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Abstract—The paper proposes a model of a crack system as local symmetry breaking for a group of 3D rotations
compensated by fictitious fields that make Lagrangian equations of elastic energy density covariant in the effective
Riemannian space. Equilibrium equations are solved using the perturbation theory with the number of notches
being a small parameter, and exact expressions are derived for stress and gauge fields in a 2D problem by applying
Hilbert transform to orthogonal Chebyshev polynomials. The model is generalized to nonlinear elasticity (defor-
mation theory of plasticity) and statistical mesomechanics models. Also presented is a solution for stress concen-
tration in a system of arbitrarily oriented cracks which takes into account their mutual influence at any order of the
perturbation theory and reduces to a system of linear equations with explicit exact solutions.

DOI: 10.1134/5102995991702014X

Keywords: racture, crack, Hilbert transform, statistical mesomechanics

1. INTRODUCTION

The strength of a material is determined by its struc-
ture. In particular for a metal, the structure means the ar-
rangement, form, anisotropy, and other characteristics of
equilibrium or nonequilibrium second phase particles,
being all eventually responsible for its performance: ho-
mogeneity of strain, stress and fracture strain, J integral,
critical stress intensity, etc. [1, 2].

For a fracture surface to arise, a main crack must de-
velop through several stages: its near-isotropic nucle-
ation at structural defects, e.g., second phase particles
(often nonmetallic inclusions), passage through incoher-
ent particles, constrained growth, and opening due to
stress concentration, delamination, etc.

Fracture, as arule, begins from a series of “bad” sites,
like badly located inclusions, large segregations (so-called
conchoidal fractures), etc. The concentration of such bad
sites is small, falling on statistical distribution tails,
which makes their statistical analysis difficult [3—5].

However, we can use the advantages of field models
and statistical description, offering us universality, de-
veloped mathematical apparatus, feasibility of broad ge-
neralization and appropriate analogies. It is therefore ex-
pedient to include cracks in field descriptions. One of the
variants of the theory of defects is to consider disloca-

tions and disclinations as gauge fields recovering local
symmetry the structural group of which is the well-
known product of translations and rotations T(3) X
SO(@3).

The aim of the study is to generalize the field theory
of defects to the theory of fracture and to derive exact
(explicit) solutions for gauge and stress fields in a system
of arbitrarily oriented notches.

2. GAUGE MODEL OF A CRACK

Let us consider a solid Q with a boundary 62 loaded
by a force P, taking r as the initial point of a coordinate
i at no load, R(7;) as its current coordinate, and
U; = R(r;) —r, as the displacement vector. The initial
space is Euclidian with a metric g;;. The metric for the
Cartesian space is [+++], and the four-valent curvature
tensor for the Euclidian space is identically equal to
zero: Ry, = 0. Let the co- and contravariant derivatives
of the vector R be denoted as

oR, _ oR' R
The deformation of the solid can be described using

the Almansi strain tensor €, =1/2R, , R, ~ 88 & 1ms

where 81; is the Kronecker delta.
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In linear order of displacement field derivatives, ¢,

is expressed as
o )
2{ ox™ ox

If the solid is free of cracks, the Lagrangian density
of elastic energy with neglect of inertial terms is
Ly=Me2,, +2u/L e™e,,), where A, jt are Lame con-
stants. Varying this expression in displacement fields U
gives an ordinary equilibrium equation.

If the solid contains cracks, their presence can be de-
scribed through a fictitious symmetric tensor field ¢*"
(generally speaking, with spin state 2 or 0) that creates an
effective Riemannian space with a metric g"¥ intro-

duced as
\/ng — \/E(gw +oM),

where g = det(g""), g = det(g"").

Next follows expansion in terms of a small parameter
Yy <<1 characterizing the energy contribution of the field
¢o" to the total Lagrangian:

o' =l + ol +....
In the zero approximation, i.e., with no cracks, we have
9y’ =0.

In order of magnitude, y is proportional to the elastic
energy increment in the solid with cracks compared to its
elastic energy with no cracks, i.e., it is proportional to a
quantity dependent on the crack concentration 7.

For example, in a 2D elastic problem, the stress con-
centration is proportional to 7~ “, where r is the distance
from the crack tip, @ =1/2 for a notch, and @ =1 for a
hole. The elastic energy is ~7>**2, and because r ~
nY 2, the relative contribution is ~n' ™%, i.e., for real sys-
tems with n=102-10"*, we have y ~10™ =102 « 1,
which does not certainly exclude a singularity in the vi-
cinity of the crack tip.

Now we can replace the ordinary derivative in the
effective Riemannian space by the covariant derivative
D,R, =R, + ri,,nRi,~ where I is the Christoffel
symbol with I, —1I" —aty — 0; for the Cartesian
space, I =0.

The stress field o)’ can be expressed by differentiat-
ing the Lagrangian with respect to the field £;,:

m_ 0L
~9E!
Field variation of R; gives equilibrium equations of
the form

n

n

ac*

871?_'_1—‘2; S—Fi o' =0

n snTi

or, in view of symmetry of the tensor G, and expression
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of Christoffel symbols in g", we have
0] 198y u _
oxk 2 o,
According to the principle of least action, we can ob-
tain a Lagrangian of the field @"Y, restricting here to the
field degree. Generally speaking, for particularization, it
is sufficient to specify an infinitesimal transform of @"
so that the Lagrangian would differ by total divergence
of an arbitrary vector.
For example, we can choose the much used transfor-
mation

AJgg = Jgg"d, o +gg"d 0
—dy (0 Jgg™),

where " is an infinitesimal increment corresponding
to the Lie algebra and d,, =9/dx”.

For this case supplemented by d,, (Jgg") =0, which
is an analogue of Lorenz gauge in electrodynamics,
the transform \/E - \/E +d, (\/Eu)“ ) gives \/gR -
\/ER +d, (\/ER(DM ), where R is the scalar curvature of
" -based effective Riemannian space. What is signifi-
cant is that the introduced field provides dx =dx/, i.e.,
the field ¢*" is a gauge one.

If, reasoning from the above, we choose the simplest
expression L, =—A;+/gR, its variation in Jegght or ¢
gives respective motion equations which are obvious
and thus omitted; the more so they are not required for
the orders of the perturbation theory considered below.

Significantly, the Lagrangian of the field @' cannot
have the form L, = —kl\/gR—)»z\/g as it makes the
motion equations noncovariant.

The derived relations represent a system of nine (3 + 6)
nonlinear differential equations in twelve variables: six
stress tensor components and six ¢"" field components
(five are independent and one equation is coupling).

Three additional equations follow from standard
compatibility conditions or from strain expressed in
terms of displacement vector. In fact, we have “geom-
etrization” for a system of cracks.

The system of equations, given its boundary condi-
tions, can be solved numerically (first or second problem
of the elasticity theory). However, we are interested in
analytical solutions for some intriguing and important
cases considered further.

Besides, if we go to covariant description in the Ri-
emannian space with actual inclusion of cracks in the
system of field equations, rather than as boundary condi-
tions (standard schemes), we have significant complica-
tions: the elastic problem becomes nonlinear and as-
sumes a larger number of equations. However, the num-
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ber of independent constants remains the same and equal
to the number of isotropic elastic constants A, L.

3. PERTURBATION THEORY

The equations for the fields o', @), are solved in
terms of a formal perturbation series in small y:
0 1 0 1
G,y =0 0, +es @, =0, +0,., +
In the zeroth order approximation, ¢ =0 is absent
and the field 6”° = 6™°(x) is know; a(pk,/ax =8, is
as further introduced.
In the first order, the equilibrium equation takes the
form
oo 1
nk 2
Let us represent the solution 67" as
1 1 1 k10
Cp = jQpl(x = x)8;,(x)5"" () )dx;,

where Q;, (x—x,) isaknown action function at a point
x for concentrated force at a point Xx;.

Calculating © (x) allows a similar second-order
calculation for S}, and 65(x), and so on.

In the most interesting case for a two-dimensio-
nal crack, the action function can be expressed in terms of
complex potentials, and the field correction in terms of ana-
lytical extension.

1 _ki0 _
—8;,00 =0.

4. TWO-DIMENSIONAL EXACT SOLUTIONS

Let us consider a plane notch of length 24 =2 along
axis / in an inhomogeneous field of a large plane crack
of length 2D >> 2d (Fig. 1). The second crack is so
large that the effect of the first on the second can be ig-
nored. The entire system experiences tensile stress G
along axis 2.

The additional condition of unloading at the crack
surface allows us to express the fields in terms of two
orthogonal Chebyshev polynomials. For the stress field
along the notch (-1, 1), we have

1

Gyt J Oxn (J’1)51122 (»)dy, =0,
-1%1~™N
1

Op + | —61,(11)S}1, (3)dy, =0,
1%~ N

because Q;,(x -x)~1/(x=y).
Further, we apply the Hilbert integral relation' to
U, (x,) -order Chebyshev polynomials of the first and

! The Hilbert transform in the field problem of a crack system was first used by
M.A. Shtremel [4].
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Fig. 1. Crack in an inhomogeneous external field.

second kind:
14T d
1 M%Z%(n)a | <1
T Nn—X% l_yl

The Chebyshev polynomials have the form
Uy(x) =1, Uy(x)=2x, Us(x)=4x*—1,...,
Ty(x)=1 T(x)=x, T,(x)= 2x% -1, ...
Expanding the field along the notch (-1, 1) in terms of
Chebyshev polynomials of'the first kind as

o, (1) = Z ckUk(yl) 0y ()= kZOCkUk(yl)

gives the express1ons for the field in the range (-1, 1):

N-1

Z Cllch+1 ) 1
51122 () =52
kZOCkUk(yl) \/1 yl

N-1

chTkH(yl) 1
Slllz(yl)_ -
chUk(yl) \/1 yl

which automatically satlsfy the variational form of equa-
tions.

For the schematic in Fig. 1, the only nonzero compo-
nent is the component S|,,. In the simplest case of the
notch (-1, 1) at homogeneous ¢

51122 ()= 1 :
NS

It is easy to solve a similar problem for the gauge
field of the notch (-1, 1) in the region of a hole of diam-
eter 2D >>1 and other problems like this.

Figure 2 presents a gauge field for a crack in an inho-
mogeneous external field induced by a large crack of
size 2D and hole of radius D. The external fieldisc =1;
the order of Chebyshev polynomials is no greater than 4.

If the mutual position of the notch, crack or hole is
changed, we are to calculate another component of the
field @", which is easy. In particular, we can obtain a
“shadow effect” with the small crack above or below the
large notch.

Now let us calculate the fields o}, (x). The analytical
extension of Hilbert transform for Chebyshev polynomi-
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-1 T .
-1.0 05 00 05 1.0 x

Fig. 2. Field ¢"" for a small crack in the field of a large notch
and hole of diameter 2D = 16; external stress 6= 1.

als has the form [6]:

1} T..,(2)
Y(z,k)=— — kT dx
=0 TC—J.l(z—x)\/l—xz

\/217(2—\/22 —DF z|> 1.
z- -1

Next, we can put

Re L x_;;l 5

x—z (x=y) +y;

and introduce ¥z B
Y(z,

0(z)= N

and then, using direct substitution, it is easy to show that
the action functions take the form:

Qs y2) =y +dy3, Qi (1 3,) =y, +dyy,
QL ¥2) =3y, —dy3, Q5 (s ) =y +dypyn,
Qb (1> ¥2) =y, +dv3, QF (v, ) = ey +dyyyy,
Q) =-Ql, QL =ql,, Q2 =Im(-3¥ +Q),
Q, =—Re(-¥+Q), Q}, =—Re(-¥ +Q),

1
Q,, =—Re(-¥ + Q).

Series expansion in the vicinity of z~ +1 with the do-

minant terms retained gives us the ordinary expression

o(x) T
254!
20}
1514
10+

(@)

— o(-1)

5-
0 T T T T
00 02 04 06 08 «x
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for stress concentration in the vicinity of the crack tip:

K .
G, (r> 1) ~—2 J(Q)QF,, z=re".

\/;
The respective stress intensity factors K, for the
right crack end (+1) and left crack end (—1) have the form
=Y’ K=Y (-D'q? ie., are expressed in
terms of expansion coefficients of the gauge field S.
The stress in the vicinity of the left and right crack
ends in the notch and hole regions is presented in Fig. 3.
Although the gauge fields for the large notch and hole
differ little (Fig. 2), the stress concentrations at the near
and far ends of the small crack differ greatly: the stress
concentration in the notch region is 1.7-2.0 times higher
than that in the hole region (Fig. 3).

5. DISCUSSION

The two-dimensional exact solutions considered
above can be extended to a system of arbitrarily orien-
tated plane notches. In this case, completing the system
of equations requires expansion of the field at the site of
an arbitrary notch in terms of Chebyshev polynomials of
the order 2n, where » is the number of notches. Calcula-
tions of the field for each crack thus reduce to solving a
system of 2# algebraic equations with subsequent substi-
tution in (1).

The solution derived for stress concentration in a sys-
tem of arbitrarily oriented cracks takes into account their
mutual effect at any order of the perturbation theory. It
reduces to a system of linear equations for which an ex-
plicit exact solution is always obtainable. At n >>1, the
problem reduces to inversion of the nongenerate matrix
2n % 2n; the algorithm of this operation is standard for
numerical methods.

The proposed model does not allow for compensat-
ing fields in the zeroth order of the perturbation theory,
as opposed to gauge models of defects (dislocations and
disclinations). In other words, these are fictitious fields

()T
7 o
n —-- o(+1)

Fig. 3. Stress concentration for the left 6(—1) and right 6(+1) crack ends in inhomogeneous fields of a large notch (a) and hole (b); ex-

ternal fieldo=1.
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introduced for notch surface unloading; they are re-
quired for solving a singular integral equation.

Because the covariant expressions were passed to
without any assumptions on the elastic character of de-
formation, the obtained algorithm of description can be
extended to inelastic models by putting, in particular,
gauge-invariant deviators J, = (EE"), instead of in-
variants of strain deviators, in the deformation theory of
plasticity and by expressing the plastic potential in the
form

V(S > R) = Aoy + M3 +hyy +...

Thus, we can extend the field description of cracks to the
range of plastic strain.

Another aspect of application of the approach is in
the possibility to pass from the classical description of
deformation to so-called nonlinear pseudocontinuum
models [3] that focus not on stress and strain fields but
on their correlation functions of different orders the evo-
lution and features of which determine the critical be-
havior of a deformed solid.

Thus, if we pass to covariant relations with subse-
quent continual integration for fields s and calculation of
full correlation functions of strain field fluctuations, we
arrive at so-called renormalized models, which is indi-
rect evidence for correctness of the approach.

The model has analogues in the quantum field theory:
confinement of quarks, in our case, is realized as attrac-
tion—motion of two cracks toward each other in an ex-

nmk >
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ternal field, which is observed in experiments on thin
foils [4]. There is also a considerable difference: quarks
are point objects, and we deal with a (d— 1)-dimensional
manifold (crack) in a d-dimensional space.

6. CONCLUSION

Thus, the covariant Lagrangian of elastic energy was
obtained for a medium with plane notches, and the re-
spective variational equations were solved in the frame-
work of the perturbation theory.

The exact expression for gauge fields in a two-dimen-
sional problem was derived through Hilbert transform of
orthogonal Chebyshev polynomials.

REFERENCES

1. Fracture: An Advanced Treatise. Vol. 2. Mathematical
Fundamentals, Liebowiz, H., Ed., New York: Academic
Press, 1968.

2. Broek, D., Elementary Engineering Fracture Mechanics,
Leyden: Noordhoff Int., 1974.

3. Avdeenko, A.M., Statistical Mesomechanics. Critical
Phenomena in Continuum Mechanics, Lambert Academic
Publ,, 2011.

4. Shtremel, M. A., Nonlocal Interactions of Many Cracks,
Phys. Met. Metallogr.,2001, vol. 91, no. 3, p. 221-226.

5. Melnichenko, A.S., Strength of Heterogeneous Structures,
Moscow: MISIS National Univ. Sci. Technol., 2008.

6. Morse, P.M. and Feshbach, H., Methods of Theoretical
Physics. Vol. 1, New York: McGraw-Hill, 1953.

PHYSICAL MESOMECHANICS Vol.20 No.2 2017



		2017-05-17T15:28:30+0300
	Preflight Ticket Signature




