq. (12), is formally writ-
ten as a relation between the deformation gradient F
and the first Piola—Kirchhoff stress P through a strain
energy density functional 74/:

Sw
P(x) —SF—(X)—f(x, F,2,..). (18)

2.5. Direct Variational Formulation

The direct variational formulation is closely related
to the original spectral method suggested by Moulinec
and Suquet [23] and the corresponding large-strain for-
mulation introduced by Lahellec et al. [40] and Eisen-
lohr et al. [38]. Here it is written in a general form that
allows replacing the original fixed-point approach by
more powerful numerical solvers [39].

The equilibrated deformation field is obtained by
minimizing 7/ over all deformation fields that fulfill
Eq. (16) for an externally prescribed average defor-
mation. Static equilibrium expressed in real and Fou-
rier' space follows as

minW = V-P(x)= F'[P(k)ik]=0, (19)
x

which is equivalent to finding the root of the residual
body force field
Flyu(k)]=Pk)ik =0. (20)
The differential Eq. (20) in Fourier space is numeri-
cally difficult to solve because of its high condition
number. Introducing, in the spirit of Eshelby and Mura
[41], a linear comparison material of stiffness D al-
lows reformulation of Eq. (20) into an equivalent prob-
lem P(x)=DF(x)=DVy with better numerical pro-
perties, i.e. a lower condition number. Equilibrium in
this reference material is fulfilled if, for a given defor-
mation map y, the residual body force field vanishes
Ply(K)]=Dyk)®ik]ik = Ak)y(k)=0. (21)
The acoustic tensor A(k) is a shorthand notation for
A(k)a(k):=D[a(k)®ik]ik forany given vector field
a(k). It corresponds to an operator on a deformation
map producing the body forces resulting in the refer-
ence material. The inverse A~ therefore gives the
deformation map that would result from a known body
force field in the reference material. This deformation
map vanishes if the body force field vanishes, i.e., in
static equilibrium for a positive-definite . Next, an
operator that results in the deformation map causing
the same body force field in the reference material as
a given deformation map in the original material is
defined. This corresponds to a preconditioning opera-
tion of @~ on the nonlinear operator F. @ is straight-
forward to invert since it is local in k, with @' =
A(K) L. The preconditioned system thus reads (Vk # 0):

P7'F(y(k)) = Ak) ' P(k)ik = 0. (22)

The deformation gradient field corresponding to this

deformation map is obtained from the gradient in real
space of Eq. (22)

P'Fly(k)]®ik =[A(K) 'P(k)ik]®ik =0. (23)

This is equivalent to Eq. (22) except for a constant
residual field, i.e. at k = 0 where the prescribed aver-
age deformation gradient is known to hold. Expressed

! Quantities in real space and Fourier space are distinguished by notation
Q(x) and Q(k), respectively, with x the position in real space, k the fre-
quency vector in Fourier space, and ;> =—1. F'[.] denotes the inverse
Fourier transform.

PHYSICAL MESOMECHANICS Vol.20 No.3 2017



CRYSTAL PLASTICITY STUDY ON STRESS AND STRAIN PARTITIONING 315

in terms of the deformation gradient field, Eq. (23)
reads

Tyir[F(K)] =T'(k)P(k) =0, (24)
where the Gamma operator I'(k) is defined as a short-
hand notation to I'(k)T(k) :=[A (k) 'T(k)ik]® ik for
a tensor field T(k).

2.6. Mixed Variational Formulation

The idea of using a mixed variational formulation
was firstly outlined by Michel et al. [42] to overcome
convergence problems with high phase contrast. Here,
this idea is presented in a general form given by Shan-
thraj et al. [39]. In this formulation the equilibrium
deformation field is obtained by minimizing 9/ over
all deformation gradient fields fulfilling Eq. (16) for
an externally prescribed average deformation. Unlike
in the direct variational formulation, the compatibility
of the deformation gradient VXF =0, field is imposed
as an auxiliary constraint

mFin‘W(F) subject to F =Vy. (25)

This can be reformulated as an unconstrained optimi-
zation problem by introducing a Lagrange multiplier
field A(x), and a penalty term. Conveniently, the ref-
erence stiffness 1) as defined above is used as the pen-
alty parameter. The resulting augmented Lagrange
multiplier functional reads
L[F,q Al=W + f A(x) - [Vy(x)-F(x)]dx
B
n [Va(x) - F(O]- DIVy () - F(0l 4
& 2
The equilibrium condition is equivalent to the saddle
point of Eq. (26) (for details see [43]). This results in
the following three stationary conditions:

(26)

3L 3 3 _
SF(x) P(x) - A(x) + D{F(x) - Vy(x)} = 0,
5L VIA(x) -D{F(x) -V (x)}]1=0, (27)
x(x)
3L 3 B
SA—(X) =Vy(x)-F(x)=0.

After the application of the Fourier transform, it reads
as
P(k) - Ay (x) + D{F (k) -y (k) ® ik} =0,
AT (K DFK) - A )k =x(k).  (28)
1kK)®ik-Fk)=0

with the Lagrange multiplier field relative to the refe-
rence configuration as A,(x) =F(x)A(x). Eliminat-
ing y from Egs. (28), ; using Eq. (28), gives the equi-
librium deformation gradient field as the solution to
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Froi [F(K), Ay (k)]

a {P(k)—Ao(k)+D(F(k)—r(k)(DF(k)_Ao(k)))}
| F(K) -TK)DFK) - Ay(k))

=0. (29)
The condition F(k)-T(k)(DF(k)-A,(k))=0 in
Eq. (29) is necessary and sufficient to enforce both the
compatibility of the deformation gradient field, given
by F(k)-TI'(k)DF(k) =0, and equilibrium of the Lag-
range multiplier field, given by I'(k)A,(k) = 0 (for de-
tails see [35]). The condition P(k)— A, (k) =0 enforces
equilibrium of the stress field corresponding to F.

2.7. Implementation

The hexahedral domain B, withsidelengths d,d ,
d. is discretized into a regular grid of N, XN, XN, =
N points with unit spacing. The solution field is ap-
proximated in the discrete Fourier space associated
with this real space grid. For the transformation be-
tween real and Fourier space, the Fastest Fourier Trans-
form in the West [44] developed by Frigo and Johnson
[45] is used.

The choice of the reference stiffness D has a strong
influence on stability and convergence rate as shown
by Michel et al. [33]. In absence of an analytic expres-
sion for the large strain formulation the reference stiff-
ness D is selected as

p  emax |dP/dF (x)||,, +arg min||dP/dF (x)]

- 2
A collocation-based discretization approach at the grid
points in real space is used to discretize Eq. (29). The
static equilibrium condition is expressed in terms of
the deformation gradient field and a rescaled polariza-
tion field, F,(x):= ]D)_I(F_I(X)AO(X)) +F(x). To get a
well-conditioned system of equations, the inverse of
the reference stiffness ™' is used to scale the stress

term in Eq. (29) resulting in the following expression:
I-[F(x), F;(x)]

D™ (P(x) - Ay (x)) +BF(x) -
el { {I‘(k)(BID)F(k) —0A,(k),if k #0,

E (30)

3 BFyc.if k=0 .~
' I(K)(BDF(k)-aAyk),] |
BF(x)—F~'|{if k %0,
BFyc,if k =0

The coefficients o and B with default value o= =
1.0 enable to weight the conditions for static equilib-
rium and strain compatibility. Their optimal choice
depends on the problem type, e.g. the ratio of increased
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Fig. 1. The surface removal per polishing step is measured on markers perpendicular to the region of interest. (a) Markers on one of
the parallel sides. Dashed line / indicates region of interest. (b) Surface removal per polishing step and linear fit.

or decreased stiffness compared to the average stiff-
ness. A detailed study of their influence on the conver-
gence rate is given by Moulinec and Silva [46] for a
similar formulation in a small strain framework.

The desired deformation boundary condition Fy
of the volume element is conveniently prescribed by
setting AFy = F —Fye. This allows adjusting the de-
formation gradient such that a stress boundary condi-
tion is fulfilled component-wise as outlined by Eisen-
lohr et al. [38].

The nonlinear solution methods to solve the result-
ing systems of discretized equations are taken from
PETSc [47] developed by Balay et al. [48]. The resi-
dual results from evaluating Eq. (31) at the grid points.
Shanthraj et al. [39] compared three solution methods
implemented in PETSc. The method showing the best
performance in this benchmark, namely the nonlinear
GMRES method [49], is used in this study.

2.8. Convergence Criteria

A solution is accepted if the stress field is equili-
brated, the deformation gradient field is compatible
and the macroscopic applied boundary conditions are
fulfilled.

Using the differentiation property F[df(x)/dx]=
i27k f(k), the deviation from static equilibrium V - P
and compatibility VXF can be calculated in Fourier
space. Moreover, the root mean square (RMS) as a vo-
lume average is easily accessible as discussed in Eisen-
lohr et al. [38] in Fourier space. The corresponding
equilibrium criterion reads:

max(e. . |P| .€...)
erel |m”max 20> RMS(|V - P(x)]|,). (32)
where €, and €, are the relative and absolute

equilibrium tolerances. The expression to test for a
compatible solution is

max(e

c,rel

[F 1], cans)
m

where €. and €, are the relative and absolute

compatibility tolerances.

The fulfillment of complementary macroscopic de-
formation gradient and stress boundary conditions is
determined by

rn‘ax(gBC,rel

> RMS(|VxFx)|, ). (33)

[Pl Encans) 2 [APsc (34

with APyc; = Ay (Fe -F),,, if Fyey; 1s prescribed
and APyc; = (Bgc —P) g if Bacyj prescribed and the
relative and absolute tolerances €pc o and €pc -

3. MICROSTRUCTURE CHARACTERIZATION
AND MODEL CREATION

The investigated material is a commercial dual
phase steel grade containing the main alloy elements
C (0.14 wt %), Mn (1.7 wt %), Si (0.24 wt %), Al
(0.04 wt %), and Cr + Mo (0.56 wt %). The average
grain size of ferrite is 5.0 um and the martensite is-
lands (each consisting of several laths with different
crystallographic orientations) have on average a dia-
meter of 0.5 um.

In the following it is outlined how the 2D and 3D
microstructural models are created from this material.
Additionally, the parameters for the constitutive model
and the loading boundary conditions are provided.

Fig. 2. Orientation map (colors according to inverse pole
figure parallel to the normal direction) overlaid with the
image quality (darker values indicate lower image quality,
i.e. typically martensite). Rolling direction is horizontal.

PHYSICAL MESOMECHANICS Vol.20 No.3 2017
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Fig. 3. 3D model constructed from 22 sections where the
markers can clearly be seen. Color code displays image
quality. A lower image quality (dark) indicates typically
martensite. Arrow /—rolling direction, arrow 2—trans-
verse direction, arrow 3—normal direction.

3.1. Sample Preparation and Microstructural
Characterization

For obtaining a three-dimensional microstructure
data set of the investigated material, a serial-section-
ing approach that consists of multiple cycles of me-
chanical polishing and electron backscatter diffraction
imaging [50] was employed. To this end, first a sample
with two parallel sides of high surface quality was pre-
pared by mechanical grinding and polishing. On each
of those parallel surfaces, four marker lines were en-
graved by focused ion beam milling using a Zeiss
Cross-Beam instrument (Fig. 1a). Two of these lines
are parallel to each other and serve as a reference for
magnification and positioning. The two other inclined
lines have including angles of 45° with the reference
lines and serve as markers to determine the polishing
depth. In fact, after mounting the material and polish-
ing the surface of the region of interest perpendicular
to the marked surfaces, the marker lines appear as
sharply peaked spikes at the edge of the sample. The
change of distance between the depth markers and the
reference markers then corresponds directly to the
depth of polishing. In the present case the sample was
warm mounted into conductive resin (Polyfast by
Struers) into a cylindric mount of 25mm diameter.

For each measurement cycle, the sample was polish-
ed with silicon-oxide particle suspension produced by

Struers at a pressure of 60 kPa for 4 min. This led to a
removal of, in average, 0.13 wm per slice as displayed
in Fig. 1b. Figure 1b moreover shows that the removal
rate was approximately constant and varied by approxi-
mately 50 nm per slice. After every polishing step the
sample was manually placed into a Zeiss XB 1540 high
resolution scanning electron microscope. The sample
was tilted to 70° and then manually moved to the origi-
nal measurement position using the reference mark-
ers. Finally, an orientation map was taken using EBSD
(OIM 6.x by EDAX/TSL using a Hikari camera) oper-
ating at 15 kV electron beam acceleration voltage. One
of these acquired orientation maps is shown in Fig. 2.

In total, 22 slices, each sized 20x70 um? (trans-
verse X rolling direction) at an in-plane EBSD step size
of 0.2 um have been acquired. The CUBE software
from Bruker [51] has been used to create a 3D model
from all sections. The sample 20.0x70.0x2.86 um? dis-
cretized by 351x100x22 = 772200 points is shown in
Fig. 3.

3.2. Model Creation

The model required for the crystal plasticity simu-
lations to be conducted using the spectral solver can
be directly created from the measured orientation data
on the regular 3D voxel grid. However, due to the simi-
lar lattice constants, it is not directly possible to dis-
tinguish martensite and ferrite. The conventional ap-
proach of using the image quality as an indicator [5,
52] (which is lower for the heavily distorted rnartensitic
crystals) is not applicable here as polishing and sample
preparation introduced a substantial variation in im-
age quality between the sections and even within one
section. Therefore, the grain size was used to indicate
whether a measured point pertains to the martensitic
or to the ferritic phase. This approach is based on the
ratio that (i) ferritic grains are 10 times larger than
martesitic islands and (ii) in each martensite grain,
several lath of distinct orientation can be identified as
individual grains [52-55]. To this end, first each ori-
entation map was cleaned using the features available
within the TSL OIM software. After cleaning, a 3D
model was created on which individual grains (i.e., in

Table 1. Constitutive parameters of ferrite and martensite used for the simulations taken from [5]

Cll’ Clz’ C44’ YO’ &:0 {110}> g {110} > &:0 {112}» g 112}> h()’
X oo, X oo, h
Property | pa | GPa | GPa s' | MPa | MPa | MPa | MPa | GPa o " a
Ferrite 2333 | 2355 | 128.0 95 22 | 96 412 1
0.001 1 20 | 225
Martensite | 417.4 | 2424 | 211.1 406 873 | 457 971 | 563
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(@)

Fig. 4. Equivalent strain €, (a) and stress G, (b) at increasing strain level € from top to bottom mapped onto the deformed
configuration for the case of the 3D simulation. The surface shown is parallel to the normal plane. The black frame indicates the
shape in the undeformed configuration. A logarithmic scale is used to for mapping the stress and strain values to the color bar in
order to resolve details in both phases with their vastly differing mechanical properties.

the case of martensite, laths) have been identified us-
ing a tight tolerance angle of 3°. Now, all grains of a
size smaller than 30 voxels have been considered as
martensite. As a final step, all grains identified as mar-
tensite but consisting of only one voxel are considered
and treated as a measurement artifact and are hence
assigned with ferrite properties to avoid associated nu-
merical artifacts. This leads to a volume fraction of
5.8% of martensite. A visual inspection of the segmen-
tation achieved by this approach indicates a reason-
able phase separation. However, few ferrite grains are
erroneously detected to be martensite because they are
smaller then the size threshold set for the phase sepa-
ration. This issue on grain segmentation in three di-
mensions is directly related to the serial sectioning ap-
proach: The crystallographic orientations obtained
from the individual EBSD measurements are mapped

in a reference system relative to the assumed position
of the sample on the microscope stage. Despite care-
ful sample preparation and alignment, the position of
the sample with respect to the EBSD detector differs
between the individual measurements. Therefore, ori-
entation differences significantly larger than the EBSD
angular resolution of less than 2° (which is achieved
in each individual map) appear between points belong-
ing to the same grain but acquired in different sec-
tions. Moreover, at the surfaces of the measurement
area where grains are cut off, detected grain sizes are
smaller than in the volume and the wrong assignment
occurs slightly more frequent than inside of the mea-
surement block.

The three-dimensional model constructed from all
772200 measured points has been mirrored in all three
directions to avoid artifacts at the sample boundaries

Table 2. Minimum, mean, and maximum values of the equivalent stress and strain found in the 3D simula-

tion at a global strain in loading direction of € = 0.182
Phase Equivalent stress o, GPa Equivalent strain €,
Minimum Mean Maximum Minimum Mean Maximum
Ferrite 0.17 0.67 1.32 0.0026 0.2150 0.8648
Martensite 0.32 1.91 7.03 0.0008 0.0454 0.6905

Table 3. Minimum, mean, and maximum values of the equivalent stress and strain found in the 2D simula-
tions at a global strain in loading direction of € = 0.182

Phase Equivalent stress ©,,,, GPa Equivalent strain €,
Minimum Mean Maximum Minimum Mean Maximum
Ferrite 0.21 0.67 1.29 0.0322 0.2195 1.2503
Martensite 1.39 2.07 11.40 0.0291 0.0465 0.4851

PHYSICAL MESOMECHANICS Vol.20 No.3
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Fig. 5. Stress—strain response in loading direction obtained
by the different simulations. The values of the 3D simula-
tion is given by the solid line, the average value of the 2D
simulations is given by the dashed line and the grey area
indicates minimum and maximum values among all 2D

simulations. Cauchy stress and true strain are computed
from F and P.

introduced by the periodic repetition due to the ap-
proximation of the deformation gradient and stress
fields by a Fourier series. Additionally, from each of
the original 22 slices, a 2D model (still mirrored in
both in-plane directions) is created to investigate the
influence of a simplified columnar grain structure on
the stress and strain partitioning in the spirit of Diehl
etal. [12]. The martensite volume fraction ranges from
1.8 to 8.9% in the 2D models.

Material parameters that were before fitted to a simi-
lar material by Tasan et al. [5] are used in this study
(Table 1).

Uniaxial tensile loading along the rolling direction
at an engineering strain rate of 1 x 107 s™! was applied
for 200 s in 400 increments, i.e. a final true strain of
€ =0.182 was reached. This load case reflects the situa-
tion in a tensile test and has little deformation con-
straints compared to, e.g., plane stress loading. It should
be noted that the values are prescribed as volume ave-
rage for a periodically repeated body (compare
Sect. 2.3) and hence differ from typical (nonperiodic)
boundary conditions used in finite element analysis.

4. RESULTS
4.1. Three-Dimensional Model

The spatial distribution of the equivalent (von Mi-
ses) strain €., and stress G,,, is shown in Fig. 4 for
three different loading states, i.e. at € = 0.020, 0.095,
and 0.182, where € denotes the logarithmic (true) strain
along loading direction. A significant stress and strain
partitioning among the phases can be seen at each load
level. The spatial distribution over time, i.e. from top
to bottom in Fig. 4, is largely constant as the same

PHYSICAL MESOMECHANICS Vol.20 No.3 2017

locations at € = 0.020, 0.095, and 0.182 can be identi-
fied as being low respectively high stressed/strained.
Among different ferrite grains and within the same
grain, a large variation in stress can be observed at all
three load levels (Fig. 4b). The extreme values of stress
and strain at € = 0.182 in both phases are given to-
gether with the corresponding mean value in Table 2.
As expected, the stress in martensite is much higher
than in ferrite while the opposite holds for the strain.
The strain in martensite between different regions dif-
fers by more than one order of magnitude and the stress
by almost three orders of magnitude. In ferrite, the dif-
ferences are slightly lower, i.e. by almost one order of
magnitude in strain and by more than two orders of
magnitude in stress.

4.2. Comparison between the Three-Dimensional

Model and the Two-Dimensional Models

The global stress—strain curves in terms of the ave-
rage Cauchy stress and logarithmic strain in loading

Oym, GPa oym> GPa
o] 3D ], @
6 -6
4 -4
21 -2
1.0 . . . . 1.0
o,v. GPa o\, GPa
13D wn} ®
1.0 1.0
0.6 0.6
0.2+ : : F0.2
1.0 1.0
o,v. GPa o, GPa
gl 3D g ©
6 6
4 = -4
21 2

0.5 0.3 0.1 0.1 0.3 0.5

Fig. 6. Probability density maps showing the correlation
between equivalent stress and strain within the 3D simula-
tion (left) and all 2D simulations (right). Darker value in-
dicates higher probability to find the stress—strain correla-
tion. Ferrite and martensite (a), ferrite only (b) and marten-
site only (c).
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In(P2p/p3p)

Fig. 7. Equivalent strain €, (a) and stress o, (b) in a section of the 3D microstructure (top) and in the corresponding 2D
microstructure (middle) and the logarithmic of the ratio between them (bottom) mapped onto the deformed configuration of the 3D
simulation (& = 0.182). The section shown is parallel to the normal plane. A logarithmic scale is used for mapping the stress and
strain values in order to resolve details in both phases with their vastly differing mechanical properties.

direction for the 3D simulation together with the aver-
age and the extrema of the 2D individual simulations
are given in Fig. 5. The average response of all 2D
simulations, i.e. considering all voxel in the 3D vol-
ume and doing individual simulations for each sec-
tion, is almost the same as the response for the full
model. A difference between the softest and the stiff-
est section of approximately 70 MPa can be observed.

Table 3 gives the minimum, mean, and maximum
values of the equivalent strain and stress obtained by
the 2D simulations for a global strain of € = 0.182. A
comparison of the stress values (Table 3) to the results
obtained from the 3D simulation (given in Table 2) re-
veals that the 2D simulation predicts a more homoge-
neous distribution around the same average in ferrite
while minimum, average, and maximum values in the
martensitic phase are substantially higher in the 2D
situation than in their 3D counterpart. The mean va-
lues of the equivalent strain show no significant dif-
ference between the 2D assumption and the 3D model
(compare Table 3 with Table 2). A wider distribution
of the strain values in martensite results from the 3D
simulation while in ferrite the minimum and maximum
values are significantly higher in the 2D case.

In Fig. 6, probability density maps (“heat maps”)
are given for comparison of the stress-strain partition-
ing in the 3D simulation (left) to the sum of all 2D
simulations (right). More specifically, Fig. 6a displays
the probability density of equivalent strain and stress
for ferrite and martensite together. Fig. 6b shows it for
ferrite only, and Fig. 6¢ for martensite only. A bipar-

titioned distribution can be seen in Fig. 6a: At the bot-
tom (low stress) the values belonging to the ferrite are
located and at low strains (horizontal center) the va-
lues of the martensitic phase. This representation con-
firms the findings that the 2D situation leads to higher
strain and stress values in martensite while the ferrite
is more strained, but stays at a similar stress level. Figu-
res 6b and 6¢ showing the heat maps for both phases
individually allow to investigate behavior of marten-
site and ferrite more closely. From Fig. 6b the signifi-
cant different stress levels in ferrite can be accessed.
Figure 6c¢ reveals that in the 2D simulations a substan-
tial share of martensite shows stress values above the
maximum value found in the 3D simulation.

A point-to-point comparison of the equivalent strain
and stress maps for one section in the center of the 3D
microstructure is given in Fig. 7. It can be observed
that the stress in martensite is higher in the 2D situa-
tion, a trend perceived also from the comparison of
Table 3 with Table 2. To visualize the differences be-
tween the results obtained by both simulations, first
the ratio between the shown values is computed follow-
ed by taking the natural logarithm of it: In(p,;/ psp)
for pe o, €, This measure is motivated from the
true (logarithmic) strain measure. Its desired property

lim ln(pzD/p3D) =t

Pap—rEeo
in contrast to the relative difference which has lower
bound of —1 and upper bound of +<o. Hence, this mea-
sure is better suited then a “standard” relative differ-
ence when large deviations to both, lower and higher

is the asymptotic behavior,
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values, occur. Maps showing the obtained values for
stress and strain are given in the bottom row of Fig. 7.
It can be seen that the relative differences in strain are
especially large in or in the vicinity of martensite, while
the largest relative stress difference is often found in
ferrite.

5. DISCUSSION

The results presented above clearly emphasize the
severe strain and stress partitioning occurring in dual
phase steels caused by the very different mechanical
behavior of martensite and ferrite. The magnitude and
pattern of the partitioning depends on details such as
martensite shape and distribution, crystallographic
orientation and misorientation that have been included
into the simulation by using an experimentally charac-
terized microstructure as input data.

The global stress—strain response of a 3D model
and the 2D microstructures built from this 3D models
differs only slightly. This is especially astonishing as
the martensite volume fraction of the individual sec-
tions differs significantly from their average given by
the 3D model. In contrast, the local response is vastly
changed when a 2D section is used alone compared to
embedding it into the experimentally obtained neigh-
borhood. In fact, the 2D simulations show strain hot
spots which are up to 11 times higher in strain and up
to 3 times higher in stress than the same positions in
the 3D simulations. The reason for this is that the co-
lumnar structure of the 2D simulation does not allow
for relaxation or support through different deforma-
tion paths above or below the observed structure. As a
consequence all strain paths follow a 2D-pattern result-
ing in the observed intense shear patterns in the 2D
simulations. In contrast, the 3D simulations allow strain
paths in 3 dimensions, thus resulting in lower stress
and strain concentrations. These observations show that
the analysis of local strain features, for example for
the understanding of crack nucleation, imperatively
need 3D calculations with realistic microstructure input.

6. CONCLUSION AND OUTLOOK

A dual phase steel microstructure model based di-
rectly on a data set obtained by a 3D EBSD characteri-
zation approach has been utilized for a simulation study
using a crystal plasticity approach in combination with
a fast spectral solver included in the free and open
source software DAMASK. The microstructural mo-
del, by including details such as martensite shape and
distribution, crystallographic orientation and misorien-
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tation, allows to investigate stress and strain partition-
ing without significant simplifications. The proposed
modeling method and the approach for obtaining the
microstructure by serial sectioning are therefore a pro-
mising route for the efficient investigation of stress
and strain partitioning in dual phase steels and other
materials with complex microstructures.

2D models, assuming a columnar grain structure,
have been used to investigate the influence of this sim-
plification. In agreement with Diehl et al. [12] it is
clearly shown how important full 3D microstructures
are for capturing the details of stress and strain parti-
tioning in dual phase steels for the investigated load-
ing conditions. While no large effect on the global re-
sponse could be found, the local stress and strain va-
lues differ quantitatively and qualitatively when a 2D
model is used instead of a 3D model. Especially for
simulations tackling the question of damage initiation
in dual phase steels (for damage models implemented
in DAMASK see [57]), 2D modelling is therefore an
unsuitable and erroneous approach: As these damage
models predict damage based on the local stress or
strain response, relying on values that are off by a fac-
tor of up to 3 for the stress and by a factor of up to 11
for the strain when employing a 2D model would in
most cases result in entirely incorrect simulation re-
sults and conclusions.

For building the model of dual phase steel, the dis-
tinct separation of both phases remains a challenge. It
can be expected that replacing the manual serial sec-
tioning approach presented here by an automated sys-
tem will help to solve this problem. First, a more repro-
ducible surface preparation will restore the possibility
to use the image quality as a phase indicator. Second,
a more exact placement of the sample in the EBSD
system will reduce the deviations in measured crystallo-
graphic orientation between different acquisition runs.
Combining both indicators, i.e. grain size and (grain
average) image quality into one algorithm should then
allow to reliably separate martensite and ferrite. More-
over, an automated system will reduce experimental
efforts and enable to investigate larger volumes and
improve statistical confidence.
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