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Abstract—We examine frictional shakedown of a three dimensional elastic rolling contact. Slight oscillatory roll-
ing of one contacting body varies the normal pressure distribution. In turn this causes incremental sliding processes
and a macroscopic rigid body motion. We consider two settings: tangential force and rolling direction aligned par-
allel and perpendicular to each other. In both cases, the slip ceases after the first few periods and a safe shakedown
occurs if the oscillation is sufficiently small. Otherwise ratcheting occurs and the accumulated slip leads to a con-
tinuing rigid body motion.

Numerical simulations with Kalker’s and Vollebregt’s software CONTACT show that the rolling direction leads to
differences in the contact region and the traction distribution. Using the method of dimensionality reduction we
derive the analytical shakedown limits for the tangential load and the oscillation amplitude. The results show strong
agreement with experimental data and allow the accurate prediction of the shakedown displacement and the maxi-
mum tangential load capacity in the shakedown state. It shows that a perpendicular alignment of force and rolling
direction increases the final displacement in case of shakedown as well as the incremental shift in case of ratcheting.
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contact interface, even if the tangential force is far below
the maximum load of Eq. (1), i.e. appears insufficient to
initiate complete sliding. This effect is responsible for
microslip [7] and fretting fatigue [8, 9] of the relevant
components. In some cases, the initial slip ceases after
the first few periods due to a residual force in the inter-
face, sufficiently strong to prevent any further slip [10,
11]. Consequently, the entire contact will finally remain

1. INTRODUCTION

Force locked connections are used in various techni-
cal applications, e.g. bolted connections, interference
fits and machining fixtures. The tangential load capacity
F; max of these systems is mainly controlled by the tan-
gential contact properties [1-5]. According to Cou-
lomb’s law F{ ., is determined by the macroscopic nor-

mal force £, and the friction coefficient u:

B max = W (1)

Ifthis force is exceeded, complete sliding occurs and
the contact fails. However, in many technical systems
the frictional contact is also affected by vibrations. For
instance, the macroscopic forces can consist of a static
part superposed with small oscillations. Or the point of
application of the forces somehow shifts, what leads to
oscillations of the pressure and traction distributions [6].
Both scenarios cause a periodic incremental slip of the
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in a state of stick, even if the oscillation is continued.
This process is referred to as frictional shakedown, due
to the analogy to plasticity problems, where shakedown
describes a process in which the deformed bodies only
show plastic strain in the first few loading cycles and
pure elastic response in the steady state. Consequently,
the Melan theorem for plastic shakedown [12] was trans-
ferred to discrete [ 13] and continuous systems [ 14] with
Coulomb friction and complete contact, meaning that
the contact area does not change during the oscillation.
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In the authors recent works [15, 16] the oscillating
elastic rolling contact was introduced as an example for
an incomplete or advancing contact, in which the contact
area changes during oscillation. The exact analytical
shakedown limits were formulated and it was shown,
that shakedown is accompanied with a significant de-
crease of the maximum tangential load capacity. In the
latter study [16] the oscillation was aligned parallel to
the tangential loading. In the current study, we examine
the case that the oscillation and the loading are perpendi-
cular to each other. Again, we use numerical and experi-
mental analysis to give the exact shakedown limits and
determine the influence on the load capacity.

2. MODELS AND METHODS

Firstly, we consider a tangentially loaded Hertzian
contact of a rigid sphere and an elastic flat substrate. The
system is assumed to be uncoupled, meaning that varia-
tions in normal forces will not induce any tangential dis-
placement and vice versa. This requires Dundurs’ con-
stant 3 = 0 as it is the case for frictionless contacts, simi-
lar materials, incompressible materials or if one body is
rigid and the other one is incompressible [17]. A good
description for the initial static tangential contact can be
found, for example in Popov [18]. An alternative ap-
proach refers to Ciavarella [19] and Jager [20], where the
tangential contact quantities are determined on the basis
of the normal problem and a correctional term. However,
the elastic properties of the substrate £ and G~ as well
as its radius R are chosen as effective quantities of a con-
tact of two elastic spheres with particular radii R;, shear
moduli G; and Poisson ratios v;:
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The normal force F; leads to the indentation depth d,
which is defined as the vertical displacement of the rigid

sphere: i
3 F
d=| =——2_| . 3
( ; E*sz 3)

The area of contact is delimited by the contact radius
a=+/Rd. Assuming Coulomb friction with coefficient
u, a tangential loading F;, insufficient to cause complete
sliding, will lead to a slight rigid body displacement of
the substrate [18]:
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in the same direction. Initially, slipping will only occur
at the boundary region of the contact area, whereas the
center region remains in a state of stick and is delimited
by the stick radius [18]:
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In the next step, this static tangential contact is super-
posed by a slight oscillatory rolling of the sphere with
amplitude W, being the lateral movement of the sphere’s
center, as depicted in Fig. 1.

The system is assumed to be quasi-static, meaning
that we assume a constant | and neglect inertia effects.
This is valid as long as the rolling is slower than the pro-
pagation speed of elastic waves within the body. In addi-
tion to the parallel case (W || F}) as considered in [16],
we consider a perpendicular setting (W L F,) as depic-
ted in Fig. 1. Again, the overall macroscopic load will be
kept constant. Thus, the rolling does not lead to any addi-
tional friction force or momentum but changes the pres-
sure distribution and the actual contact area. According
to this, the problem setting is equivalent to a frictional
contact with constant macroscopic forces, which is ex-
posed to a rocking of the contacting bodies, i.e. varying
point of application of the normal force [6].

(b)

T,

Fig. 1. Static tangential contact of a rigid sphere and an elastic substrate (a); oscillating, elastic rolling contact with lateral movement

ofthe center W, perpendicular to the tangential force (b).
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Fig. 2. Experimental setting: steel sphere (7), silicone rubber substrate (2), weight, drive PI-M 405-DG and laser-vibrometer Polytec

OFV-5000.

2.1. Experimental Setting

The testrig for W L F; is depicted in Fig. 2. It con-
sists of a sphere / made of ST-52 steel and a silicon-rub-
ber substrate 2. Thus, the system is almost uncoupled as
B =0. All important parameters are listed in Table 1. In
order to minimize external influences, the substrate is
put on a low friction cross roller table. Its resistance
force of F. =0.1 N lowers the actual tangential force,
which itself'is controlled by a single weight m;, thatis
connected to the substrate through a string. Hence, the
tangential force results to F; = Fy, — F;. The weight of
the sphere acts as the normal force F}, =m,g and the rol-
ling motion of the sphere is generated by a lever arm con-
struction. Its main bearing is located exactly on the same
level as the contact point between sphere and substrate.
As this point corresponds to the instantaneous center of
motion, the oscillations of the lever-arm result in a pure
rolling of the sphere and additional influences on the
macroscopic load regime are minimized. To resist the ef-
fective moment of the tangential force about the z-axis, a
massive stiffening plate is used. The back and forth mo-
tion of the lever arm is generated by a high-precision li-
near drive. Finally, the rigid body displacement of the
substrate Uis measured using a high resolution laser vib-
rometer.

Table 1. Properties of the experimental setting

for W L F,
R 40 mm
n 0.93
E,/E, 206 - 10°/4.35 MPa
v /V, 0.3/0.5
F, 21.19N
a 4.8 mm
d 0.57 mm
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The first natural frequencies were calculated as 22 Hz
for W || F, and 19 Hz for W L F,. This difference is due
to the fact that the bending stiffness of the lever arms is
lower than their tensile stiffness. Hence in both cases,
the lowest natural frequency is two orders higher than
the highest excitation frequency, which results to 0.21 Hz
for a drive’s speed of W =1 mm/s. Therefore, the dyna-
mic influences of the test rig can be neglected.

2.2. Three Dimensional Simulation

The well-known CONTACT software package, ba-
sed on the Kalker theory of rolling contacts [21] is used
to conduct a three dimensional quasi-static simulation of
the problem. The program uses constant element discre-
tization and nested iteration processes to solve the tran-
sient problem of rolling [22]. In our case, a world fixed
coordinate system is applied and the geometry is entered
using a so-called non-Hertzian approach. Here, the ini-
tial distance between the undeformed surfaces of the two

bodies is specified through a quadratic function:
2 2
X Y
h(x, y) = R + R (6)
The rolling is simulated as a stepwise incremental
shift of the profile with AW being the step size. Thus for
W L F, the actual profile after  rolling steps reads:
2. L, nAW (nAW)’
TR YT m Y
For a mutual verification, we use the exact parame-
ters of the experimental setup as described in Sec-
tion 2.1. The number of elements varies with the ampli-
tude, due to the world fixed approach. With a side length
of Ax, Ay = 0.2 mm and an incremental step length of
AW = 0.2 mm, result 3050-4200 discretization ele-
ments. We computed 10 periods of rolling for each com-
bination of tangential loading and amplitude, resulting in

1
h(x, y) =—
(x, y) i
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Fig. 3. Equivalent one-dimensional model of the method of dimensionality reduction. System is aligned in the x-direction for the pa-

rallel case (a) and in the y-direction for the perpendicular case (b).

241-681 computation steps or 24—4h for each single pa-
rameter combination.

2.3. One Dimensional Model Using the Method
of Dimensionality Reduction

The method of dimensionality reduction enables an
exact mapping of uncoupled, rotationally symmetric tan-
gential contacts with Coulomb friction without loss of
essential properties [23, 24]. Using the method of dimen-
sionality reduction, the initial three dimensional system
can be modeled by an equivalent one-dimensional elas-
tic foundation of independent springs, as described in
[24, 25]. Both, the radius of the foundation R, =1/2R
and its normal and tangential spring stiffness k, = £ “As
and k, = G'As must be chosen according to the rules of
Popov [26] with As being the distance between adjacent
springs. The model of the method of dimensionality re-
duction enables a fast and precise simulation of the oscil-
latory rolling as described in [15]. In addition, the new
equilibrium state can be described analytically, from
which the shakedown limits can be deduced [16]. The
oscillatory rolling is considered using a quasi-static in-
cremental approach. Here, an incremental rolling AW
changes the normal deflection u, of a spring at posi-
tion s:

u,=d—(s£AW)*/R. (8)
i (a)
2
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In dependence on the initial model, the coordinate s
corresponds either to the x-direction in case that W || F;
or the y-direction in case that W L F|, as depicted in
Fig. 3. As the method of dimensionality reduction assu-
mes rotational symmetry of the contact region and un-
coupled systems [24], the resultant displacements and
contact regions for the models of the method of dimen-
sionality reduction of both cases match exactly. Accor-
ding to this, in terms of the method of dimensionality re-
duction, all findings of the parallel case [16] correspond
exactly to the perpendicular case.

3. EXPERIMENTS AND ANALYSIS

The tangential force F, the displacement U and the
oscillation amplitude W are normalized with the maxi-
mum holding force, the maximum tangential displace-
ment [24] and the contact radius:

e UUG W
M‘Fn UO w E a

We restrict ourselves to tangential forces below the
maximum holding force, and oscillation amplitudes
smaller than the contact radius:

fi <1, w<l. (10)

Consequently, without oscillatory rolling, no com-

plete sliding will occur and the center of the sphere will

(b)
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Fig. 4. Displacement of the substrate u for w|| f, ({)and w L f, (2) with w=0.23. Shakedown for f; =0.46 (a) and ratcheting for f, =

0.77 (b) (3D-CONTACT model).
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Fig. 5. Normalized tangential traction T, /up, along the center lines parallel (a) and perpendicular (b) to the direction of the rolling w

for wi| f, ({)and w L f, (2) (3D-CONTACT model).

not be moved beyond the initial area of contact at any
time. Thus, taken by itself, neither of the two factors
leads to a failure of the contact.

3.1. Shakedown and Induced Microslip

The system response as a result to the oscillation is
the same in both cases, parallel and perpendicular. Expe-
riments and simulations show that the oscillatory rolling
initially leads to an increase of the rigid body displace-
ment with respect to the static value, as depicted in
Fig. 4. We only report numerical results of the 3D CON-
TACT simulation here, see experimental results in [16].

The characteristic response can be explained as fol-
lows. At first, the system is in equilibrium due to the con-
stant macroscopic forces, i.e. # =ug,,. The back- and
forth movement of the sphere then alters the normal
pressure distribution. It drops at the actual trailing edge
and grows at the leading edge. Due to slipping and de-
creasing tangential stress at the trailing edge results an
imbalance in the tangential direction. This increases the
rigid body displacement and reduces the stick region wi-
thin every rolling period.

In case that f, and w fall below the shakedown li-
mits, the displacement stops after a certain number of pe-
riods as depicted in Fig. 4a. The residual force within the
contact is sufficiently strong to prevent any further slip
and a shakedown occurs. Thus, the system reaches a new
equilibrium and the displacement refers to the constant,
time independent shakedown displacement u =ug [13].
The entire contact region then remains in a state of stick,
despite the fact that the rolling is continued.

Otherwise, if f, and w exceed the shakedown limits,
the contact fails and the displacement continues with the
oscillation. This effect is referred to as frictional ratche-
ting or induced microslip. Here, one side of the contact
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alternately sticks, while the other slips, what leads to an
accumulated displacement of the substrate, as depicted
in Fig. 4b. Although both settings, w|| f, and wL f;,
show the same response, the magnitude of the shake-
down displacement u, as well as the incremental dis-
placement are higher for the perpendicular case if all
other parameters are identical, as shown in Fig. 4.

3.2. Contact Region for the Shakedown Case

In the new equilibrium remain three characteristic
contact regions. These are illustrated in Fig. 5, where the
normalized tangential traction T, /up, for both cases is
shown along the center lines aligned parallel (a) and per-
pendicular (b) with the particular rolling direction (da-
shed and solid center lines of Fig. 6). Here, p, depicts
the maximum pressure at x, y =0:

2 .(d)?
po="E ( Rj - an

In the center occurs a region of constant displace-
ment, i.e. the stick zone (I). At the outside (III), the con-
tact is periodically released due to the oscillation and the
tangential traction vanishes T, = 0. Additionally, region
(IT) occurs in which the tangential displacement is such,
that the tangential stress equals p times the minimum
pressure, i.e. the traction bound which appears at the re-
versal points of oscillation. It shows that the region (III)
almost vanishes for the perpendicular line (b).

In addition, the traction distribution slightly differs
for both cases. Along the parallel center line (a), it is
higher for the perpendicular setting. And vice versa,
along the perpendicular center (b) line, it is higher for the
parallel case. Regarding the normalized displacement of
particles in contact u, (x, y)/U, depicted in Fig. 6, it
shows that the stick zone (I) is spindle shaped in both
cases.
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Fig. 6. Normalized tangential displacement u, /U, after shakedown for w|| f, (a)and w L f, (b) (3D-CONTACT model).

However, the displacement also slightly differs, as
illustrated in Fig. 7, which shows u . along the center
lines. In accordance with the observations of Sect. 3.1,
u, =ugy inthe stick zone (I) is higher for w L f,. How-
ever, along the parallel center line in (II) and (III) u,, is
higher for w|| f, as shown in Fig. 7a. The difference in
the traction and displacement distribution is caused by
the evolution of the contact in the course of the shake-
down process. As a result, the direction of the oscillation
influences the shakedown displacement u.

4. RESULTS AND DISCUSSION

Using the model of the method of dimensionality re-
duction of Sect. 2.3 and the equilibrium condition of tan-
gential forces, we get the following relation between
loading, amplitude and displacement [15]:

3
f :1—5wusd—(1—usd)3/2. (12)

Due to the reasons mentioned in Sect. 2.3, this ex-
pression is initially the same for both cases. One assump-
tion for the method of dimensionality reduction is rota-
tional symmetry of the contact [23]. Consequently, a
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small deviation occurs in the relation between loading
and oscillation amplitude (12), as the real contact region
is spindle shaped in both cases. Considering this, a map-
ping parameter K is introduced [16]:
ﬂzl_Kwusd_(l_usd)3/2 (13)
which is different for both cases, due to the influence
of the rolling direction on the contact region. Compari-
son with the simulations and experiments yields the dif-
ferent mapping parameters of the two cases [16]:

K =LK, =11 (14)
Using Eq. (13) this gives:

wll fi = fi =1—wugy —(1-uy)”?, (15)

wl f, = fi=1-Llwugy -(1-uy)’>  (16)

Figure 8 shows the shakedown displacement as a
function of f, for different w.

Dotted lines are computed with Eq. (15) and solid
lines are computed with Eq. (16). The error bars and
marks show experimental results for w L f (see experi-
ments for w|| f in[16]). The asterisks indicate simula-
tions for w_L f, where values close to the shakedown
limit are not given because CONTACT lacks accuracy
close to the traction bound [22]. Comparison of the theo-

0.5 (b)

e ° <
\S] W N
1 1 1

N

Displacement u,/U,
~

<
—_
I

o
o

0.2

0.4 0.6 0.8

x/a, yla

0.0 1.0

Fig. 7. Normalized tangential displacement u,_/U,, along the center lines parallel (a) and perpendicular (b) to the direction of the rolling

wfor w|| f; ()and wL f; (2) (3D-CONTACT model).
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Fig. 8. Shakedown displacement of the substrate uy as a
function of the tangential force f; for different oscillation
amplitudes w. The oscillatory rolling causes an increase of the
displacement by comparison with its static value ug,,. Analy-
tical (solid lines), experimental (error bars and marks) and
three-dimensional simulation (asterisks) results.

retical, experimental and numerical results shows that
the shakedown displacement u is higher for a perpen-
dicular setting than for a parallel one. It must be noted
that in case that the oscillation stops to soon, the final
displacement might differ from this theoretical shake-
down value [13]. In the experiments, the shakedown
state was reached after n = 10 periods. The dashed line
gives the maximum displacement for a given amplitude,
that is reached before complete sliding occurs and the
contact fails:
Uiy = 1= Wiy (17)
Although this expression is the same for both cases,
the relations between maximum tangential load and am-
plitude differ slightly. These can be derived using the
condition that the stick region vanishes in the maximum
[16]:

5
N

Amplitude wy;;,
e
~
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Fig. 9. Maximum amplitude wy,, asa function of the tan-
gential force ft,hm for w L f,. Asterisks show experimen-
tal results, solid lines give the theoretical value.

PHYSICAL MESOMECHANICS Vol.17 No.4 2014

(18)
(19)

Experimentally, the maxima were identified by a
stepwise increase of the amplitude, while the tangential
force was kept constant. Thus, figure 9 shows wy;,,, asa
function of f, ;... Again, experimental results are illus-
trated with marks and error bars and are only given for
w L f. The theoretical values are represented by the
solid lines. It shows that wy,, is slightly lower for
w L f. However, the difference is in the range of the
relative deviation. Additionally, figure 10 shows the
maximum shakedown displacement illustrated with as-
terisks and the displacement in case of induced microslip
after five oscillation periods marked by triangles.

Equations (18) and (19) correspond to the exact ana-
lytical shakedown limits for w|| f and w_L f. Fora gi-
ven amplitude, one can thus compute the maximum tan-
gential force to achieve a safe shakedown and vice versa.
The results show that shakedown is accompanied with a
significant reduction of the loading capacity as f, ;,, <1
in both cases. Additionally, for the same amplitude, the
parallel setting could theoretically bear slightly higher
tangential load, but the difference is only minor. Thus, in
force-locked joints with oscillations of this type, it might
be more convenient if tangential loading and oscillation
are aligned parallel.

If the shakedown limits are exceeded, the contact
fails and induced microslip occurs. In dependence on the
actual rolling direction, one side of the contact sticks,
while the other slips. This accumulated displacement re-
sults in a rigid body motion referred to as walking [6]. As
shown in Fig. 11, the incremental displacement Au in-
creases with f, and w.

WH ft = ft,lim zl_wlim’

wlfi = fiim =111, +0.1wp .
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Fig. 10. Maximum displacement u;;,, as a function of the
tangential force fyjm for w L f;. Shakedown displacement
(asterisks) and induced microslip displacement after five pe-
riods (triangles).
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Fig. 11. Incremental displacement Au as a function of the tan-
gential force f; for different amplitudes w for w L f,. Solid
lines depict theoretical values and error bars and marks de-
note experimental results.

Here the experimental results for w L f, are illus-
trated by marks and error bars. The dotted (w]| f;) and
solid (wL f,) lines show the approximation functions
which are derived using a linear regression procedure
with ug,, astheregressor [15]. The incremental displa-
cements differs for both cases:

wll fi = Au=20=(1= £)P)(w-wy,), (20)

wl f, = Au=\5(1-1=£))w=-wy,). (21)
It is significantly higher for the perpendicular se-
tting. This microslip effect can be used for the genera-
tion of small displacement in case that an increase of
the tangential loading is not possible or high accuracy
is needed as in MEMS devices. In both cases, the per-
pendicular setting is more convenient as it generates a
higher displacement.

5. CONCLUSION

We examined a quasi-static frictional system of a rigid
sphere and an elastic substrate. Coulomb friction with
constant i and a steady macroscopic load regime was
assumed. In addition, the system was from an uncoupled
type, meaning that a varying normal force will not induce a
displacement in the tangential direction and vice versa.

We considered slight oscillatory rolling of the sphere
in different directions, namely parallel and perpendicu-
lar to the tangential load. In both cases, the rolling alters
the normal pressure distribution and the contact region,
what leads to partial slip and a macroscopic rigid body
displacement. If the oscillation amplitude and the tan-
gential force fall below the shakedown limits, the dis-
placement stops and shakedown occurs. Otherwise, the
contact fails and the displacement continues as a conse-
quence of the ratcheting effect.

WETTER, POPOV

We derived the analytical shakedown limits for both
cases, parallel and perpendicular, and showed that
shakedown is accompanied with a significant decrease
of the tangential load capacity. In addition, we can pre-
dict the rigid body displacement in case of shakedown
and the incremental displacement in case of ratcheting. It
was shown that the rolling direction leads to differences
in the contact region and the tangential traction. As a
consequence, both the shakedown displacement and the
incremental displacement are higher for the perpendicu-
lar setting. Future research is needed, to examine arbi-
trary settings with angles between 0° and 90°. Additio-
nally, the interaction of oscillating forces and the rolling
should be considered. It is also important to examine dif-
ferent contact geometries, especially for technical appli-
cations.
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