ISSN 1029-9599, Physical Mesomechanics, 2014, Vol. 17, No. 4, pp. 341-348. © Pleiades Publishing, Ltd., 2014.
Original Text © F. Marner, PH. Gaskell, M. Scholle, 2014, published in Fizicheskaya Mezomekhanika, 2014, Vol. 17, No. 3, pp. 124—130.

On a Potential-Velocity Formulation
of Navier—Stokes Equations

F. Marner!, P. H. Gaskell?, and M. Scholle'*

! Heilbronn University, Institute for Automotive Technology and Mechatronics, Heilbronn, D-74081 Germany
2School of Engineering and Computing Sciences, Durham University, Durham, DHI1 3LE UK
* e-mail: markus.scholle@hs-heilbronn.de

Received February 17, 2014

Abstract—Computational methods in continuum mechanics, especially those encompassing fluid dynamics, have
emerged as an essential investigative tool in nearly every field of technology. Despite being underpinned by a well-
developed mathematical theory and the existence of readily available commercial software codes, computing so-
lutions to the governing equations of fluid motion remains challenging: in essence due to the non-linearity involved.
Additionally, in the case of free surface film flows the dynamic boundary condition at the free surface complicates
the mathematical treatment notably. Recently, by introduction of an auxiliary potential field, a first integral of the
two-dimensional Navier—Stokes equations has been constructed leading to a set of equations, the differential order
of which is lower than that of the original Navier—Stokes equations. In this paper a physical interpretation is pro-
vided for the new potential, making use of the close relationship between plane Stokes flow and plane linear elas-
ticity. Moreover, it is shown that by application of this alternative approach to free surface flows the dynamic bound-
ary condition is reduced to a standard Dirichlet-Neumann form, which allows for an elegant numerical treatment.
A least squares finite element method is applied to the problem of gravity driven film flow over corrugated sub-
strates in order to demonstrate the capabilities of the new approach. Encapsulating non-Newtonian behaviour and
extension to three-dimensional problems is discussed briefly.
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1. MOTIVATION

As is well known, Bernoulli’s equation is obtained as
a first integral of Euler’s equations in the absence of vor-
ticity and viscosity if the velocity vector u is perceived as
the gradient of a scalar potential. The so-called Clebsch
transformation [1, 2] allows for a further extension to
flows with non-vanishing vorticity. A similar methodo-
logy has recently been reported by Scholle et al. [3] for
the case of two-dimensional incompressible viscous flow
by making use of a representation of the fields in terms of
complex coordinates. Besides a reduction of differential
order the formulation of integrated Navier—Stokes equa-
tions allows for a convenient embodiment of the dynamic
boundary condition as a Dirichlet—Neumann condition
on the potential field in the case of free surface flows.

Initially the integration procedure is motivated and
performed from a formal mathematical point of view in
which a scalar potential field is introduced as an auxiliary
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variable to make the field equations integrable. Mean-
while, the question of physical interpretation of this “na-
turally” occurring “potential” motivates a review of com-
plex methods in the field of fluid dynamics in which the
exploration of the close relationship between plane Stokes
flow and plane linear elasticity proves to be illuminating.
In the case of Stokes flow the new potential velocity for-
mulation in complex form can be shown to reproduce the
well-known Kolosov—Muskhelishvili formulae [4-6] of
plane linear elasticity, suggesting the potential to be a func-
tion of integrated stresses.

A short review of the first integral of Navier—Stokes
equations [3] is provided in Sect. 2.1, followed by the de-
rivation of the potential representation of the dynamic
boundary condition in Sect. 2.2. Section 3 is devoted to
the analysis and interpretation of the potential variable
mentioned above. In Sect. 4 a least-squares finite element
method, used to solve the fully non-linear problem of
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gravity-driven thin film flow over corrugated topogra-
phy, is presented; it shows the general and convenient nu-
merical applicability of the new formulation. Section 5
provides a summary and forward look.

2. TWO-DIMENSIONAL POTENTIAL-VELOCITY
FORMULATION FOR STEADY
INCOMPRESSIBLE NAVIER-STOKES
EQUATIONS

Scholle et al. [3] developed an integration procedure
for the case of two-dimensional incompressible viscous
flow by making use of a representation of the fields in terms
of complex coordinates. For convenience the essentials
of the methodology are reviewed below.

2.1. Field Equations

In two-dimensions, the Navier—Stokes equations and
the continuity equation governing a steady and incom-
pressible flow, assuming that the external force on the
fluid is conservative with a given potential energy den-
sity U(x, y), are:

pu-Vu=-Vp+nAu-VU, (D

V-u=0 ordiva=0, 2)

where u denotes the velocity field and p the pressure

field. Scholle et al. [3] show that a complex variable

transformation & :=x + iy, € := x —iy ofthe above field

equations, together with the introduction of a complex

velocity field u = u, +iu,, yields the equivalent formu-
lation':

0%u

) uu 0 [ u?
a—z[“p?*l’}*pa—ab}“@’ &

du
Re[a—é) =0, &)

where Re denotes the real part of the subsequent complex
expression. Now the introduction of a scalar real-valued
potential ® satisfying

iiu 0*D
+p—+U =4——, 5
pHp— PR (6))
allows for the integration of (3) with respect to &, giving:
2 2
u ou ,o0°®
P AT (6)
Ju
Re| — [=0. 7
( agj (7

! Note that in contrast to [3] the standard complex variable transfor-
mation is used here leading to slightly different equations.

Note, the resulting equations contain first order deriva-
tives only of velocity in contrast to the original Navier—
Stokes equation (1) and the corresponding two-dimen-
sional streamfunction version in general contains second
order derivatives only, whereas the classical streamfunc-
tion formulation results in a forth order equation.

A real representation of the complex system (6), (7) in
tensor notation reads:

du; Ou; duy S
n{axj + ax' an 8U:| p|:uluj Ul >

1

2 20 5.
_9 0°d 9P 9y )
ox;0x; ox,0x, 2
together with
ouy, p 0°®
—=0, p+— +U = , 9
ox;, Py et 0x;,.0x;, @)

in which the Einstein summation convention is used. The
second equation in (9) is only relevant in applications
where the recovery of pressure is of interest; the pressure
can easily be computed subsequently.

2.2. Boundary Conditions

Common boundary conditions such as no-slip or peri-
odic conditions can be used directly in connection with
equations (8), (9). In these cases just the velocity compo-
nents are constrained at the boundary, whereas the poten-
tial variable remains unconstrained. While free surface
boundary conditions are more problematic they can be
simplified substantially as shown in the following. Hen-
ceforth a simply connected domain with a free surface
X = X(s) is considered, in which the free surface is assum-
ed to be parametrized with respect to arc length s. Fur-
thermore normal and tangential unit vectors according to

n;(s)E;; =tj(s)=x;.(s) (10)
are defined along the free surface, where & denotes the
Levi-Civita symbol. In two dimensions the surface shape

is determined by one kinematic and two dynamic bound-
ary conditions. The latter

aul. auj
{(Po P +n(87/+ 0%, }] =3, ()

dr,
><n,~(S)=6$, (11)

with o on the right-hand side denoting the surface ten-
sion, indirectly introduce the pressure as an undesired
further variable into the solution process. Scholle et al.
[3] found an elegant remedy for this by obtaining an inte-
gral formulation for the boundary condition revealing
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(11) to be a pure condition on the potential gradient, na-

mely:
e | 92 ~%4(s)
Y E)xj 2
X=X, (8)

1 - - ey ] A
—EJ[U(xk(s))ni () +0' (), (3)] ds (12)
Here the integral limit s, can be chosen arbitrarily. In
this context it is interesting to note that in the two-dimen-
sional streamfunction formulation the potential boundary
conditions on the free surface

VO =g(s) (13)
represent a natural counterpart to the streamfunction con-
ditions on the solid wall

V¥ =g, (s). (14)

Of course, knowledge of the potential gradient on the
free surface further allows the derivation of Dirichlet and
Neumann boundary conditions for the potential variable
in a simply connected domain if @ is specified at a single

point. By taking the inner product of (12) with ¢,, its tan-
gential component takes the form:
i X=X (5)
c (s)
=577 [U(x, () (3)+6'(3)t; (3)] &5, (15)

So
which is a Neumann boundary condition for the potential
®. On the other hand, using (10) the inner product of (12)
with »; leads to the corresponding normal component:

0P d
" (S)[a_xil‘k =%.(5) ) Eq)(Xk (S))

& 1:(s) s
Z 3( ) [ f;(®)ds,
So
f:(8)=U(x, (), (s)+0"(s)t:(s), a7
with a total derivative in (16). Thus, using (16), (10) and
partial integration, an integrated form of a Dirichlet

boundary condition for the potential @ can be con-
structed:

(16)

(I)(xk (s))— (I)(xk (So )

=%Tx}(§)jﬁ(§)d§d§, (18)
(5 () - D, (5)) = L x, (5) J G
_%ixj(s:)ﬁ@)d& (19)
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(D(Xk (5)) - (D(xk(So )
_ % j (UG08, + (e |

x[xl- (s)—x; (§)]x} (5)ds. (20)
The term ®(x, (s,)) can be set to zero without loss of ge-
nerality and moreover, in the special case of ¢'(s) =0,
that is neglecting Marangoni effects, further simplifica-
tion is possible.

The reduction of the dynamic boundary condition
from its original form (11) to a standard Dirichlet-Neu-
mann form (15), (20) is a key feature of the reformulation
of the equations of motion in terms of the first integral of
the Navier—Stokes equations (1) to allow for the con-
struction of efficient solutions.

3. ON POTENTIALS AND STRESSES

So far, in Sect. 2, a potential-velocity formulation of
the Navier—Stokes equations with corresponding bound-
ary conditions has been found by a formal integration
method. Note, this derivation is motivated and performed
in a pure mathematical context, in which the scalar “po-
tential” @ appears rather as an auxiliary variable, intro-
duced to make the field equations integrable, than as a
physically meaningful quantity. It has to be distinguished
from the classical meaning of a scalar field, the gradient
of which represents a given vector field. As a physical
interpretation tends to simplify analysis and numerical
treatment later on, a closer look is taken at the character
of this potential.

In terms of the potential ® and a streamfunction ‘¥, sa-
tisfying:

oY
22— s 21
3 u (21)
equations (6), (7) can be written as
°d  0*Y p[o¥
o iim—-t =0, 22
oz aE (a&j 22

in which the continuity equation is satisfied automatical-
ly. Considering the Stokes flow case and introducing a
further complex potential ¥ = ® + in ¥ allows equation
(22) to be written as the simple bianalytic equation

0%y,

g’
the solution of which can be expressed in terms of two
analytic functions

%= &y (§) + 0, (§), (24)

known as Goursat functions. On the one hand, this for-

=0, (23)
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mula allows the problem of Stokes flow to be converted
into one of complex analysis, namely that of finding ®,
and m; which satisfy appropriate conditions on the boun-
dary. This approach leads to the well-known Sherman—
Lauricella equations, see for example [7]. On the other
hand, using @ = Re() the representation of the potential
derivatives in terms of the Goursat functions reproduce
the well-known Muskhelishvili-Kolosov formula [5, 6]:

91192 0y )+ B @ + 5 ®
ox oy
for the integrated components of stress in plane linear
elasticity theory, revealing the potential to be closely con-
nected with the Airy stress function.

At first glance, the analogy to linear elasticity theory
provides an interpretation for the potential ® in the linear
Stokes case only, but rewriting the full Navier—Stokes
equations (1) in terms of the streamfunction and Airy
stress function actually reproduces the real version of
equation (6). Accordingly, the constitutive law of a New-
tonian fluid involving the convective momentum flux
density' R, =u,u; is adopted to account for inertial ef-
fects:

(25)

ou;

auj
GU=—p8U+T] ——+—=|-PR;, (26)

ox; o
with O; being a symmetric stress tensor, p the pressure
and u; the velocity components. Now introducing an

Airy stress function such that

0°D 0°P 0’D
011 =8y_2’ O zax_za 12 :_%a (27)
leads to
ou, ou, ) 9@
- +N —=+— |[+——=0, 2
Pttty T\[ dy axJ 0x0y (28)
du, 9
P22 My _ouy
2(ux uy)+n[ dy  ox J
2 2
L a—f—a—? =0, (29)
20 oy°  ox

which agrees with equation (8) except for a constant scal-
ing of ®. This result is not surprising, considering that the
dynamic boundary condition (12) only constrains @ on
the one hand while essentially constituting a condition on
the stresses on the other hand.

' By averaging Reynolds stress tensor is obtained from R;;.
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4. NUMERICAL FORMULATION AND SOLUTION

Complex variable methods have been known for a
long time in hydrodynamics [8] and have contributed a
great deal to the development of analytic and semi-ana-
lytic solutions of linear flow problems in simple two-di-
mensional geometries [8§—10]. Also various forms of
complex boundary integral methods have entered the
arena of computational fluid dynamics which nowadays
are ranked among the most efficient methods in their
range of applicability [7, 9, 11, 12]. This development
was partly due to realizing the close connection to the
field of plane linear elasticity [4—6] which also allowed
for a transfer of solution methods (see for example
Greengard et al. [7]).

Complex variable methods are essentially based on
rewriting the field equations in terms of the analytic
Goursat functions given in equation (24) and solving the
corresponding complex system. Though very efficient
for plane Stokes flow, especially in the case of stress
boundary conditions [ 7], their applicability remains lim-
ited. Note that this classical approach results as a special
case of the more general first integral procedure of Sect. 2
and that the tensor version (8), (9) can naturally be ex-
tended to three dimensions as shown by Scholle et al. [3].

Since the overall goal is to construct a fairly general
and flexible numerical method allowing for inertial ef-
fects and potentially being extendible to three dimensi-
ons, below the transformed real version of Navier—Stokes
equations (8), (9) is discretized directly. Due to the close
connection between the integrated real version of Na-
vier—Stokes equations and a streamfunction / Airy stress
function formulation as shown in Sect. 3, areview of the
corresponding, though limited, literature [9, 11, 13—16]
was undertaken.

For the purposes of the work reported here a least squ-
ares finite element method, inspired by the contribution
to the field of Bolton and Thatcher [13], Cassidy [14],
Thatcher [16], proved to be adequate. This way the high-
ly efficient semi-analytic Ritz method developed by
Scholle et al. [3] for the integrated Stokes equations is
complemented by a more flexible method, allowing for
the incorporation of inertial effects and more general ap-
plicability. For a comprehensive review of least squares
methods, including a special treatment of Stokes and Na-
vier—Stokes equations, the reader is referred to [ 17].

4.1. Least-Squares Finite Element Method

The least-squares finite element method has gained
great popularity for the numerical solution of flow prob-
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lems, allowing for the use of simple equal order elements
as well as highly efficient multigrid solvers due to sym-
metry and positive definiteness of the resulting system
matrices [17]. Arguments of practicality suggest rewrit-
ing the tensor equations (8), (9) in terms of velocity vari-
ables and first derivatives of the Airy stress function.
Thus a system of four equations is obtained, including
first order derivatives only, which is covered by the first
order system least squares methodology.

By introducing the two variables ®  =0J®/dx and
@, =0®/dy and a further equation

9, 9%,
ay ox

equations (8), (9) are transformed into the system:

=0, (30)

0 0P
—puge, | Lo S | 0P T3y
7 dy  Ox dy  Ox
P2 —yyan| Mo Oy
2(ux uy)+n[ dy axJ
1o L)
&&__yzoj (32)
ox 9y
)
%4_&:0’ (33)
ox 9y
ob_ 0P,
x_ZY o, 34
ay ox (34)

Applying a Newton linearisation, with i, and i, denot-
ing the velocity components of the previous iteration
step, leads to the following linearised system:

- - aux au
—Pu i, +iu,)+ n(— + —yJ

d  ox
—%+%=—pﬁxﬁy = fis (35)

p(u i, uwﬂm[%—ag;‘J
e i) )
%+%=0:=f3, (37)
as_?—%zo:ﬁp (38)

which is written in condensed form as L(W) = f, with
W=(u,u 3 (O y )T, here on in. Note, that here the li-
nearisation is done before least squares minimization
[18]. The corresponding least-squares functional to be
minimized at each iteration step, can be written as:
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4 2

JWsNH=X|Lw-f| - (39)
i=1 L(Q)
For convenience a simply connected domain Q c R? is
assumed with prescription of either u, and u,, or D,
and @, on each part of the boundary dQ2, where the po-
tential boundary conditions are set according to (12) in
case of problems involving a free surface. Note that in
this formulation a free surface flow problem leads to pure
Dirichlet boundary conditions on the velocity vector and
on the potential gradient. Additionally in the case of pure
velocity boundary conditions, V@ and A® have to be
specified at a single point in order to achieve a unique so-
lution.

In the following H™ (L) denotes the standard Sobo-
lev space of functions having square integrable deriva-
tives of order up to m over Q. Now, introducing test and
solution spaces W,V c[H' (Q)]4, where the boundary
conditions are assumed to be incorporated into the solu-
tion space, as well as corresponding finite element sub-
spaces W,,V,, the problem of minimizing functional
(39) can be rewritten as a variational formulation, name-
ly, find W, € W, such that:

[ LV )LW,)AQ = [ L) £ dQ, YV, €V, (40)
Q Q

In producing the numerical results presented in the
following subsection continuous finite element spaces of
piecewise quadratic polynomials are employed for all
test and solution spaces. Well-known problems associ-
ated with mass conservation in conjunction with least-
squares methods [16] are addressed by an appropriate
weighting of the continuity equation as suggested in [13]
or by an augmented leastsquares method in severe cases
[17].

4.2. Treatment of Free Surfaces

In two dimensions, three boundary conditions are re-
quired along the free surface, a kinematic condition (41)
and two dynamic conditions (12). As two conditions are
sufficient to determine a problem with fixed domain, the
shape of the free surface can be found by iterating over
one of the conditions while solving a sequence of flow
problems with the other two conditions set on a fixed do-
main. The problem formulation provided suggests solv-
ing such problems with a given dynamic boundary condi-
tion (12) and to iterate over the kinematic condition

u; (X (5))n; (s) = 0. (41)
A correction H"*'(x) ofthe previous free surface shape,
given by a height function H"(x), is found by solving a
differential equation of the form:
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Fig. 1. Principle set-up for thin gravity-driven film flow over corrugated substrate with inclination angle o (a); streamlines with isotach

lines as contour colours for the case of Re =50 (b).

d
_Hn+l
o (x)

x=x(s)

ul(xy) | )

n
08 D symtaton 1o
via an explicit Runge—Kutta integration method. The up-
date algorithm is supplemented by an appropriate damp-
ing in the case of strong variations.

4.3. Numerical Results

Consider now the case of gravity-driven free surface
film flow over a corrugated substrate inclined at angle of
o to the horizontal, as shown in Fig. 1. Assume 2 to be a
symmetric part of the domain and impose periodic veloc-
ity boundary conditions to the left and right, no-slip condi-
tions on the lower fixed boundaryand ® =g, @, =g,
on a fixed approximation to the upper free surface with
functions g,, g, constructed via (12). The potential en-
ergy density Uin (12) is given by

U(x,y)=pg[ycosa—xsina] 43)

where p denotes the density and g the gravitational con-
stant.

Numerical results are found using a structured criss-
cross grid in combination with a moving mesh method
for grid adaptation. In the finite element space, piecewise
continuous quadratic functions are employed. Figure 2
shows the impact of varying film thickness on the result-
ing flow structure. As the film thickness increases, the
free surface becomes smoother and eddies form in the
corrugations. The solutions obtained are in accord with
comparable experimental and computational results [ 19—
21].

In a further parameter study the Reynolds number is
varied in order to demonstrate the capability of the new
approach (Fig. 3). From the global perspective, the ap-
propriate choice of / as reference length leads to the fol-
lowing definition of a global Reynolds number [21]:

_ p?gh’ sino,
2n?
which is important as far as the stability of the flow and

Re : (44)

Fig. 2. Varying film thickness effect. Constant substrate geometry and fluid data A = 1 cm, a=0.2 cm, 0.=1/8, 1 =5.78 Pas,
6=0.074Nm", g=9.81 ms2andp =972 kg m>; the film thickness is =0.15 (a), 0.3 (b) and 0.8 cm (c).
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Fig. 3. Varying Reynolds number effect. Constant substrate geometry and fluid dataA =6 cm, a =m/2 cm, o.=m/4, n=5.78 Pas,
6=0.074Nm', g=9.81 ms2and #=127/25 cm; the Reynolds number Re= 0.3 (a), 10 (b), 30 (c), 50 (d ), 100 (e).

dynamics of the free surface are concerned. Although
thin gravity-driven film flow appears unstable at the sur-
face at a sufficiently high Reynolds number, as indicated
in Haas [8], the region below the free surface in the vicin-
ity of the eddy is heuristically stable and resolved correct-
ly. These results are in accordance with Haas [19], Pollak
and Aksel [20], Scholle et al. [21]. Although problems of
mass conservation in conjunction with least-squares me-
thods tend to increase when other than pure velocity bo-
undary conditions are imposed, the example flows con-
sidered shows the method to produce accurate results even
in the case of periodic and free boundary conditions.

5. SUMMARY AND OUTLOOK

It is shown by use of complex variables that a first in-
tegral of the two-dimensional incompressible and steady
Navier—Stokes equations can be established, the order of
which is lower than that of the original Navier—Stokes
equations. The procedure results in either a single com-
plex valued equation of second order depending on a po-
tential and the streamfunction or a system of two equa-
tions in the case when velocities are used. Alternatively
in terms of Cartesian coordinates a tensor formulation
can be given.

The potential field is formally introduced as an auxil-
iary variable to make the field equations integrable, while
posing the question of physical interpretation. A look at
the integrated equations in the Stokes flow case and the

PHYSICAL MESOMECHANICS Vol.17 No.4 2014

analogy between plane Stokes flow and plane linear elas-
ticity for a complex formulation, on the one hand, shows
that the new formulation reproduces the well-known
complex Kolosov—Muskhelishvili formulas of linear
elasticity, while on the other hand, revealing the potential
to be equivalent to an Airy stress function except for con-
stant scaling. This interpretation is shown to be cogent
also in the non-linear case.

Motivated by the above integration procedure a repre-
sentation of the dynamic boundary condition as a pure
Dirichlet-Neumann condition on the potential is derived.
This formulation gives rise to the development of new
numerical methods for free surface flows. An efficient
least-squares finite element method is developed and
shown to accurately solve a fully non-linear problem;
that of gravity-driven film flow over corrugated substrate
for different film thickness and different Reynolds num-
ber.

As indicated in [3] the tensor representation (8), (9) of
the first integral of Navier—Stokes equations gives rise to
anatural generalization to three dimensions. Apart from
this, a natural generalization to non-Newtonian materials
is obvious by replacing the stress tensor for a Newtonian
fluid by the stress tensor for arbitrary materials. The pre-
sentation of a generalized theory will be the subject of
subsequent publications.

The authors are grateful to the Deutsche Fors-
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