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Abstract—We investigate the coefficient of friction between a rigid cone and an elastomer with account of local
heating due to frictional dissipation. The elastomer is modeled as a simple Kelvin body and an exponential depen-
dency of viscosity on temperature is assumed. We show that the coefficient of friction is a function of only two di-
mensionless variables depending on the normal force, sliding velocity, the parameter characterizing the temperature
dependence as well as shear modulus, viscosity at the ambient temperature and the indenter slope. One of the men-
tioned dimensionless variables does not depend on velocity and determines uniquely the form of the dependence of
the coefficient of friction on velocity. Depending on the value of this controlling variable, the cases of weak and
strong influence of temperature effects can be distinguished. In the case of strong dependence, a generalization of
the classical “master curve” procedure introduced by Grosch is suggested by using both horizontal and vertical shift

factors.
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1. INTRODUCTION

Friction of elastomers is an important topic for many
industrial applications [1]. Greenwood and Tabor [2]
have shown as early as 1958 that the friction of elas-
tomers can be attributed to deformation losses in the ma-
terial volume [2]. In 1963, Grosch supported this idea by
showing that the elastomer friction has the same “tem-
perature shifting factors” as the complex modulus [3]. In
the following years, the role of theology [4] and of sur-
face roughness [5, 6] in elastomer friction has been stu-
died in detail. Most works on elastomer friction discuss
coefficient of friction, thus implicitly implying the valid-
ity of the Amontons law: the force of friction is propor-
tional to the normal load [7]; the coefficient of friction is
considered to be a quantity which may depend on velo-
city but does not depend on the normal load [8, 9]. How-
ever, there are many experimental evidences of a strong
dependence of the coefficient of friction of elastomers on
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the normal force. Early experiments illustrating the load
dependence of the elastomer friction were carried out by
Schallamach [10]. Power-law dependence of the coeffi-
cient of friction was also found in polymer-based com-
posites [11]. In a series of recent publications [12—14],
the elastomer friction has been studied beyond the re-
gions of validity of the Amontons law, thus providing ge-
neralized laws of friction. In these papers, changes of lo-
cal temperature in microcontacts of rubbing bodies have
not been taken into account. However, it is known that
the temperature effects may play an important role in the
elastomer friction [15, 16]. In the present paper, we in-
vestigate the elastomer friction as a function of velocity
and normal force with account of local temperature
changes in the contact.

To achieve the basic understanding of influence fac-
tors, we consider a simplest model: (a) an elastomer is
modeled as a simple incompressible Kelvin body, which
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is completely characterized by its static shear modulus
and viscosity, (b) a non-disturbed surface of the elas-
tomer is assumed to be plane and frictionless, (c) we con-
sider only one single contact (“one asperity model”) in
the shape of a cone, (d) no adhesion or capillarity effects
are taken into account, (e¢) a simple exponential
Arrhenius law is used for the temperature dependence of
viscosity, (f) we consider a one-dimensional model. The-
se simple assumptions still result in non-trivial and com-
plicated frictional behavior. We would like to note that
there is an evidence coming from recent studies of con-
tact mechanics of both rotationally symmetric profiles
[17, 18] and self-affine fractal surfaces [19, 20] that sug-
gest that results obtained with one-dimensional founda-
tions may have a broad area of applicability if the rules of
the method of dimensionality reduction (MDR) [21, 22]
are applied. Following this method, the elastomer was
modeled as a row of independent elements with a small
spacing Ax, each element consisting of a spring with nor-
mal stiffness Ak = 4GAx and a dashpot having the damp-
ing constant Ay = 4nAx, where G is the shear modulus,
and 7 is the viscosity of the elastomer.

We start our analysis with an analytic estimation of
the coefficient of friction for a material with temperature-
independent viscosity, and then generalize it by incorpo-
rating the temperature dependence of viscosity. Finally,
we discuss a possible extension to rough surfaces.

2. FRICTION BETWEEN A RIGID CONE AND
A VISCOELASTIC MEDIUM WITH
TEMPERATURE-INDEPENDENT VISCOSITY

In the following, we consider a rigid conical indenter
Z= f(r)=rtan0, where Z is the coordinate normal to
the contact plane, and » in the in-plane polar radius. The
one-dimensional MDR-image of this profile, according
to the method of dimensionality reduction, is
Z=g(x)=m/2|x| tanO=c |x]|. €))
This profile is now pressed into a viscoelastic foundation
to a depth of d and moved tangentially with the velocity v

: (@)
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(Fig. 1a) so that its form is described at time ¢ by the equa-
tion

Z=g(x+vt)=g(x). 2)
For convenience, we have introduced the coordinate X in
the frame of reference that moves with the rigid indenter.

As stated above, we assume that the elastomer is a
simple viscoelastic material (Kelvin body), which can be
modeled as parallel-connected springs and dampers
(Fig. 1b). If the three-dimensional medium is character-
ized by the shear modulus G and the viscosity 1, then the
single elements of the viscoelastic foundation must be
chosen as parallel-connected springs with stiffness Ak,
and dampers with the damping coefficient Ay [18]:

Ak, =4GAx, Ay=4nAx, 3)
where Ax is the spatial size of a single element of the vis-
coelastic foundation (Fig. 1b).

We denote the coordinates of the boundary of the con-
tactareaas X = —q; and X = a, (Fig. 1a). Vertical displace-
ments u, in the entire contact area are determined by the
purely geometric condition

u, (x,t)y=d—-g(x+ot)=d - g(x). 4
The vertical velocities are
Ju.(x,t) _ dg(x+uvt) _ ‘o~
o 5 vg (%) )
and the force acting on one element is
fN (i) = Akzuz + AY”Z
=4[G(d - g(%)) ~nog (H)]Ax. (6)
The left boundary of the contact area is determined by the
condition u, (—a,) = 0 and the right boundary by the con-
dition of f}, (a,) =0. From this, it follows that

a,=dfc, a,=d/c—r, (7)
where we have introduced the relaxation time
T=1/G. )
We can consider two velocity domains:
I: v<d/(cr), )

II: v>d/(cT). (10)
In the first domain, the right contact point lies to the right
of'the tip of the cone. In the second one, it coincides with
the tip of the indenter.

T

a

Fig. 1. Contact between an elastomer and rigid conical indenter which is moved tangentially with the velocity v (a); theological model

for a viscoelastic medium (b).
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Velocity domain I. The total normal force is

Fy =4[ [G(d-g(D) - g (7)|d¥

-a

4G| , 1 2
=—oI|d +—(cvt) |. 11
c [ 2 (CU ) } (b
The tangential force is calculated as
)
F,=-4 [ ¢(®[G(d-g(®)-nog (%) ]dx
c 2
=4Gc[2d(vt)—5(m) } (12)
The resulting coefficient of friction is
F. 2 -1/2 ?
_E cot/d -1/ (cméd) ‘ (13)
Fy 1+1/2(cvt/d)
Velocity domain II. The normal force is
0
Fy =4[ [G(d-g(®)-nug'(® |dz
4 2
=—G{d—+cdv1:}, (14)
c| 2
and the coefficient of friction is
W= c=const. (15)

If we express the indentation depth as a function of
normal force (11) and substitute it into (12), then we ob-
tain a coefficient of friction

F 0[23/2\” 1—\I12—\I12}\I12<1/3:

c, \|12>1/3,

(16)

»  2eGv*t>  2cv’n’
Fy GF)y
This result was first obtained in [18]. The coefficient
of friction occurs to be a universal function of the para-
meter combination y and is dependent on the viscosity,
shear modulus, velocity, normal force, and surface gradi-
ent. For values of y larger than the critical value
Y= 1/ \/g , the coefficient of friction remains constant

(Fig. 2).

(17)

3. FRICTION BETWEEN A RIGID CONE
AND A VISCOELASTIC MEDIUM WITH
TEMPERATURE-DEPENDENT VISCOSITY

It was shown in [ 18] that the heat production in fric-
tional contacts can be easily taken into account in the fra-
mework of the method of dimensionality reduction pro-
vided the Péclet number is small enough:
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Fig. 2. The coefficient of friction (normalized by the surface
gradient) for the conical indenter as a function of the variable
W =01, /2¢G/F),.

Pe=—x«1,

o (18)

where § =A/pc is the thermal diffusivity of the medium,
A is the specific thermal conductivity, p is the density, ¢
is the specific heat capacity of the medium, and a is the
order of magnitude of the contact size. Under this assum-
ption, the power of the heat production in a single ele-
ment of the viscoelastic foundation, AW, was shown to
be related to the temperature change AT by the equation

AW =20AXAT, (19)
where AT =T —T, and 7, is the environment tempera-
ture far away from the contact point [18]. At this point, it
should be noted that this one-dimensional temperature
distribution does not coincide with the true three-dimen-
sional temperature distribution in the initial three-dimen-
sional system. The exact three-dimensional temperature
distribution can be obtained by an integral transforma-
tion described in [18]. However, for the sakes of qualita-
tive estimation, it is eligible to use directly the tempera-
ture change in the one-dimensional model. In calculating
the rate of the energy production we will assume that the
whole dissipation occurs only in dampers and that the
whole energy dissipated by dampers is converted into the
heat. The dissipation power due to one single viscoelastic
element is

AW = 4nAxii. (20)

Substituting (20) into (19), we get for the temperature
change

AT=2—“a§.
A

Let us assume a simplest dependence of the viscosity on
temperature according to Arrhenius law

@2y
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U,
n(7) = AoeXP( j Aye P[WJ (22)

where 4, isaconstant, U, is the activation energy, and &
is the Boltzmann constant. Expanding (22) into a Tailor
series, we get

n(r) = 4, exp(—ﬂ—ﬂﬂ)

=1, exp(—aAT), (23)

where 1, is the viscosity at the environmental tempera-
ture, and o is a constant characterizing the influence of
temperature on effective viscosity of the material.

For the conical indenter, the vertical velocity u, for
any element of the viscoelastic foundation, which is in
contact with the indenter, is equal to 1, = +cv. Accord-
ing to (21), this means that the temperature is constant in
the entire contact area:

m ,

AT = <e v> (24)

Substituting (23) into (24), we get an equation for deter-
mining the temperature raise in the contact and, finally,
the changed viscosity:

2n0c27)2

AT = exp(~atAT). (25)

Just as temperature, the viscosity will be constant in the
whole contact area. This means that all relations obtained
in Section 2 for the case of a constant viscosity remain
valid, provided the corrected value of viscosity is used.
Introducing notations

E=0AT, ¢=20m,c’v /A, (26)
we can rewrite (25) in the form
E=0e " (27)

Solution of this equation with respect to § = £(¢) provides
the dependence of the temperature raise on loading pa-
rameters.

Let us stress again that all equations of the Section 2,
including (16), remain valid in the case of temperature
depending viscosity, provided the corrected value of viscos-
ity is used in (17). We rewrite (16) with new notations as

222G 1= 21,9 <13, 28)

n=u(y) =
o, > 1/3,
with
5 2c0™n? 2c0’n}
2 0
= = €X —2 ) 29
v GF,, GF, p(—2&(9)) (29)

where £(0) is the solution of Eq. (27). The quantity ¢ (26)
can be written as ¢ = \ng with

W =1My/2¢/(GFy), {=0cGFy/(An,).  (30)

0.0 0.5 1.0 1.5 »

Fig. 3. Dependency of the variable y ony, Eq. (31).

With this notation, equation (29) can be rewritten as

¥ =y exp(—2&(y0)). 31)
According to Eq. (28), the coefficient of friction depends
only on the variable . Note that the variable { depends
only on the normal force but not on the sliding velocity,
while the variable y is proportional to the sliding veloc-
ity. We therefore can consider y as a normalized velocity.
Equation (31) shows that for any value of parameter  the
variable \J and thus the coefficient of friction are unique
functions of only dimensionless velocity y. To better
understand the character of this dependency, let us first
analyze the function (31) (Fig. 3). Depending on the
value of the parameter C, the following cases can occur:
(a) For { <, = 1.1035, the variable y increases over
the value v = 1/ /3. This means that the coefficient of
friction increases and achieves a constant value. Further
increase of the dimensionless velocity y will later lead to
decreasing of \y under the critical value and decreasing
of the coefficient of friction. (b) At the critical value
€. = 1.1035, the variable J achieves the critical value
and starts decreasing again. Thus the plateau value of the
coefficient of friction is achieved for only one value of
velocity. (¢) For {> (= 1.1035, the variable \J never
achieves the value of y = 1/ /3, thus the plateau value of
the coefficient of friction is not achieved.

e
0.81
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0.41

0.27

0.0 T T T =
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Fig. 4. The coefficient of friction (normalized by the surface
gradient) for a conical indenter as a function of the variables
W = 0g+/2¢/(GFy) and § = acGFy /(Ang).
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log (we)

Fig. 5. Logarithm of coefficient of friction as a function of lo-
garithm of velocity has the same form for different viscosities
1, (Which correspond to various temperatures.) The curves
plotted for different viscosities can thus be shifted to one sing-
le curve (master curve). However, other than by the classical
master curve procedure by Grosch, shifting both along the
In v and In p axes is necessary.

The corresponding dependencies of the coefficient of
friction on the dimensionless velocity for various values
of parameter { are shown in Fig. 4. One can see that the
temperature effect leads to a decrease of the coefficient
of friction at large sliding velocities.

For very large C only small values of J are achieved.
Correspondingly, for the coefficient of friction, only the
linear term in (28) may be used: u/c = 23/2\TI and the
coefficient of friction can be written as

B 292 yexp(-£w0)

c 20(7]00202
exp| =& —— | | 32
op. P &( (32)

=4v

Mo - A
In this case, the coefficient of friction contains viscosity
once in the multiplicative prefactor, and secondly, in the
argument of the exponential function. This means that if
the logarithm of the coefficient of friction will be pre-
sented as a function of the logarithm of velocity, then the
dependencies for different viscosities (corresponding to
different temperatures) will all have the same shape only
shifted horizontally and vertically by corresponding shift
factors. This shifting property is illustrated in Fig. 5. This
may explain the observation that the master curve proce-
dure often does work only if shifting along both axes
logu and log v is realized [23].

4. CONCLUSION

We have shown that the coefficient of friction be-
tween a single conical indenter and a Kelvin body with
exponential dependency of the viscosity on temperature
is a function of only two dimensionless combinations of
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material and loading parameters: W =v1,+/2¢/(GF),)
and { = acGF), /(An,). The general character of the de-

pendency of the coefficient of friction on the sliding ve-
locity is governed completely by the parameter { =
ocGF)y /(A1) which depends on the viscosity, the shear
modulus, the specific thermal conductivity, the normal
force and the “Arrhenius factor” o but is independent of
the shape of the indenter. Previous studies of friction be-
tween elastomers and nominally flat rough surfaces [12]
or differently shaped rough surfaces [13] (without ac-
count of thermal effects) have shown that the qualitative
behavior in these complicated cases is the same as for
single asperities: In all cases, the coefficient of friction
occurs to be a function of a dimensionless product of pow-
ers of loading and material parameters, the exact powers
depending on the details of the shape and fractal proper-
ties of roughness. We thus expect that the results obtained
in the present paper can be used for qualitative under-
standing of dependencies which will be realized in con-
tacts of rough surfaces. In the region of strong tempera-
ture effects, the generalization of the well-known master
curve procedure by both horizontal and vertical shifting
was substantiated.
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