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Abstract—A more accurate determination of the plastic zone boundary for plane strain and plane stress state is pro-
posed. The plastic zone boundary is determined with regard to plastic loosening, given exact stress distribution and
Schleicher yield criterion. The presence of mean normal stress in the Schleicher criterion ensures uniform expan-
sion of the plastic zone. The dependence of Poisson’s ratio and constraint ratio for plastic strain on plastic loosening
of material is examined. These parameters peak at the tip or in the immediate vicinity of a stress concentrator and
decrease with distance from it. In a small neighborhood of the crack tip, a region is found in which Poisson’s ratio
is impossible to determine from the Schleicher criterion. The size of this region is identified with the size of the re-

gion of exhausted plasticity.
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1. METHODS OF NONEQUILIBRIUM
DYNAMICS AND FRACTURE MECHANICS
USED IN COMBINATION TO FIND GENERAL
MECHANISMS OF PLASTIC DEFORMATION

In recent years much attention has been paid to the
study of general mechanisms of plastic deformation and
fracture of solids on the basis of nonequilibrium thermo-
dynamics. According to the thermodynamic approach all
types of strain-induced defects are nucleated in local
zones of hydrostatic tension near stress concentrators,
where the dependence of local nonequilibrium thermo-
dynamic Gibbs potential F(v) on molar volume v of the
loaded material should be considered [1]. As arule, duc-
tile metals under loading demonstrate all intermediate
maxima of the Gibbs potential shown in Fig. 1. Conse-
quently, metal crystals in tension reveal the entire se-
quence of strain-induced defects, namely, dislocations,
meso- and macrobands of localized deformation, mate-
rial fragmentation, micropore formation, and propaga-
tion of the main crack in the local zone of a stress macro-
concentrator [2, 3]. Deformation and fracture zones of
solids shown in the diagram for thermodynamic poten-
tial F(v) versus molar volume v are thoroughly studied

and consequently regions of applicability for the basic
principles of fracture mechanics are found. The diagram
in Fig. 1 exhibits the following regions [1]:

— v < v_, is the region of hydrostatic compression
characterized by incompressibility of a solid;

— v_,—7, is the region of elastic compression-ten-
sion of an equilibrium crystal;

— v, -, is the region of plastic deformation of a sol-
id without signs of destruction of the defective material
and without a possibility of complete restoration of its
equilibrium, which is related to the development of me-
so- and macrobands of localized deformation. The evo-
lution of band structures ends in material fragmentation.
Between fragments of the crystalline material a “quasi-
amorphous phase” is formed, that experiences hydrody-
namic flow;

— v, — v, 1s the region of formation of different-scale
discontinuities, micropores, and cracks. Such defects
can arise only in local zones of hydrostatic tension,
which are characterized by increasing molar volume.

On the interval v_,—v,, where F(v) <0, any defec-
tive phase is nonequilibrium and in a thermodynamic
sense retains the capability to pass to the equilibrium
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crystalline state. On the interval v, —v,, where F(v) >0,
the crystal presents an atom-vacancy structure with ab-
normally high nonequilibrium molar volume.

Most elastic-plastic models of the fracture mechanics
are developed on the assumption of the material incom-
pressibility. Formally processes described by these mo-
dels should correspond to variations occurring in local
zones of stress macroconcentrators, where hydrostatic
compression occurs. Such zones are defined on the de-
formation interval v_,—v, in the F/(v) diagram. How-
ever, judging from the associated flow rule any plastic
deformation should be accompanied by a monotonous
increase in volume, that can be physically explained by
the micropore formation in the bodyj, i.e., by plastic loo-
sening [4]. Consequently, attention should be paid to the
interval v, —v, characterized by hydrostatic tension,
where the assumption of the material incompressibility
is irrelevant.

Nevertheless, most applied problems of the fracture
mechanics are solved on the assumption of material in-
compressibility because of both mathematical difficul-
ties and lack of knowledge on the strain-dependent be-
havior of Poisson’s ratio. A number of simplifications
are therewith assumed to validate the hypothesis of ma-
terial incompressibility. Plastic strains are thought, as a
rule, to be much higher than elastic ones. With the vo-
lume strain being a quantity of an order of magnitude of
elastic expansion, the volume is assumed to vary negligi-
bly under plastic deformation. This statement allows in-
troducing the hypothesis of material incompressibility at
the plastic stage of deformation. Whence it follows that
at the plastic stage of deformation the Poisson’s ratio

F(V) A

V3 AN—.
Ve

<V

Fig. 1. Thermodynamic Gibbs potential (v) versus molar
volume v with consideration for local zones of stress con-
centrators of different scale [1].
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takes the value v = 0.5, which bears good agreement with
the experimental data.

In fact, Poisson’s ratio variation with increasing plas-
tic strains is confirmed by numerous experiments on
simple tension. Stang, Greenspan, Newman [5] carried
out a tensile test of annealed specimens from low-carbon
steel and obtained the Poisson’s ratio increase up to
0.43...0.44. By measuring the density of deformed (up to
10%) and undeformed specimens from 40 and 45 grade
steels, Davidenkov and Vasil’eva [6] found that the Pois-
son’s ratio achieves 0.47. Zhukov [7] performed simple
tensile tests for solid cylinder specimens from 40 and 45
grade steel and aluminum and stated that under plastic
deformation the Poisson’s ratio differs from 0.5 by less
than 10%.

Note that the hypothesis on material incompressibi-
lity works fine as according to the experiments the vo-
lume variation does not exceed 0.5%. However, with all
undeniable advantages it gives no consideration to such
effect as plastic expansion. Though, in fact, this effect is
true. Judging from the experiments (for example, [8]), at
first (at plastic strains less than 1...2%) the effect of
boundary translation prevails and then boundary expan-
sion takes on primary meaning.

Thus, at a certain stage the plastically deformed ma-
terial experiences plastic expansion, during which Pois-
son’s ratio is registered to increase tov = 1/2. However,
as in this case the material cannot be incompressible any
more, the coefficient v cannot be constant and equal to
1/2 within the whole plastic zone.

The present paper proposes a more accurate determi-
nation of the plastic zone boundary for an internal
mode I crack in case of plane strain and plane stress
state. The plastic zone boundary is determined on the ba-
sis of exact stress distribution and Schleicher yield crite-
rion (Schleicher criterion specifies Mises criterion with
consideration for plastic loosening). We also study how
Poisson’s ratio varies within this zone with distance
from a stress concentrator.

2. STRESS STATE IN AN INITIALLY CRACKED
PLATE FOR PLANE STRAIN AND PLANE
STRESS STATE

Let us determine the stress state at an arbitrary point
of'a cracked plate. The stress tensor components for the
plate with the internal mode I crack of length 2/,, thatis
subjected to uniform far-field tensile stresses G_,, will
be written as [9, 10]

6. =ReZ —yImZ,
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6, =ReZ +ylmZ], (1)
6, =-yReZ, o6 =0, =0,
0., =0 for the plane stress state,
.. =V(0,, +0,,) for plane strain,

where Z, is the holomorphic function in the form

Z, = e IO d&
TC\/ZZ—IO —l0 z- E.:
_ J
- 2nz—-1y)’
_ \/EGOO fy \ Ig _&2 d&
\/TE(Z+IO) _,0 z-§&
27‘56 \/710)
(z+l0

The stress field behavior in the neighborhood of the
crack tip is studied with the use of the polar system of co-
ordinates:

z=ly=ré®, r=y(x-1,)*+)?,

0 =arctg[y/(x—1,)] at x>,

0 =arctg[y/(x—[))]+ T at x<,.

Find ReZ,, ImZ,, ReZ{, ImZ{, Re J,Im J,Re J,
and Im J for arbitrary 7:

ReZ, = (ReJcosg+Iszing),

1
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X| ——=cos—= — cos| 6, ——= |- cos— |,
N /r; N BN P!

ImJ’ =270,

X | s1n— - 392

oo
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=\/x2 +y2, r =\/(x+lo)2 +y2,

0, =arctg[y/x], 6,= 3fCtg[y/(X+ ly)]-
Substitution of (2) into (1) gives

o, = ! ReJcos9 l—singsinﬁ
2 2 2

= L

+Iszin9 1+cosgcos3—e
2 2 2

where

+2r| ReJ’sin? 9cos9 —ImJ’ cos? 9sin9 ,
2 2 2 2

o =; ReJcos9 1+singsin3—e
o ar 2 22

+Iszin9 1_00590053_9
2 2 2
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2 2 2 2
0, = vy2 {ReJ cos9 +ImJsin 9} for plane strain,
N T 2 2

0., =0 for the plane stress state.

Assuming y =0 in formulae (2) and (3), the following
expressions are derived for the plane stress state at
x=1, [11]:

.= OcX o
xx_—_ oo ?

N

o x 4)
6, =—F7——=,0 =0.

b xy
Xt =13

Note that within the classical theory of elasticity the
crack tip singularity is obtained.

3. SCHLEICHER YIELD CRITERION

The Schleicher criterion has the form [4, 12]
g=0,+Bo=+/21., B =const, (5)
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Here
_ /7 /7
o; =, / ;0

:%\/(cs1 -6, +(0,-0,)* +(0;-0,)%,

where G;j =0, —1/36,9; is the deviatoric stress tensor
components and G, 6,, and Oy are the principal stres-
ses (supposing that 6, 26, = 05) such that

2
6,+0 6, —O
— »y XX W 2
oL, = + \/[ J +02,.  (6)

o3 =V(0, +0,)=v(0,, +0,,) forplane strain,

0, =0 for the plane stress state,
where 6 =1/3(c, +0,+05)=1/30;; and B is the inter-
nal friction coefficient. According to [4], B is of the order
of magnitude 0.01. If the tensile and compressive yield

stresses 0, and o, are experimentally determined, then
[13]

B:\BGC_Gt

c.+6,

The quantity T. is the ultimate pure shear strength of
the medium (in case of the Mises criterion T = O, / J3).
Schleicher criterion (5) specifies the Mises yield crite-
rion by considering the influence of the mean normal
stress on the critical value of mean tangential stress [14].

By applying the associated flow rule

def = 728 dq (7)
acsl.j
to criterion (5), we derive the following relation:

de} = %hdg +Bhdg = dof +deP. @®)

The first summand of (8) presents the deviatoric part

of plastic strain and is responsible for shape changes.

The second summand is in charge of uniform volume va-

riation. By taking the square (in a scalar sense) of the
first summand doj}; in (8), obtain

doP = \[dofdof} = hdg > 0.

Thus, as follows from the associated flow rule (7),
any plastic deformation should be accompanied not only
by shape changes but also by a continuous increase in
volume.

The experiments demonstrate the weak influence of
o on the pattern of deformation generation and develop-
ment. Corrections made to the Schleicher criterion with
consideration for G are, as a rule, of the same order of
magnitude as that of internal friction coefficient 3 (B is
of the order of magnitude 0.01). These corrections are
usually out of the accuracy of the phenomenological
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theory of plasticity. However, speaking about cyclic loa-
ding, the above corrections are sufficient and compa-
rable with main-order terms. At the symmetric cycle the
plastic strain path is expressed by the formula [4]
L= 2n_[d3p,

where 7 is the number of cycles, L is the length of the
“plastic strain path”, and the integral is taken within a
half cycle. Hence L is proportional to a residual increase
in volume and grows in proportion to the cycle number.
Atrather large # the length L can attain considerable val-
ues despite the integral being small. Consequently, the
volume can go through significant residual plastic chan-
ges eP =B despite the low coefficient 8.

Thus, cyclic loading is a special case, which is most
beneficial for such corrections that are made to the yield
criterion with consideration for ¢ in the theory of plasti-
city. This is explained by the fact that the main terms of
the solution remain always restricted by certain limits
while correction terms increase continuously in propor-
tion to the number of cycles.

4. ESTIMATE OF THE PLASTIC ZONE
BOUNDARY

By substituting formulae (3) describing the stress
state at an arbitrary point of the cracked plate into (5), let
us write the Schleicher criterion for plane strain as

2 2
3% 3O _Ow
o> 4lo, o

o o

o 2
[——Wj—z— ©

Criterion (5) for the plane stress state can be derived
if v is excluded from expression (9), assuming v =0.

Figures 2a and 2b show plastic zone boundaries de-
fined by equality (9) for plane strain and plane stress
state, respectively (x; = x//,, v, = y/l,). Curves I and 2
in Fig. 2 are built without consideration for plastic ex-
pansion of the material at 3 = 0: curves / in Fig. 2 corre-
spondto 6./0., =2 and curves 2to 6./0., =3. Curves
I’ and 2’ in Fig. 2 are constructed with consideration for
plastic expansion: curves /” and 2’ in Fig. 2a correspond
to 3=0.01 while curves /" and 2’ in Fig. 2b to = 0.03.
Note that the presence of mean normal stress ¢ in the
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Fig. 2. Plastic zone configurations obtained from the Schleicher criterion for (a) plane strain and (b) plane stress state at v = 1/3.

Schleicher criterion (5) ensures uniform expansion of
the plastic zone.

Plane strain and plane stress state differ in size and
shape of the plastic zone. Under plane deformation plas-
tic flow in the crack tip is retarded on account of the ef-
fective yield stress being much higher than the yield
stress in uniaxial tension. Yield stresses under plane
strain and plain stress state are inconstant. Their varia-
tion is controlled by the constraint ratio for plastic strain

X =0, /0. insucha way that the yield stresses are de-
termined by effective stress 6, = x0,_. Note that Fig. 2a
shows plastic zone boundaries for plane strain at y, = 1.
At % > 1 the plastic zone is less than that marked in

Fig. 2a.

5. YIELD STRESS AFFECTED BY PLASTIC
LOOSENING FOR PLANE STRAIN AND
PLANE STRESS STATE

The combined stress state can usually be represented
by principal stresses ©,, 6,, and o;. The highest of
them is o,. Use dependences (2), (3), (6), and (9) and
suppose 0 =0, =0, =0. Express stresses 6, and o5 in

the form

- b

O3
o}

Oy

(¢

(10)

o o

where 6 /0, =( X2 - 1)/ x =t. Using Schleicher crite-
rion (5), write the constraint ratio for plane strain

x=%=ﬁ[%<r2(v2—v+1)

— 14V — 4y +1)+4v% —dv +1)?

+B(v+1D2-0]" (11)
and the plane stress state
=% V6 (12)

Se oA —t+1+B2-1)
According to (11) and (12), the higher is the internal

friction coefficient, the lower are the constraint ratio and

effective stress 6. InFig. 3 curves /, 2, and 3 are built
at3=0,0.01 and 0.05, respectively. The constraint ratio

x decreases with distance from the crack tip. In the crack
tip, when x, =1, =0, and v=1/2, the quantity  takes
on an infinite value. This can be caused by the presence
of the crack tip singularity as even in the next step 4 =
0.0001 and x=1 + A&  possesses a finite value shown in
Fig. 3. Atpoint x; =1, i.e., on the crack edge being the
free surface of a body, the stress state is thought to lack
triaxiality [9]. Therefore at x; =1 the constraint ratio
% = 1. Thus, on achieving the yield stress 6, in the crack
tip in uniaxial tension, the effective stress rises sharply

PHYSICAL MESOMECHANICS Vol.16 No.2 2013
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Fig. 3. Constraint ratio variation with distance from the crack tip for (a) plane strain and (b) plane stress state.

up to 6. =X0, [15]and afterwards decreases continu-
ously.

The similar pattern is observed for the plane strain
state, with the only difference that there are neither a
sharp increase in the small neighborhood of the crack tip
nor a sudden drop with distance from it and the effective
stress is close to the yield stress.

6. PLASTIC ZONE LENGTH AT Y=0

Let us give an estimate to the longitudinal size of the
plastic zone x; at y; =0. From expression (9) we obtain

X =1, (13)
21
where
) _1_ﬁ+«/A§—4A1A3
24 24,
A =6(1-2v)* —4p%(1+v),
Ay =6(1-2v)% +1242B(1+ V)= — 482 (1+v),
o..
T TZ
Ay =6(v? v+ —BA(1+v) +652B(1+v) = — 18—,
O

Not taking into account the smooth part (stress ©,,) in
formula (3) derived for normal stress o, and studying
only the asymptotic behavior of stress near the crack tip
p << [,, formula (13) for plane strain can be replaced by

the following approximate equality [9]:
2
r(0)= K| 2in20.+(1-2v (14 cos0) |, (14)
4no; | 2
where 7(0) is the dimensionless radius-vector and K| =

0../Tt, isthe stress intensity coefficient.
Under high stresses in the vicinity of the crack tip the
Poisson’s ratio v varies and tends to 1/2. In this case,
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according to the approximate formula (14), at 6 =0 and
v = 1/2 the plastic zone length in front of the crack tip is
7(0)=0. Consequently, at v=1/2 in the plastic zone ina
line with the crack the material is not subjected to plastic
deformation. The statement made in paper [16] allows
formulating the hypothesis of the transition of a thin ma-
terial layer along a line of the crack extension atv = 1/2
to the condition of incompressibility.

Figure 4 demonstrates dependence (13) with
(curve 7, = 0.05) and without consideration (curve 2,
B = 0) for plastic expansion. According to Fig. 4, the
plastic zone length x; ahead the crack at different
0./0., takesnonzero values (x; — 0 onlyat 6, —0).
Consequently, the assumption on the impossibility of
plastic zone formation at ®=0and v = 1/2 that follows
from the approximate equality (14) is groundless. An in-
herent error underlies it.

7. STRAIN-DEPENDENT VARIATION IN
POISSON’S RATIO
Let us rewrite Schleicher yield criterion (5) at y; in
the form

BV?+B,v+B; =0, (15)
X1 A
024
0.1 {3}
i
K*

00 T —T T —>

1 2 3 4 G /0.,

Fig. 4. Plastic zone length x; at y; =0 versus far-field
load o, atB=(7)0.05and (2)0.
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Fig. 5. Poisson’s ratio variation in the plastic zone in a line with the crack.

where
B =24+ 1)*(6- Bz )

B, =224, +1’ 3+P>)+ 6V2B(2, + 1);—* ,

By =6(t2 +1, +1) P (2, +1)

T T
+632B(24 + 1) - 18—,
GOO =]
fo X
| = .
Va2 -1
The roots of equation (15) are
—B,+./B}-4B,B
v,=— 2 153y >y (16)

2B,

Figure 5a for different 6,/c., and f illustrates two
solutions (16) of equation (15): v, (curves /—4) and v,
(curves 1'—4"). The solutions are separated by a dashed
line. Consideration is given only to descending branches
corresponding to the v, root. Curves / and 2 are built at
B=0and o_/0,, =3 and 2, respectively, while curves 3
and4 at 6,/0,, =2 and $=0.01 and 0.05, respectively.
In the immediate vicinity of the crack tip the Poisson’s
ratio v, =1/2 and v, decreases with distance from it
until taking a value typical of a plastically undeformed
material. At plastic expansion the Poisson’s ratio de-
creases more slowly.

In Fig. 5b curves / and 2 are builtat 6./, =3 and
B =0.05and 0.1, respectively. Similarly to Fig. 5a con-
sideration is given only to descending branches corre-
sponding to the v, root of equation (15). The figure de-
monstrates the interval A, where equation (15) has no so-
lutions. The higher is B, the wider is A. At low 3 (see
curve 4 in Fig. 5a built at § =0.01) the interval A is also

observed. With increasing {3 the interval A shifts to the
right with respect to the tip. The Poisson’s ratio in Fig. 5b
grows to 1/2 on the interval 1< x; <1+¢&and decreases
on the interval 1+e+A<x <I+A, (A, is the plastic
zone length). The lack of solutions on the interval A is
evidently related to the fact that yield criterion (5) is in-
operative on this interval due to lack of plasticity itself.
Note that the stepwise propagation of fatigue cracks is
associated with exhausted plasticity in a certain small
neighborhood of the crack tip whose size is determined
by several lattice parameters. For example, in case of
steel specimens the crack propagation step comprises
4 pum at the cycle number 7 =10 and stress amplitude
90 MPa 16, 17]. In turn, the plasticity exhaustion is ac-
companied by the formation of dislocation cell structure
that governs the micropore formation, i.e., material loos-
ening. The region of exhausted plasticity in front of the
crack tip is experimentally stated to be shorter than the
plastic zone. After the critical number of cycles the crack
demonstrates a brittle microstep over the whole region of
exhausted plasticity. The material within this region is
supposed to be incompressible [16]. The region of ex-
hausted plasticity is probably equal to the interval A in
length. In this case the internal friction coefficient  is
likely inconstant as it peaks in the small neighborhood of
the crack tip and decreases with distance from it. Note
that the cell structure changes continuously during cyclic
loading thus inducing autowave processes [18, 19]. Un-
der their action such material parameters as Poisson’s
ratio, loosening coefficient, constraint ratio for plastic
strain, etc., should also change continuously.

Thus, the mean normal stress 6 in the Schleicher cri-
terion ensures uniform expansion of the plastic zone. In
this case the plastic zone is inhomogeneous, i.¢., the ma-

PHYSICAL MESOMECHANICS Vol.16 No.2 2013
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terial characteristics, such as Poisson’s ratio, constraint
ratio for plastic strain (and possibly others) are incon-
stant. They decrease with distance from stress concentra-
tors and peak in the defect tip or in the immediate vici-
nity of'it. Though the experiments point to a rather weak
influence of ¢ on the pattern of deformation formation
and development, as far as cyclic loading is concerned,
the given corrections are significant and comparable to
main-order terms.

The paper has studied only a small amount of chan-
ges occurring in the material under plastic deformation.
The developed multilevel model of a deformable solid
considers plastic flow of a solid as irreversible self-con-
sistent changes in related functional systems and descri-
bes mathematically this process on all scales.

The work is performed at the financial support of
RFBR (Grant Nos. 10-08-00220 and 11-08-00191).

REFERENCES

1. Panin, V.E. and Egorushkin, V.E., Nonequilibrium Ther-
modynamics of a Deformed Solid as a Multiscale System.
Corpuscular-Wave Dualism of Plastic Shear, Phys. Meso-
mech., 2008, vol. 11, no. 3—4, pp. 105-123.

2. Rybin, V.V, Severe Plastic Deformation and Fracture of
Metals, Moscow: Metallurgiya, 1986.

3. Panin, V.E., Elsukova, T.F., Egorushkin, V.E., Vauli-
na, O.Yu., and Pochivalov, Yu.l., Nonlinear Wave Effects
of Curvature Solitons in Surface Layers of High-Purity
Aluminum Polycrystals under Severe Plastic Deformation.
L. Experiment, Phys. Mesomech.,2008, vol. 11, no. 1-2,
pp. 63-72.

4. Novozhilov, V.V.,, On Plastic Loosening, Prikl. Mat.
Mekh., 1965, vol. 29, no. 4, pp. 681-689.

5. Stang, A.H., Greenspan, M., and Newman, S.B., Poisson’s
Ratio of Some Structural Alloys for Large Strains, J. Res.
Nat. Bur. Stand, 1946, vol. 37, no. 4, pp. 211-221.

PHYSICAL MESOMECHANICS Vol.16 No.2 2013

6.

10.

11.

12.

13.

14.

16.

17.

18.

19.

169

Davidenkov, N.N. and Vasil’eva, D.M., On Poisson’s Ra-
tio, Zavod. Lab., 1952, vol. 18, no. 5, pp. 596—599.
Zhukov, A.M., On Poisson’s Ratio in Plastic Zone, Izv.
Akad. Nauk SSSR. Otdel. Tekhn. Nauk, 1954, no. 12,
pp- 86-91.

Bolshanina, M.A. and Panin, V.E., Latent Energy of De-
formation, in Investigation of Physics of Deformation, 1zv.
Akad. Nauk SSSR, 1957, pp. 193—-233.

Kershtein, [.M., Klyushnikov, V.D., Lomakin, E.V., and
Shesterikov, S.A., Fundamentals of Experimental Frac-
ture Mechanics, Moscow: Mosk. Univ., 1989.
Kozhevnikova, M.E., Refinement of the Plastic-Zone Bo-
undary in the Vicinity of a Crack Tip for the Quasiviscous
and Viscous Types of Fracture, J. Appl. Mech. Tech. Phys.,
2005, vol. 46, no. 1, pp. 102-107.

Hellan, K., Introduction to Fracture Mechanics, New
York: McGraw-Hill, 1984.

Novozhilov, V.V., On Physical Sense of Stress Invariants
in the Theory of Plasticity, Prikl. Mat. Mekh., 1952,
vol. 16, no. 5, pp. 615-619.

Kovrizhnykh, A.M., Plane Stress Equations for the Von
Mises—Schleicher Yield Criterion, J. Appl. Mech. Tech.
Phys., 2004, vol. 45, no. 6, pp. 894-901.

Kadashevich, Yu.l. and Novozhilov, V.V., Theory of Plas-
ticity Taking into Account Residual Microstresses, Prikl.
Mat. Mekh., 1958, vol. 22, no. 1, pp. 78-89.

. Shiratori, M., Miyoshi, T., and Matsushita, H., Numerical

Fracture Mechanics, Tokyo: Jikkyo Shuppan, 1980.
Arutyunyan, R.A., Problems of Strain Aging and Long-
Term Fracture in Mechanics of Materials, Saint-Peters-
burg: Izd. St.-Petersb. Univ., 2004.

Ivanova, V.S. and Terentiev, V.F., Nature of Fatigue of
Metals, Moscow: Metallurgiya, 1975.

Zuev, L.B. and Danilov, V.I., Slow Autowave Processes in
Deformed Solids, Phys. Mesomech.,2002,vol. 5,no. 5-6,
pp. 97-114.

Zuev, L.B. and Danilov, V.I., The Nature of Large-Scale
Correlations in Plastic Flow, Phys. Solid State, 1997,
vol. 39, no. §, pp. 1241-1245.



