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Abstract—The paper analyzes the possibility of describing the orientations of type I twin boundaries in B2—B19'
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1. INTRODUCTION

Progress in the description of y—0 martensitic trans-
formation features in iron alloys within a paradigm de-
veloped elsewhere [ 1] raises the question as to whether
the developed methodology can be applied to trans-
formations in titanium nickelide, for which the first-order
transition features are less pronounced. Recall that the
key role in dynamic theory [1] belongs to the idea of the
initial excited (oscillatory) state that appears in the elastic
fields of dislocation nucleation centers and governs the
controlling wave process. The wave process disturbs lat-
tice stability, and transition of the lattice to a new equilib-
rium state is accompanied by the formation of unambigu-
ously related morphological features (orientation of habit
planes, orientation relations, macroshear) that bear some
information about the cooperative transformation pro-
cess. Habit planes (with normal N, ) have the simplest
description: it is sufficient to know the wave normals n,
and n, of controlling wave beams along the orthogonal
directions of eigenvectors &; (i =1, 2) of the strain tensor
of'the elastic field of a defect and the wave velocity ratio k:

N, [l n, —nx, |n1’2\=1,K=02/Ul. (D

The calculation of orientation relations and macro-
shear requires transition to final strains [1]. The transition
was first carried out within dynamic theory for bee to hep
transformation for titanium [2, 3]. An important requi-

rement in this case is that the ratio of tensile strains €,
(g, > 0) and compressive strains (€, <0) specified by
the threshold wave process must remain constant. For
purely longitudinal waves propagating along the symme-
try axes (or in an isotropic medium) we have:
k=¢/le,| =% 2)

Taking into account quasi-longitudinal waves, rela-
tion (2) can be generalized; in so doing, k is not reduced
to a simple equation with % butis naturally related with it.

According to the classification (see, e.g., [4]) for tita-
nium nickelide alloys, there are three variants of transfor-
mations: B2—B19, B2—R, B2—B19’. The latter variant
can occur at several combinations of instability channels.
Corresponding elementary cells of phases are displayed
in Fig. 1 taken from [4].

The description of habit planes using Eq. (1) is also
simple for titanium nickelide alloys. For example, the ha-
bits of type {223}, 1334}, observed in B2—B19 trans-
formation in Ti—-Ni—Cu alloys [4] are unambiguously as-
sociated with dislocation nucleation centers, with the
main dislocation lines segments A being collinear with
(1 TO}B2 directions [5]. Less symmetric orientations of
{0.390.48 0.78} 5, habits were observed for the B19’
phase. They can be associated with the nucleation pro-
cesses in elastic fields at A collinear with (201)p, di-
rections. This was reasonably explained by Letuchev
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et al. for aged alloys in which Ti;Ni, phase particles preci-
pitate [6]. Such habits can also be associated with both
A, |[{110)g, and A, ||{11 1), [7-10] if taking into ac-
count that the orientation A is modified in transition to
intermediate states (particularly in B2—B19 transition).

A more complex task is to interpret the observed vari-
ous orientations of transformation twin boundaries [4] in
the B19" phase, especially type II twin boundaries (using
an irrational description of boundary orientations), which
is carried out in this paper.

2. DESCRIPTION OF {104} TWIN BOUNDARY
ORIENTATIONS

Recall that the {1 10}Y twin boundary orientations in
y—o. transformation in iron alloys are described simi-
larly to habits using Eq. (1) [11, 12]. In the equation, the
(100), and (010), wave normals are associated with re-
latively short-wave s-displacements acting in consisten-
cy with relatively long-wave /-displacements that are re-
sponsible for the formation of habits, and x; = 1. Such
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twin boundaries refer to type I that corresponds to a ratio-
nal description of boundary orientations. According to
Miyazaki et al., the transformation twins usually observed
in contacting crystals (e.g., in pyramidal B19' phase crys-
tals) refer to type I [13]. There are variants with bound-
ary orientations [13]:

1024}, [ {07211}, 3)

The boundary orientations for crystals and twins are
schematically illustrated in Fig. 2 taken from [13]. Miya-
zaki et al. define intervals of orientations for {104},
twin boundaries at || > 1, with the central parts of the in-
tervals approximately corresponding to #==2 [13].
The zero Miller index in the notation of twin bound-
ary orientation in the B2 phase axes allows the orienta-
tions to be described by Eq. (1) using a pair of unit orthogo-
nal wave normals (lying, e.g., in the (100)g, plane) as:

n;(0) =[0 cosO sin6]y,,
n’(0) =[0—sin0 cosO];,.

Normals (4) are primed to discriminate them from the
normals n, and n, of wave beams that specify habit

“

(b)
~
[001]g19
(d)
0.29 nm
[010]g1or
0.41 nm\*
[001]g;o

Fig. 1. Elementary cells of B2 (a), B19 (b, ¢c) and B19” phases (d) in titanium nickelide alloys, their dimension to orientation ratios, and
schematic transformations determined by shuffle ({011}(100) and {01 1} (100)) atomic displacements ({011}, shear planes are

hatched). The figure corresponds to Fig. 3.12 from [7].
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planes. Notice that the velocities of waves of the same
polarization in mutually orthogonal directions in the
(100), plane are equal to each other. Consequently,
strains must also be equal according to Eq. (2). Substitut-
ing Eq. (4) into Eq. (1), at k=1, we find:
Ny [In5(8) £ nj(0)
|[0 (cos®F sinB) (sinB+ cosO)],. ®)
Particularly, at n](0) =[010]g, and n%(0)=[001],,
the twin boundaries coincide with (01 1), or (011),,
whileat nj(1/4)|[[011]5, and n’(1/4)||[0 11],, they co-
incide with (010)g, or (001)g,. The normal to boundary
(3) is collinear with n5(0) —n{(6) at 0 =arctan(1/3) =
18.435°, where
n;(0) =[cos6 0 sinO]g,
=~[0.948683 0 0.316228],,
n,(0)=[sin® 0 —cosO]y,
=~[0.316228 0 —0.948683];,.
However, the boundary of type (3) can also be repre-
sented by the difference n’ —n{ in which wave normals
have no zero projections.

Hence the defined role of n;,z directions of type (6)
requires separate physical justification.

(6)

3. PHYSICAL REASONS FOR DEFINING WAVE
NORMAL DIRECTIONS IN SHORT-WAVE
TWINNING SHEAR

The general idea of dynamic theory implies that wave
normals must be specified by eigenvectors of the strain

3700 Dy,
@ 1
Qv

035, 0a8) n

39, 0.48)p, RN
S oY/
QQT\”” 9/)/\ 0%
S %, %y

Fig. 2. Orientation of type II twin boundaries in junction of
three crystals [13].
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tensor of the elastic field that breaks the symmetry of the
initial phase. It is therefore makes sense to verify the hy-
pothesis about the role of elastic deformation in the con-
tact area between crystals in the formation of type II
twins. First, it is reasonable to describe the possible dy-
namic pattern of individual crystal formation through the
B2—B19—B19’ channel, assuming that transition to the
intermediate B19 structure occurs according to the wave
mode that satisfies Egs. (1) and (2). We assume that the
transition occurs as in the case of bcc to hep transfor-
mation [3, 4] with the most rapid deformation of the
(01 T)BZ planes during wave propagation that induces
compressive and tensile deformation close to the [100],
and [011]5, symmetry axes, respectively.
Estimation is performed using lattice parameters [ 14]

for Ti—-40Ni—10Cu system:

ag, =0.3030 nm, a9 =0.2881 nm, 7

bg19 =0.4279 nm, cp 9 = 0.4514 nm. )
The given values of parameters (7) differ greatly from the
data represented in Fig. 1 for qualitative illustration.
Strains on edges of the B2 phase cell are given by the re-
lations

€001 = (ap1o —apy )/ ag, »

€011 = Bg1o _\/EaBz )/(\/5032), (8)

€011 = (Cpio — \/EaBZ )/ (\/EaBz)-

Equations (8) and (7) yield the following values for the
basis of the B2 phase:

€[100] =—0.04917, €, 1, =—0.00142, )

€o11) =0.05343.
Itis evident from Eq. (9) that the most rapid compressive
and tensile deformation in the orthogonal [100];, and
[011], direction occurs in the (01 1) s plane (the strain
€7) =—0.00142 is low). Assuming that € =&y} =
0.05343 and €, = €[4 = —0.04917, we have:
g,/le,| = 1.0865. (10)

The calculation of parameter K using data on elastic mo-
duli of Tis;—Nis—Cu,,—Fe, single crystals yields Kk =
0.8872 for the case of wave normals directed along the
symmetry axes, which is smaller than value (10), and
hence Eq. (2) is not satisfied. Nevertheless, at deviation
from the symmetry axes with regard to quasi-longitudi-
nal /-waves the values of parameters & and K can be natu-
rally correlated. A detailed consideration of the issue is
beyond the scope of this work.

The most significant difference of the B19” phase
from the B19 phase, which is obvious from comparison
of Figs. 1b and 1d, is that one of the cell edges loses
orthogonality with respect to the two other edges. This
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factor should be taken into account in further analysis. In
addition to elementary cell strains (9), we should take
into account shear strain in the (100), plane along the
[011]g, direction which leads to monoclinic distortion
of the orthorhombic lattice. Recall that simple shear
strain in the coordinate-free formreads [11, 12]:

T=[+Stn, S=tany=2tanw,t=n=1, (11.1)

T =A®. (11.2)

InEq. (11.1) [ is the unit tensor, T-n is the dyadic nota-
tion of shear strain in the plane with normal n in the T di-
rection, with the shear value S, and o is the angle of rota-
tion about the [T, n] axis ([,] is the symbol of vector
product). In Eq. (11.2) A and @ are the strain and rota-
tional components of tensor 7' at its polar decomposi-
tion.

For definiteness, we give the matrix notation of the
resulting distortion tensor j in the basis [100]g,,
[011]g,, [O1 T]BZ at strain (9) (omitting low strain
8[011]) and shear along the (100), plane inthe [011],
direction:

€[100] 0 S
x=| 0 0 0 (12)
0 0 €[o11]

The basis with the given orientation of axes along the
edges of the B2 phase cell will be denoted by the symbol
B19. In order to obtain the strain tensor € at low values
of the matrix elements, it is enough to isolate the symmet-
ric part in Eq. (12):

€ = I/Z(Xij + in)

€l100] 5/2 gfoo] 0 tanw
= 0 0 0 |=f 0 0 O (13)
S/2 0 ¢ tanm 0 €fo11]

[o11]

As was shown elsewhere [2, 3, 8, 9], the development
of transformation is related to shear that leads to material
rotation by angle ¢ depending on K. A variant of notation
of the analytical dependence @(x) reads:

I+x°
JO 263) (2 +1)
3 l+¢g,

(k) = arccos , (14)

1=, |
In the considered case, the angle ¢(k) describes the rota-
tion of the frame (100),, (01 1), about the (011)g, axis
(with retained orthogonality of initial edges (100) 5, and
(01 1)y, during rotation). In a more general case, com-
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pared to Eq. (2), the notation of Eq. (14) can be retained
with the replacement of Kk—k. Then, substituting
k*~1.0865, € =0.05343, | &,|=0.04917 into Eq. (14)
we find "= 1.107906 and @(k) = 2.934°.

It is naturally conceivable that the developing shear
tany that breaks the orthogonality of the initial edges
(100)g, and (011)g,, according to Eq. (11), must be
close to 2tan (k).

Now let us discuss the possibility of appearance of
twins with non-typical boundary orientations in twin
contacts. Deformation in the contact area is described by
the sum of strains associated with individual contact re-
gions. Then, instead of Eq. (13), we come to:

25 tano tano
g;=| tanw g4 0
tanw 0 gy
-0.09834 0.05125 0.05125
=| 0.05125 0.05343 0 (15)
0.05125 0 0.05343

The eigenvalues of tensor (15) and corresponding eigen-
vectors are:
g, = 0.082484, ¢, = —0.127394, £, = 0.05343,

£, 11[0.372063 0.656342 0.656342],.,,
£, 11[0.928208 —0.263088 —0.263088],,, (0

E;I[0 —0.707107 0.707107]4,,.

Passing on to the basis (100)y, (through rotation about
[100]5, by angle m/4), we have:

£, 11[0.372063 0.928208 0]s,,
£, 1[0.928208 —0.372063 0], ,

& 1[0 0 1]g,.

(17)

Then,
n,—nj =&, -& [|[0.556145 -1.300271 0],

Il —2.338007 0], ,
0, +n| =&, +E [|[1.300271 0556145 0], (\°)

1[2.338007 1 0]g,.
Result (18) corresponds to a slight deviation (by angle
=~1°) from the orientation [1 2.4 0]y, proposed by Miya-
zaki et al. [13] and to deviation by angle =4° from the ori-
entation [1 2 O]y, . The existence of the orientation inter-
val is evidently due to the variation of angle m associated,
according to Eq. (11), with the rotational component of
shear that characterizes monoclinic distortion. For ex-
ample, at unchanged diagonal elements of matrix (15) in
the limiting case ®—0 |#|— 1, i.e., boundary orientations
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tend to {101},. In another limiting case of — @(k), the
inequality |4 > 2 holds true. Clearly, the variation of m at
unchanged diagonal elements is formal because the value
of ® depends on strains. The loss of stability to monoclinic
shear in the region that transforms by the B2—B19 sce-
nario most probably occurs when the value of ¢ exceeds
a certain value @, that, conceivably, divides the linear
and nonlinear elasticity domains. Hence strain growth at
the initial stage of unstable lattice relaxation is not neces-
sarily accompanied by monoclinic shear, butat ¢ > @,
shear takes place and increases up to 2tan m = 2tan @(K).

The last conclusion generally agrees with experimen-
tal data. Really, the angle value in monoclinic distortion
is defined to be =96.8°, i.e., the shear value in angular
measurement corresponds to =6.8°. With the above esti-
mate for the angle ¢(k)=2.934°, the difference of 2¢(k)
from 6.8° is less than by 1°. However, we must be aware
of experimental errors in measuring lattice parameters
and elastic moduli (by which we estimated strains, k and
@(k)) as well as of the fact that our consideration refers to
temperature M . Recall that the value of monoclinic dis-
tortions increases away from M (during cooling).

It should be noted that the dependence @(k) in the do-
main of low strains is linear with respect to strains (at
fixed k). Really,

o(k)

180k (g,+]¢,])
n(k>+1)
The quantity @(k) in Eq. (19) is measured in degrees.
With regard to k2 = g,/|€,| wehave (k) =k|e,| from
Eq. (19), where @(k) is measured in radians. Then, the
non-diagonal elements in matrix (17) take the form:

(19)

tanw =tan@(k) = k| &, |. (20)

Now substituting Eq. (20) in matrix (15) shows that in
order to find the sought eigenvectors we should diagonal-
ize the matrix that contains only parameter £. Assuming
that €4, 7, =0, 2€199) = —2[€, |, and gjy;y) = €, we turn
to the simplest notation of the matrix that has the same
eigenvector orientations as matrix (15) in accordance

111
with the sequence of changes in matrix notation:
2le5]  lerl k[l k
e; —| &l k € 0
le,| k 0 g
-2 k k -2/k 1 1
>k K 0| 1 k0 1)
k0 k2 1 0 %

Using matrix (21), we can easily calculate index / that
specifies boundary orientations for type Il twins {104} 5,
depending on k. Recall that when calculating boundary
orientations for type Il twins {104}, both wave vectors
of s-waves lie in one of the {100}, symmetry planes, s-
wave velocities are equal, and K, = 1. Hence orienta-
tions of normals to the {10/}, boundaries according to
Eq. (5) are collinear with the sum or difference of eigen-
vectors of matrix (21). Table 1 illustrates the dependence
h(k) and gives eigenvector orientations in the basis of the
initial B2 phase. For completeness it also represents the
case of k<1 (k; <1 canbe observed in materials with
the elastic anisotropy factor 4 <1).

The bolded values in the table correspond to the value
k= 1.043 that has been discussed above. It is interesting
that at simultaneous observation of deformation by mo-
noclinic shear the % values exceed 2, at least at realistic £
values for the considered materials which are close to the
given above. Probably, at fixed & the range of / values
with the central point =2 is governed by a retarded in-
crease of monoclinic shear with respect to strains. This
can be illustrated by introducing parameter y (0<y <1)
to the last matrix (21) instead of unit nondiagonal ele-
ments. The above-said is an illustration for the data in
Table 2 obtained at the fixed value k= 1.043.

The performed calculations demonstrate that orienta-
tions of type II twin boundaries can be described by pairs
of s-waves propagating from contact regions in twin
crystals.

Table 1. Dependence of index /4 that specifies twin boundary orientation on parameter &

k nj n) n h

0.8 0.34693 0.93789 0 0.93789 —-0.34693 0 001 2.174

0.9 0.35978 0 0.93304 | 0.93304 0 0.35978 001 2.255

1 0.369 0.92941 0 0.929 -0.369 0 001 2.318

1.043 0.372 0.928 0 0.928 0.372 0 001 2.338
1.1 0.37546 0.92684 0 0.92684 —0.37546 0 001 2.362

1.2 0.37958 0.92516 0 0.92516 0 —0.37958 010 2.392

PHYSICAL MESOMECHANICS Vol.19 No.1 2016
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Table 2. Dependence of index /4 on variable y that characterizes possible delay of monoclinic shear with

respect to strains at k= 1.043

y n n n h
1.1 0.394 0.919 0 0.919 -0.394 0 001 2.506
1.0 0.372 0.928 0 0.928 -0.372 0 001 2.338
0.8 0.321 0.947 0 0.947 -0.321 0 001 2.023
0.5 0.221 0.975 0 0.975 -0.221 0 010 1.586
0.0 0 1 0 1 0 0 001 1

4. DISCUSSION OF RESULTS

Itis clear that the (1+/2 /2 )B1o plane with irrational
indices corresponds to the exact (1 2 0)5, twin boundary
orientation in the basis B19. Twins with such planes are
formally referred to type II twins as distinct from type |
twins with rational twinning shear planes with rational
indices. Evidently, it is more pertinent to associate this
term with the specific initial stage of twin formation. In
the considered variant (let it be the first variant), the main
component of twin structure originates from the contact
area of two B19 crystals. At the same time, type I twins
are localized in the central part of the front of the control-
ling wave process. Since matrix (21) contains only one
parameter k, s-waves can already be excited in the thresh-
old mode for /-waves and at the formation of type
II twins.

There is a second variant when the formation of type
II twins starts from contact regions of a crystal of phase
B19 (or B19") with the initial B2 phase. In this case, how-
ever, s-wave vector directions are most probably defined
by elastic fields of discontinuities (because perfect coher-
ent conjugation of different lattices is impossible). The
discontinuities correspond to microterraces between lat-
tices of contacting phases along the densest crystallo-
graphic segments of planes. Clearly, the conjugation in
the form of “terraces” does not correspond to the thresh-
old mode but to the achievement of final strains [1, 11].
Since this kind of conjugation corresponds (macroscopi-
cally) to a single habit plane, the distribution of formed
discontinuities must be quasi-regular. Then, if the quasi-
regular discontinuities are modeled by a system of dislo-
cation loops, we can find nucleation centers of twin la-
mellae, and the regular arrays of twins in the scheme in
Fig. 2 must be correlated with the characteristic size of
the loop. This variant of twin formation will be consid-
ered in a separate paper.

The second variant is also interesting when consider-
ing plastic deformation of a material transformed by the
B2—B19 (B19’) scenario because the current system of

discontinuities can become nucleation centers of both
single dislocations and their cryston superpositions [ 14—
16]. Moreover, the multitude of twinning processes in
shape memory alloys, including mechanical twinning
under external stresses, makes for the accumulation of
additional elastic energy through a hierarchy of structural
levels [17]. For highly reversible processes, strain can be
recovered to a degree that exceeds the inherent resource
of martensitic reaction, as it was observed elsewhere [18,
19]. Recall that account for structural hierarchy is crucial
for the description of deformation processes [20].

Finally, within the conventional crystal geometry ap-
proach applied to the B2—B19’ transformation the calcu-
lated habits {0.89 0.22 0.40}5, in [13, 21] in twinning
shear of the second type, like

{0.85294 0.27789 0.43012} 5,

in twinning shear of the first type in [21], greatly deviate
from the observed {0.78 0.39 0.48} ;,. There is no such
problem in dynamic description. Really, the nature of
habit plane, particularly in reconstructive martensitic
transformations, is purely dynamic. The volume ratio of
the main and twin components (at least for type I twins) is
given by correlating strains carried by short-wave and
relatively long-wave displacements inherent in the con-
trolling wave process [11, 12]; it is not a parameter that
fulfils the requirement of macroscopic invariance of
habit plane [22]. It is clear that the observed change in the
volume ratio of type I twin components within one crys-
tal (with fixed habit) discloses an inconsistency between
the crystal geometry approach and physical reality.
Hence the formation mechanism of type II transforma-
tion twins requires independent analysis in the frame-
work of dynamic theory.

5. CONCLUSION

The performed analysis showed that the dynamic
theory of martensitic transformations, which was initially
developed to disclose the physical nature of cooperative
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y—o transformation in iron alloys, can also be applied to
describe B2—B19 and B2—B19” martensitic transfor-
mations in titanium nickelide alloys. The formation of
habit planes, like in the case of iron alloys, is associated
with pairs of relatively long quasi-longitudinal waves
(wave lengths ~0.1-1.0 pm) inherent in the controlling
wave process. These waves specify the mesoscale of the
order of thickness of formed martensite crystals. Addi-
tional features of B2—B19’ transformation associated
with the formation of type I twins are also adequately
described in the framework of wave description. How-
ever, unlike in the formation mechanism of type I twins,
pairs of relatively short waves (wave lengths ~10 nm)
responsible for the formation of fine type II twin structure
start to propagate from the vicinity of contact between
formed crystals. (Earlier, we discussed the possibility to
describe type II twins in the framework of dynamic
theory [23].)
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