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Abstract—Computational simulation of solids has experienced a rapid development since the formulation of
the finite element method. However a number of problems cannot be properly solved by using the finite element
method because a severe mesh distortion in computations of Lagrangian scheme may arise for very large dis-
placements, high speed impact, fragmentation, particulate solids, fluid-structure interaction, leading to lack of
consistency between the numerical and the physical problem. The discretization of the problem domain with
nodal points without any mesh connectivity would be useful to overcome this difficulty. Moreover the discrete
nature of continuum matter—usually observed at the microscale—allows to adopt such a kind of discretization
that is natural for granular materials and enables us to model very large deformations, handle damage—such as
fracture, crushing, fragmentation, clustering—thanks to the variable interaction between particles.

In the context of meshless methods, smoothed particle hydrodynamics (SPH) is a meshfree particle method
based on Lagrangian formulation that has been widely applied to different engineering fields. In the present
paper a unified computational potential-based particle method for the mechanical simulation of continuum and
granular materials under dynamic condition, is proposed and framed in the SPH-like approaches. The particle-
particle and particle-boundary interaction is modelled through force functionals related to the nature of the
material being analyzed (solid, granular, ...); large geometrical changes of the mechanical system, such as frac-
ture, clustering, granular flow can be easily modelled. Some examples are finally proposed and discussed to

underline the potentiality of the approach.
DOI: 10.1134/S1029959915040128
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NOMENCLATURE

a(r,,q ) —function of the influence radius of a particle;
A, Ay ;—cross section area of the truss assumed be-
tween particles 7 and j and its reference value, res-
pectively;

b, —body force component in the i-th direction;
C’—tangent elastic tensor of the material;
c(s)—function accounting for the no-penetration con-
dition;

d”* —equivalent diameter of two particles in contact;
d; = 2r,—diameter of the generic particle i;

E'(s), E,—elastic modulus of a linear element that re-
presents the material connecting the two particles i, j
and corresponding reference value for s >>0;
E;—elastic modulus of the generic particle i;
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E —equivalent Young modulus of the elastic contact
between two particles;

E,, (x) =TI(x) —total energy of the particle system;
F};(s) —generic force acting between a couple of par-
ticles at the effective distance s;

F,,F,, F,, F,—internal force, damping force, boun-
dary and external force vectors, respectively;

F,, ,—Vector of the total force acting on the particle
i
h—smoothing length or support dimension;

K(s) —stiffness of the particles bonding depending on
their effective distance s;

K ,—normal stiffness of the particle-boundary contact;
m;, M —mass of the particle i and mass matrix, res-
pectively;
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n, t—unit vectors normal and parallel to the tangential
plane in the contact point between a generic particle
and the boundary surface, respectively;

P, —force vector acting on particle i;

g—unit vector identifying the direction connecting the
two particles centers;

r—distance between the centers of a couple of par-
ticles;

7 —average radius of a couple of particles;

r,,q —radius of influence (or maximum interacting
distance) of a particle r,q;

r,—distance between the centers of the particles at
which F(r =r,) — —oo;

s, s,—effective distance between particle surfaces and
at the equilibrium state, respectively;
s"=r—(d;/2+d; /2)—distance between two particle
surfaces;

t, At—time variable and time integration step amplitude,
respectively;

T, , T, —particle-boundary contact surface forces nor-
mal and parallel to the tangential plane at the contact
point, respectively;

T, ;—tangential force between the colliding particles
i, J;

V,—volume of the particle p;

w—displaced distance of one particle into another or
into the contact surface;

W(|x —x;|) —Kernel or smoothing function for the
smoothed particle hydrodynamics method;

X, —position vector identifying the equilibrium state;
X;, X;, X, —position, velocity and acceleration vector
of the particle i, respectively;

X, X, X —position, velocity and acceleration vector, res-
pectively;

o—coefficient defining the maximum copenetration
depth

g, (X;) —strain tensor components at the point iden-
tified by x;;

y—thickness of a soft layer added to the boundary
surface in order to smooth the contact forces;

d(|x —x;|) —Dirac delta function placed at x;;

d = o —maximum copenetration amount between
two particles;

G;; —stress tensor components;

D(x), D, (x) —generic strain energy potential and
potential of the particle system, respectively;
Aq—damping coefficient;

n—yviscosity coefficient;

x(w) —smoothing function for the force particle-boun-
dary contact evaluation;

u 4 —-coefficient of dynamic friction between particles
and boundaries;
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u,,q —coefficient of dynamic friction between par-
ticles;

v, —Poissons ratio of the generic particle 7;

p —mass density.

1. INTRODUCTION

Numerical modelling of engineering problems, spe-
cially the mechanical ones, has attracted the interest of
several researchers aimed at assessing the response of
materials both during service and at their ultimate con-
ditions. To this end plenty of computational tools have
been developed, starting from the most diffused finite
element method appeared in the middle of the XX cen-
tury [1, 2], the finite difference method [3], the more
recent boundary element [4], meshless [5] and natural
element methods [6], just to cite the mains.

Problems dealing with mechanical systems under
particular operating conditions, such as large displace-
ments, high velocity impact, fracture, failure, fragmen-
tation, clustering, fluid-solid interaction, and so on,
typically do not allow a simple and reliable solution
through classical numerical techniques in the context
of the so-called Lagrangian approach, because the lack
of consistency between the numerical and the physical
problem due to the severe distortion of the discretized
domain. This problem has been partially solved by in-
troducing special remeshing techniques within the fi-
nite element method, even if the remeshing itself is not
simple and moreover requires a proper mapping of the
state variables from the old mesh to the new one, with
the consequence of introduction of numerical errors.

The description of the domain of the problem with
only nodal points but without the necessity of mesh
connectivity, is a possible approach to overcome this
drawback. In this context the so-called smoothed par-
ticle hydrodynamics has been one of the first particle
meshless methods in computational mechanics [7, 8].
The original idea of the pioneering developers lay in
the fact that physically the collective motion of par-
ticles in particle-wise systems (such as the formation
and evolution of stars or galaxies, the movement of a
liquid, gas flow, particulate assemblies, etc.) may be
all modelled by the governing equations of classical
Newtonian hydrodynamics.

Such mesh-free Lagrangian method is characterised
by variable nodal connectivity, where the material is
discretized with particles interacting each other with
interpolation functions. It operates by transforming a
discrete field into a continuum one by using a loca-
lized kernel function that operates as a smoothing in-



404 BRIGHENTI, CORBARI

terpolation. The method can be naturally applied to dis-
crete systems but also to continuum ones, where the
nodal points are not directly associated to the single
particle composing the matter [9—14]. The main fun-
dament of the method is to get the system of discrete
algebraic governing equations of a continuum prob-
lem, by localizing the partial differential equations
through the use of a convoluted integration.

The noticeable advantages of such a method became
suddenly evident after its first introduction and was
subsequently extended and adopted for solving a wide
range of physical and engineering problems, well be-
yond the initial classical hydrodynamics field. More
recent researches have considered and extended
smoothed particle hydrodynamics approach, such as
the meshfree method, for solving various engineering
problems [15-20].

If the discrete nature of solid matters can be re-
cognised at the microscale or at the molecular level
[21-23], materials at the macroscale are typically mo-
delled as continuous media, suggesting the use of con-
tinuous computational techniques such as the finite ele-
ment method. However discrete models can be conve-
niently applied even to macroscopically continuum
systems, where each representative particle can be as-
sociated to a cluster of continuum elements; discrete
element methods or particle methods, usually identi-
fied as molecular dynamics methods at the nanoscale
level, are numerical procedures for the solution of dif-
ferent engineering problems. The fundamental assump-
tion for this class of methods consists in the descrip-
tion of the material through an assemblage of separate
discrete elements, such as atoms, molecules, grains,
particle solid elements, etc. [24—27].

According to the discrete approach, complex non-
linear interactions between bodies and within bodies,
are numerically simulated in order to get the motion of
particles governed by nonlinear differential equations.
Such discrete nature of solids is well evident for some
classes of materials such as the granular ones that are
constituted by several low deformable particles, usu-
ally interacting each other through elastic contact, co-
hesive and friction forces. Among the different prob-
lems requiring the mechanical simulation of materials,
geomechanical and powders ones can be naturally stud-
ied by exploiting their well evident granular nature [24,
28-31].

Discrete methods have relevant applications in mac-
roscopic scale simulations such as mineral processing,
rock blasting, crushing, sand mechanics, mechanical
behavior and failure of compact or granular bodies [32—

34]. Moreover materials like gases and liquids can also
be simulated with the simple scheme of interacting
particles [35, 36].

On the other hand, a generic solid body can be as-
sumed to have a particle structure with a proper nature
of the particle interaction forces. From this observa-
tion the mechanical behaviour of a material can be made
to range from the very incoherent cases (characteristic
of fluids, granular, powders, etc.) up to the compact
materials ones (typical of polycrystalline materials),
respectively.

The mechanical description of a body can be made
through the cinematic and static properties of its par-
ticles, such as the displacements, velocity, accelerations,
internal forces, stresses and so on: in a fluid matter the
mechanical response is obtained by following the mo-
tion of interacting particles enclosing the physical pro-
perties of the flow, while in a continuum these proper-
ties are usually macroscopically averaged, e.g. the fields
of density, momentum, etc. over a small reference vo-
lume are of main interest.

The above observations suggest the potentiality to
use a discrete model for the simulation of different class
of solids by properly choosing the nature of the inter-
action forces between their discrete constituent ele-
ments. Such an approach allows us to get the overall
response of the material at the macroscale, which is
the main interest of materials science and mechanics
of materials. Moreover the particle discretization for a
solid naturally allows to tackle the problem from a dy-
namic point of view, enabling the solution of high strain
rate, impact, large displacements and large strains prob-
lems involving history-dependent behaviour, plastic-
ity, etc. that are more naturally expressed in a La-
grangian computational framework.

As mentioned above, in problems involving large
deformations, a purely Lagrangian approach applied
in the framework of continuum mesh-based computa-
tional techniques cannot be appropriate due the require-
ment of complex remeshing and smoothing, too small
time steps, and so on; all the above drawbacks have
promoted the development in the last decade of par-
ticle methods in solid mechanics, achieving now a wide
popularity. Moreover the possibility to deal with short
and long range forces (such as the electrostatic ones),
meets the physical nature of the materials at small or
nanoscales, where interatomic forces obeying such no
local interaction exist.

In the present paper, a discrete element approach
for the mechanical simulation of both continuum and
granular-like materials—formulated on the basis of the
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force potential interaction concept—is presented in the
framework of the smoothed particle hydrodynamics
theory.

After an introductory part related to the forces ex-
isting in materials characterised by a macroscopic par-
ticle nature, a discrete approach for continuum solids
and discrete incoherent aggregates is presented by con-
sidering the dynamic nature and large strain character-
istics of the problem. Finally, some examples demon-
strating the capability to deal with the dynamic failure
of solids and granular flow problems are presented to
show the versatility and generality of the proposed ap-
proach.

2. PARTICLE MODEL FOR SOLID MATERIALS

According to the introductory section, the mecha-
nics of continuous materials can be described through
a particle model, once the discrete element interacting
forces have been properly described.

As recalled above, such an approach is straightfor-
ward when the material is effectively composed by se-
veral discrete elements as at the nano/microscale for
solids and for granular-like matters, where the particles
can be immediately identified as the atoms/molecules
or grains present in the solid. Continuous materials can
also be idealized as a cluster of elements reciprocally
joined by forces that modify when the particles rela-
tive position changes; if the particles tend to approach
each other a repulsive force arises (such as in compact
solids and granular materials), while an attractive force
appears when they tend to move far away (such as in
compact solids—typically characterised by elastic-like
forces—or in cohesion granular matters).

The above recalled forces can be thought to have a
local nature when they are associated to the contact
between elements (for instance when granular materi-
als are considered), while they assume a longer range
characteristic in the case of continuous materials; this
observation suggests to adopt a unified potential-based
formulation for the assessment of the interparticle
forces, by properly choosing the distance of influence
for the transmission of forces.

2.1. Potential-Based Formulation
for Particle-Particle Interaction

Analogously to the atomic description of solids—
where the material can be characterized by a potential
energy functional I1(x)—at the meso- or macroscale it
can be assumed the existence of a potential function.

PHYSICAL MESOMECHANICS Vol.18 No.4 2015

The equilibrium equations referred to a single discrete
element, corresponding to the configuration of mini-
mum energy of the system, can be written:
0,y _ 0D, (%)
0x; 0x;

Ei (x) =TI(x) =@, (x) - P, - x;,
where @, ,(x) and P, are the strain energy and the
force applied to the particle 7, respectively.
The stationary condition of the above functional

identifies the equilibrium configuration:

~P, =0 with (1)

0’E,, 0’D,,
aT;t (x—xo)zaTz”X (x—x,)
=P—% =K-(x-x,)=P 2)
ox

X0

that has been obtained by using the power series ex-
pansion of the potential energy function, starting from
its equilibrium state identified by the position vector x,:

oFE
Ei (X) =4 B (Xg) +—H  (x=X()
ox %
+l(x—x )y 0" Ery (x—=xy))+....—P.-x.  (3)
> o) o o)t i X

Xo
and considering that 0, /0x|, =0 atthe equilibrium.

In the above relation the stiffness matrix of the system
can be recognised; its components are
= azEtot — azq)tot
Yoox0x;  Ox0x;
It 1s worth mention as at the atomic scale, various
potential functions have been introduced to represent

the mechanical behaviour of materials such as the Mor-
se potential [37] and the Lennard-Jones (LJ) one [38].

2.2. Potential Function for Continuous and
Granular Materials

The simplest mechanical stress-strain law describ-
ing the behaviour of a continuum linear elastic solid,
can be represented by the generalized Hooke’s relation
that assumes the force between two closed material
points to be proportional, through proper coefficients,
to the strain value occurring in such a small region (Fig. 1).

By considering two particles 7, j as representative
of the corresponding material points in a continuum
solid (Fig. 2a), their reciprocal stretch—evaluated with
respect to the equilibrium distance 7, —can be written as

2 2
ezr—re_i_l rer. | _S=5 +l S=Se | @
r. 2| r Se 2| s,
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Fig. 1. Scheme of pair-wise interparticle forces.

where r=[x; —x; |, 7, =[Xy; =X, ;| are the distances
between the particle centers in a generic case and at
the equilibrium state, respectively, while s, s, are the
corresponding effective distances counterparts (Fig. 2)
definedas s =r+28~(d; +d;)/2=r+20-2r. Inthe
above relation the maximum copenetration depth
8, =9, =3 =07 has been expressed as a fraction o of
the average radius » of the particles. The above rela-
tion (4) has been written by considering large displace-
ments effect, while the maximum copenetration dis-
tance enables the no-penetration condition between
particles to be fulfilled.

By adopting a linear stress-strain relationship to cal-
culate the force acting along the line joining the par-
ticle centers, the following expression holds:

2
_ 1(s—
4| e 2 ),
S, 2\ s,
) +d,;
Fy(s)=4if s <rpq + +28, (5)
) d,+d,
0,if s>7_o+ L 428,
<)

ro
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where 4, E’=c(s)E, are the cross-section and the
elastic modulus of a linear element that represents the
material connecting the two particles 7, j. In the above
relation the Young modulus has been assumed to vary
with s since the no-penetration condition is represented
by an increasing value of E” whens — 0, i.e. ¢(s)=1,
if § >>0, c(s) = oo, if s = 0. A possible choice of the
function c(s) having the above properties can be as
follows: c(s)=[1+(s+1)™" ]/[1 —(s+1)™"] inwhich
the exponent m controls the gradient of the elastic
modulus versus s function when s — 0. Of course the
no-penetration condition assumption (s 20 or 0 < w <
28) entails an unlimited compressive strength of the
particles when they approach each other more and more
(up to the limit s =0 or w — 28 or r = r;)); the particles
overlapping distance has been indicated with w, while
the minimum particles distance is 7.

The above force-relative displacement relation (5)
can be obtained from the functional:

O(s)=4;E ’
1(s? 1(s—s,)
PR S_ —_ Sse + _w , (6)
S.| 2 6 s
while the corresponding stiffness is given by
d*d(s) 1 s-—s
K(s)= A E| —+ <. 7
(s) FEn A (7

In Eq. (5) the influence radius 7, indicates the
maximum interacting distance between a couple of
particles; it represents the maximum distance beyond
which two particles are not interacting, i.e. no bonding
force exists. This assumption can be introduced for
continuum matters since the internal forces between
the material points exist even if they are not in reciprocal
contact; this implies the existence of a nonlocal
interaction enabling to represent long distance forces
suitable to better describe the continuum nature of the
material.

(b)

Fig. 2. Couple of particles at their equilibrium distance (a). Maximum copenetration corresponding to F(r =r,) = —o (b) and
generic relative position of two particles with geometrical parameters (c).
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Fig. 3. Interparticle potential and corresponding forces and stiffness according to the linear elastic behaviour for an equilibrium
distance s, / d; =1 (a); corresponding curves by considering the no-penetration condition (b).

In Fig. 3 the distance dependence of the potential,
of the force and of the stiffness is displayed for the
linear elastic particles interaction by assuming the rep-
resentative equilibrium distance s,/d; =1, while the
same functions are reported in Fig. 3b for the case of
no-penetration constraint.

The consistent representation of the mechanical
behaviour of the material connecting the particles, re-
quires a proper and correct definition of the area 4;
indicated in Eq. (5); since the influence distance 7,
determines the number of neighbour particles interact-
ing each other, such an area must depend on this maxi-
mum distance, i.e. 4; =a(r,q)4, ;, where the refer-
ence area can be evaluated as 4, ; =(d; +d; )y /4,
that is to say such a reference area can be assumed as
the cross-section of the cylindrical region of material
placed between two particles. The above function
a(r,n) can be evaluated by a best fitting procedure
once the particles arrangement in the space and their
influence distance #,; have been assumed.

In order to use the same potential formulation also
for granular materials—where the internal forces ap-
pear only when the particles are in reciprocal contact
and their motion make them to approach each other—
it can be simply adopted an influence distance such
that 7,4/(d;/2) <=2, i.e. the interaction of particles
occurs only when they are in contact under compres-
sion condition, while no forces exist when s” > 0; a
tangential force can eventually assumed to be present
between the colliding particles i, j when s” < 0. It can
be evaluated as:
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T, (w) =-sign(u, )
Xmln(n ||ut,re] ||7 Mmd |Ej (W)D)

where 1 is the viscosity coefficient and w4 is the
dynamic friction coefficient of the materials, while
u, . is the relative tangential velocity between the two
pai‘ticle surfaces in contact. In the above relation the
normal force has been indicated with Fj;(w) (instead
of F;(s)) to indicate that the friction occurs when the
particles are in contact, i.e. an overlapping length arises.
Equation (8) provides the tangential force as the mini-
mum value between the dynamic friction and the vis-
cosity action.

It has been determined as the function a(7,q) is
almost independent by the particle size once a specific
particles arrangement is adopted, while the Poisson
coefficient tends to the value 1/3 as the influence ra-
dius increases, irrespectively of the particles layout used
to represent the domain of the problem of interest [39].

When the simulation of compact materials is con-
sidered, a reasonably choice of the influence radius
value could be equal to about 7,4/(d;/2)=4 (in this
way the forces have a limited nonlocal character and
exist for neighbour particles even if they are not in di-
rect contact), corresponding to the correction function
value equal to about a(7,q)= 0.4 for both cubic or
tetrahedral arrangements. On the other hand, granular
materials can be simulated by adopting 7, /(d;/2) = 2,
i.e. the interaction of particles exists only when they
are in reciprocal compressive contact, while no forces
are present when s” > 0.

(®)
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3. SMOOTHED PARTICLE HYDRODYNAMICS
INTERPRETATION OF THE FORCE
POTENTIAL APPROACH

Smoothed particle hydrodynamics approximation of
a function defined in the region Q at a point identified
by its position vector X;, can be written as [9—-14]:

()= [ f(8(Ix - x;))de, )
Q

i.e. the sought value of the function at x; is obtained
through an interpolation of the known values f(X;)
over the domain £ by mean of a convolution integral.
For numerical purpose the Dirac delta function
8(|x —X; |) in Eq. (9) is usually approximated by adopt-
ing a proper decreasing function W(|x - xl.|) of'the dis-
tance |X - xl.| (often called kernel or smoothing func-
tion, [13, 14]). The above approximation becomes:

)= [ FEW(1x-x;)de,
Q

with W(|x - xl.|) such that:
[w(x=x,|,hdQ=1,
Q

W(x—-x;[,h)=0if [x—x;[> 7, (10)
Im W (|x-x;|,h)=08(]x—x;|)
h—0

in which the smoothing length (or support dimension
h) defines a spherical region centred at X, |[x —X; [< A,
where the volume integral has to be evaluated.

Usually a Gaussian-like, W (|x —x;|, h) = e X /h X
(nhz)_"/ 2, 1 <n <3 or B-spline functions,

W(Ix—x,|,h)=(1-3/2x>+3/4x>)/ @h?®),
0<x=|x—-x;|/h<],

w(x—x;],h) =[1/4(2=x)'1/(nh*), 1 <x <2,
are used for the kernel expression, where the param-
eter / is the smoothing length.

If the nth derivative of the above function is sought,
it can be assessed through the smoothed particle hy-
drodynamics approximation by using the following
expression:

SO0 = [ o™ (Ix-x,Dda. (1)
Q

The above relations (10), (11)—when evaluated nu-
merically—can be rewritten by replacing the integrals
with summations:

1o =Sm L x-x,, ),
k Pk (12)

f(")(xl.)zkaLXk)W(")ﬂxk -x;|,h)
k k

that have to be made over the index & spanning all the
particles; x;,my,p; are the position, mass and den-
sity of the generic particle £, respectively, and f(x;)
is the function value at x, . In practice the summation
is made only over the neighbours particles of the par-
ticle placed at x; because of the compact support of
the kernel function W (|x - x;|, ).

As is well-known the dynamic equilibrium equa-
tions of an infinitesimal material volume can be writ-
ten as:

ﬂ—p%+b =0orc,  —pi+h =0, (13)

ox; o i ~PN O =T
where Gi» 05 Vs b, are the stress tensor components,
the mass density, the velocity and the body force in the
i-th direction, respectively.

Adopting the above numerical smoothed particle hy-

drodynamics representation for the stress tensor,

o, (X;)
Gij(xp)zzklmk jpk W(|Xk_xp|7h)z

G, (x,) (14)
GUaj(Xp)Ezk:mk jpkk Wj(|xk_xp|ah)

the equilibrium equations (12) in the three dimensional
space, written at the position of the particle p, can be
expressed as:

Emk % &)
k

Pr W’J'(|Xk _Xp|’h)_ppjéi(p) +b; =0,
i=1,2,3,0or (15)

[VPZVkGij(X,{) Wj(ka -X, | ,h)}
k

_Vi?i.xi(p) +V,b =0.

The second equeftion of (15) has been obtained by
multiplying each term of the first equation of (15) by
V, (that represents the volume of the particle p), and
by posing p, =my [V

It can be recognised as the first term in the first equa-
tion of (15) represents the internal force vector, while
the second term corresponds to the inertial term of
Eq. (13) and the last one provides the body force vec-
tor components.

On the other hand, by considering the dynamic equi-
librium equation written for the particle p:

and by substituting the expression (5) for the internal
force exerted on the particle p by the generic particle £,

we get:
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a(h) Ay i E'| 1X =X )| =Se(sp)

v,

k[p] Vp Se(kp)

1 |Xk _Xp| _Se(kp)

2

9i(kp)
Se(kp)

=My Si(p) + Frovip) =05 a7
where k[p] indicates the generic particle £ falling in
the neighbour of particle p, i.e. all the particles included
in the domain of influence of particle p, according to
the smoothing function adopted; s, =[x, —x,| is the
equilibrium distance between the particles k£ and p and
q is the unit vector identifying the direction p—k.
It can be recognised as:

Vp Z VkG[j(Xk)Wj(|Xk _Xp|7h)

k[ p]
a(h E'l |x, - x | —s
— Vp Z Vk ( )AO,mk | k p‘ e(kp)
Kp] ViV, Se(kp)
1 | | ’
2 P i (18)

Se(hp)

i.e. the particle equation written by expressing the forces
through the potential function, provides an expression
analogous to the smoothed particle hydrodynamics ap-
proximation, where ¢, is the ith component of the
versor connecting the particles k and p. In other words,
it is instructive to note that the term o, (x;)X
W ;(Ix; —x,|,h)in the smoothed particle hydrodyna-
mics approximation corresponds to the force existing
between the particles p—k divided by the product of
their volumes, V, V.
3.1. Strain and Stress Evaluation

According to the model for the particle reciprocal
forces presented above, an uniaxial stress state acting
in the direction of the line joining two interacting ele-
ments can be assumed to arise in the material. Since
there are several particles within the influence distance
of a specific particle i and given that the stress state at
x; must be those of the medium representing the do-
main of the problem, it is straightforward to think the
strain measured in the generic direction i—j to be ex-
pressed through the classical transformation law:

T
8;‘]‘(Xi—j):nij£(xi)nij, (19)
e xl =sey | 11X =X e

€ (X,'_j) = +— ,
St 2 Seli
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where n; is the unit vector identifying the i direction
and €;(x,_;) is the strain along such direction itself.
Having the strains €;(x;), /=1, 2, ..., p in p different
directions (where p indicates the number of particles
that are within the region of influence of the particle of
interest i), the above relations (19) can be used to
determine the strain tensor components at Xx;, for
example through a least square-like algorithm or others
equivalent approaches.

The above procedure, in order to provide acceptable
strain values, requires that p = 6 and that the particles
surrounding the particle i are well distributed in the
space.

Once the strain field in the matter is known, the
corresponding stress field can be evaluated by using
the proper stress-strain constitutive relation of the mate-
rial; in incremental form it can be written:

de(x;)=C'dse(x;), (20)
where C’ is the tangent elastic tensor of the material
and de(x;) is the strain rate tensor at x;.

The evaluation of the stress field within all the
domain of the problem must be carried out by
determining the stress tensor at all the particles point,
6(x;). The stress tensor—known at discrete points—
can be finally interpolated through a smoothing interpo-
lation procedure such that expressed by Eq. (10) where
the smoothing length can be assumed identical to the
influence distance adopted for the particles interaction.

The force arising between two particles of the me-
dium can be easily exploited to determine the failure
condition between them; for brittle continuum materi-
als it can be simply verified by checking if the maxi-
mum principal stress exceeds the tensile strength, while
under compression the crushing failure can be repre-
sented through an abrupt reduction of the influence
distance, i.e. by reducing the material to an assembly
of incoherent grains that behave only when compressed
each other, with (eventually) the limitation of the no-
penetration condition.

3.2. Particle-Boundary Contact

The particle-boundary interaction can be modelled
similarly to the particle-particle case presented above;
in particular, the contact mechanics concepts can be
adopted to particularise the force-particle overlapping
law. In the case of an impact between an elastic spheri-
cal particle and an elastic plane the contact stiffness,
the equivalent Young modulus, and the equivalent con-
tact radius can be defined as [34]:
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d|T — |d.
K,(w)= ATl 2E\/:wl/2, (21)
dw 2
-1
— [1=y? 1-v? * .
E: Vl + J , r* :d_:i’
E. E. 2 2

i J
where E;,v,,d; are the elastic modulus, the Poisson
ratio and the diameter of the particle, while £ .V, are
the elastic modulus and the Poisson ratio of the elastic
boundary surface (assumed to be flat, i.e. with a local
radius of curvature of the contact area tending to infi-
nity). The normal force, acting perpendicularly to the
tangent plane at the particle-surface contact point, and
the tangential one can be evaluated as:

T,(w)= an3/2n,
. (22)

T, =y T, |~ = —(u K, ¥t

X, |
where n is the unit normal to the boundary surface in
the contact point and —t=-%,,/|x,,| represents the
unit vector opposite to the direction of the tangential
velocity with respect to the boundary of the particle i.
In order to avoid possible numerical instabilities due
to the high value of the contact force given by Egs. (26),
(27) when a very stiff plane is considered, the contact
force copenetration relation, T, (w), can be attenuated
by introducing a smoothing function (w) for the con-
tact stiffness:

K,(w)=x(WK,, (23)

0<x(w) =W/ <Lm>1.

The above relationship corresponds to assume that
the interaction with the boundary takes place when the
particle touches a layer having a small thickness y su-
perposed to the surface. The contact force increases
progressively up to the final copenetration depth w.

It can be observed that the potential function con-
cept developed for the particles interaction is suitable
also to describe the particle-boundary forces. In fact it
can be expressed through a suitable potential with an
influence distance (measured between the particle sur-
face and the surface boundary) for the impacting par-
ticle i equal to r,q =% +7 (see Eq. (5)).

Moreover the case of continuum solid or granular
materials colliding with others elastic solids or bound-
aries can be treated exactly in the same way by simply
using the proper force potential.

In the examples presented below a soft layer with
relative thickness equal to y/(d;/2)=0.1 and m= 4
(see Eq. (23)) is adopted for the numerical simulations.

4. NUMERICAL IMPLEMENTATION

The dynamic governing equations of the discretized
problem are given by:

-Mx+F +F; +F,+F =0 or MXx=F

Ftot

where M is the mass matrix, X is the vector of the
particle center accelerations (note that the rotation de-
grees of freedom are neglected since a small rotational
inertia of the particles is assumed), while F;, Fy, F,, F,
are the internal force vector (obtained by assembling
the forces Fj;(s)q, see Sect. 2.2), the damping force
vector, the external force vector and the vector of ac-
tions due to the collision of the particle with the elastic
boundaries, respectively.

For numerical stabilization purpose, the above dy-
namic equations can written by adding some damping
forces. Note that in the above described model no ve-
locity-related damping has been adopted for the par-
ticles and so it is convenient to introduce an artificial
numerical damping. It can be thought to be opposite to
the particle current velocity, i.e., according to Cundall
and Strack [24], the following equation for the numeri-
cal damping force F; can be established:

F, = -\ Fsign(Fx), (25)
where A, is the damping coefficient, sign(-) is the sign
function and F,x are the actual force on the particle of
interest and its velocity, respectively.

An explicit numerical integration scheme can be
adopted for solution of the equations of motion, allow-
ing a separate evaluation for each particle once the force
vector acting on it is known. The solution of a large
equation system is therefore avoided. Explicit time in-
tegration methods, also if conditionally stable, are of-
ten adopted in particles simulations due to the reduc-
tion of memory requirement thanks to the absence of
matrices such as the stiffness one.

In the present particle method, the explicit leapfrog
integration scheme—or Verlet integration approach—
is adopted [40]; it provides a satisfactory numerical
stability, time-reversibility and preservation of the sym-
plectic form on phase space. Its name recall that even
time derivatives of position are known at on-step points,
whereas odd derivatives are available at mid-step
points. The method operates by determining the par-
ticle acceleration at the current time step » and conse-
quently the velocity at the time step n+1/2 as:

(24)

tot >

X, =Fp My X0 =X, ALY, (26)
where X, , , =(X;,, —X;,_;)/At is the mean velocity
vector across the time step n+n+1. The position of
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particle 7 at the time step # + 1 is given by the vector:

X 15X, + AZ(X;’,n—l/z + AZ'Xl-,n) or

i,n+

27

X 1 :Xi,n +A[Xi,n+l/2‘

i,n+

It can be noted that the positions of particles are
obtained at time instants ¢, = nAt, while the velocities
are known at 7,.,,, =(n+1/2)At.

The upper limit of the time integration step At is a
crucial parameter to ensure stable results. This value is
generally obtained from the smallest natural oscillat-
ing period of a couple of particles, At = o/m/K , whe-
re the minimum ratio m/K among all the particles con-
stituting the discretized solid must be considered and
o < 1 is a proper constant to be introduced [41].

5. NUMERICAL APPLICATIONS
5.1. Elastic Cantilever Beam under Harmonic Load

The capability of the present discrete approach to
model continuum elastic bodies is verified in the present
section by studying the dynamic response of a cantile-
ver beam under a harmonic shear force applied at its
free extremity (Fig. 4).

The beam is supposed to have an elastic modu-
lus equal to £ = 5x10° Pa and mass density equal to
2400 kg xm>, while its dimensions are as follows: length
/= 0.6 m, height » = 0.06 m and width ¢ = 0.03 m; the
harmonic concentrated load F is assumed to vary ac-
cording to the relation F(¢) = F,sin(2mft), where F, =

Clamped section (a)

Vertical displacement s,, m
o
(=)
Vertical velocity v,, m/s

I
000271 4 w0 00 M|
» FE —— ——Z \/I 0.2
PM —e— — & —
—0.004 T T T -0.3
0.00 0.04 0.08 0.12
Time #, s

Fig. 4. Cantilever beam under harmonic load (a); time his-
tories of the free edge vertical displacement and velocity
(b). FE—finite element method, PM—particle method.
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100 N and the frequency is f =7.77 Hz; a negligible
damping has been considered.

The force potential described in Sect. 2.2 has been
used to describe the interaction forces inside the beam
by adopting an influence distance of the particles equal
to double of the particle diameter, 7,4 =2d, while the
beam is discretized through about 1700 particles ar-
ranged in cubic fashion (Fig. 4a).

2D plane stress finite element analysis of the beam
(discretized by 216 quadrilateral quadratic elements)
has been performed for comparison of the results with
those provided by the particle method. The time his-
tory of the vertical displacement and velocity of point
A, located at the free edge of the beam, is represented
for both the finite element and the discrete model
(Fig. 4b).

It can be observed that the discrete approach results
are in satisfactory agreement with the finite element
ones, both in term of magnitude of displacement and
velocity, as well as of period of oscillation, thus con-
firming the good capability of the developed particle
methods approach to correctly represent the dynamic
behaviour of an elastic body.

5.2. Impact of a Cubic Block on a Cantilever Beam

This example considers the impact of a cubic elastic
body on a cantilever beam. The falling cube has an
initial velocity equal to v, and is located above the
beam at a distance H, its horizontal position with respect
to the beam is given by the distance d, while it is rotated
by an angle o with respect to the horizontal plane. The
material of the beam is supposed to be brittle with an
elastic modulus equal to £ = 3x10° Pa and a tensile
strength equal to f, = 2x10° Pa, while the force po-
tential described in Sect. 2.2 has been used to describe
the interaction forces inside the solids and between the
different parts of the beam when failure takes place, by
adopting an influence distance of the particles equal to
i =2d and 7,4 =d, respectively.

Below the beam an elastic flat horizontal boundary
surface 7 lying on the x-y plane (with elastic modulus
E =3x10'"Pa) is assumed to be placed at a distance &
from the bottom of the beam (Fig. 5). In the numerical
particle approach the beam, assumed to have an elastic
modulus £=3x10° Pa and a tensile strength of
2x 10° Pa, is modelled through 1200 spheres (arranged
in a cubic lattice with diameters assumed to be normally
distributed with a mean value equal to 5 mm and
variance 0.1 mm), while the falling body is supposed
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Fig. 5. Cubic elastic block falling on a cantilever beam:
geometry of the system.

to have an elastic modulus equal to £ =3 x 10’ Pa and
a very high tensile strength to prevent its failure. The
geometry of the system is characterised by ¢ =0.02 m,
L =10a, H=a and h=5a/2, while the falling body
(with an initial velocity equal to v, =3 m/s) is assumed
to be characterised by: (i) d = 0, o = 0°%; (i1) d =a,
o =m/4.

It must be noticed as the elastic constants of the
bodies have been assumed intentionally very small to
allow the development of large displacements in the
structure in order to emphasise the geometrical non-
linear feature of the computational algorithm and to
limit the time integration step for numerical reasons.
The mass density of the beam has been assumed equal
to 2400 kgxm, while the falling block density has
been assumed equal to 7800 kgxm™. The time inte-
gration procedure has been conducted by using a time
step amplitude A =5 pus and the analysis duration has
been extended up to 0.4.

In Fig. 6 the configurations for the falling case (i)
and (ii) at three time instants are shown. It can be noted
as the falling block causes a local rupture of the beam
in the impacted zone and the failure of the restrained

(o)}

cross section of the beam for case (i), while a local
failure and a localised failure placed approximately at
the beam midspan takes place for the case (ii).

The rest of the falling block and of the failed por-
tion of the beam on the boundary elastic surface placed
below the system can be appreciated.

5.3. Granular Column Drop Test

In this example, a granular column with an initial
height-radius ratio equal to approximately 1.51 is con-
sidered (Fig. 7). The column is prepared by dropping
particles into a box and letting them to settle under grav-
ity [42]. Particles—initially arranged in a tetrahedral
fashion—are assumed with diameter values obeying
normal distribution with a mean value equal to 18 mm
and variance of 5 mm, for a total number of particles
equal to 1440. The mechanical properties of the mate-
rial are assumed to be as follows: mass density
2000 kgxm™, elastic modulus £ =3 x 10° Pa and a neg-
ligible tensile strength (or equivalently no cohesion).
A very low elastic modulus value has been assumed to
reduce the computational cost since in this way a larger
time step can be used without affecting the stability
property of the integration scheme; moreover such low
assumed values, has been verified that affect only slight-
ly the configurations assumed by the particles during
their settling motion. The friction coefficient of the base
supporting the column is p, 4 = 0.5 while smooth ver-
tical walls, are placed beside the column.

The drop test is conducted by removing the left hand
side wall of the box and letting the column to spread
under gravity.

It is possible to note a good agreement between the
literature and the results provided by the present par-
ticle model. The final configuration of the particle as-

~

[\

e ]

Fig. 6. Beam configuration at different time steps for: case (i) (a—c), case (ii) (d—f). Gray scale indicates the velocity values (in the
vertical direction, in ms™). = 0.016 (a, d), 0.024 (b, ¢), 0.200 s (c, ).
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Fig. 7. Configuration at initial and final time instants obtained with the present study (a) and according to [42] (b). In the left figures
the gray scale indicates the vertical displacements of the particles in m.

sembly provided in [42] is characterized by the height/
width ratio equal to 0.2185, while the present model
gives the value 0.2230 (Fig. 7).

5.4. Granular Material Cutting Simulations

This example considers a vertical flat blade placed
between two glass panels. The blade has a constant
horizontal velocity equal to 10 mmxs~' [43]and drives
particles that closely resemble natural granular flow

into dragline buckets. The grain matter is suitable for a
discrete simulations because of their nature. An initial
volume of particles (Fig. 8) under the gravity action is
assumed to be placed inside a box, while the vertical
blade is placed at the left hand side position. The simu-
lation consists in moving the blade, causing the mate-
rial inside the box to redistribute. The performed dy-
namic analysis is aimed at determining the particles
configuration at different time instants.

(b)

(d)

Fig. 8. Configuration of the particles for a blade displacement equal to 10 (a, ¢), 20 cm (b, d); configurations given in [43] (a, b) and
by the present model (c, d). Gray scale indicates the horizontal displacement of the particles expressed in m.
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The material of the particles (assumed with a mass
density equal to 855 kgxm™) is supposed to have an elas-
tic modulus equal to £ = 2.76 x 10° Pa and a negligible
tensile strength (or equivalently no cohesion). The force
potential has been used to describe the particles interac-
tion by adopting an influence distance of the particles
equal to 7,4 = d, while the box and the blade are sup-
posed to have an elastic modulus equal to £ =3 x 10° Pa.

The particles volume is modelled through about
1162 spheres, initially arranged in a cubic fashion, with
diameter size equal to 20 mm. The geometry of the
system is depicted in Fig. 8.

The integration time step has been taken equal to
At = 0.2 ms and the final blade displacement is equal
to 200 mm, with an analysis duration equal to 2.0 s.
The damping coefficient for the dynamic analysis has
been assumed equal to A4 = 0.2 and the coefficients of
dynamic friction between the particles and for particle-
boundary planes are supposed to be u, =0.1.

The obtained arrangement of the particles shows a
behaviour similar to soil cutting problem analyzed in
[43]. It is possible to note that in the present study the
blade is shorter with respect to the literature test, caus-
ing a little difference in the disposition of the particles
near the top of the blade. Neglecting this last aspect,
the shape assumed by the particles representing the
granular material obtained by the present study, reflects
the configuration presented by Coetzee in [43].

6. CONCLUSIONS

A discrete approach for the simulation of materials,
suitable for the description of solids at different scales,
has been presented as a valid alternative to the classi-
cal continuous approaches. In particle method ap-
proaches, complex non-linear interactions between el-
ements and within elements are numerically simulated
to predict the motion of discrete constituents by the
solution of dynamic nonlinear differential equations.

In this study a force potential-based discrete ele-
ment method for continuum or granular-like materials
has been developed in the framework of the so-called
smoothed particle hydrodynamics methods. Exploiting
the possibility to assume a discrete nature of materials
even at large scales, the potentialities and generality of
the method have been underlined.

The proposed particle method has been demon-
strated to be usable for the simulation of continuum as
well as for incoherent aggregate matters, and in this
sense represents a unified approach to simulate the
dynamic of mechanical systems.

The developed particle method owns a mesh-free
nature and is characterized by a nonlocal interactions
between elements, allowing to simulate very different
mechanical problems. This feature enables to easily
account for failure of compact and granular materials
by taking into account for the severe geometrical dis-
tortion occurring in such problems as well as recipro-
cal particles interaction and particle-boundary interaction.

Some numerical examples involving the dynamic
response of an elastic body, the failure of brittle solids
under impact actions and the flow of granular materi-
als have been presented, underlying the wide capabil-
ity of the developed discrete method.
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