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General theory of micropolar elastic thin shells
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Gyumri State Pedagogical Institute, Gyumri, 377526, Armenia

The paper formulates general hypotheses of micropolar elastic thin shells that are given asymptotic validation. Using these hypotheses
and three-dimensional Cosserat (micropolar, asymmetric) theory of elasticity, general two-dimensional applied models of micropolar
elastic thin shells with independent displacement and rotation fields, constrained rotation and low shear rigidity are constructed to suit
dimensionless physical parameters of the shell material. The constructed micropolar shell models take into complete account transverse
shear strain and related strain. Models of micropolar elastic thin plates and beams are particular cases of the constructed micropolar shell
models. An axially symmetric stress-strain state problem of a hinged cylindrical micropolar shell is considered. Numerical analysis is used
to demonstrate effective strength and rigidity characteristics of micropolar elastic shells.
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1. Introduction

The progress in micro- and nanotechnologies sets up
new problems assisting the research and development in
physical mesomechanics and structural solid state mecha-
nics [1-3]. The stress-strain state of heterogeneous solids
is described to advantage by the micropolar theory of elas-
ticity, which has been intensively developed in recent years
[4—17]. Of urgency for modern applications is the construc-
tion of mathematical models of micropolar elastic thin
beams, plates, and shells [18-29].

The main issue in the general theory of micropolar elas-
tic thin rods, plates and shells is in approximate but ade-
quate reduction of a three-dimensional micropolar elastic
problem to a one- or two-dimensional boundary problem.
In our opinion, it is appropriate to this end to use asymp-
totic integration of the three-dimensional micropolar elas-
tic boundary problem of a thin shell or plate (rectangle)
[30—33]. In terms of engineering practice, this idea can ef-
ficiently be implemented using the following approach. If
we have qualitative results of asymptotic integration of a
three-dimensional (two-dimensional) micropolar elastic
boundary problem of a thin shell or plate (rectangle), we
can then formulate rather general assumptions (hypothesis)
that provide a possibility to go from a three-dimensional
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(two-dimensional) model to a two-dimensional (one-dimen-
sional) model of micropolar shells and plates (rods).

In the work, using this approach and three-dimensional
micropolar theory of elasticity with dimensionless physical
parameters, general models of micropolar elastic thin shells
with independent displacement and rotation fields, con-
strained rotation, and low shear rigidity are constructed tak-
ing complete account of transverse shear strain and related
strain.

2. Problem statement

Let us consider an isotropic shell of constant thickness
2h as a three-dimensional micropolar elastic solid. We stem
from the constitutive (tensor) equations of linear static
micropolar elasticity with independent displacement and
rotation fields [34-36]:

equilibrium equations:

V,0™ =0, V, u"+e"c,, =0, (1)

physical elasticity relations:

{Gmn = (W 0¥y + (U= Oy + A7 1S @
Mo = (Y + €K,y + (Y —E)K,,p, + PRS0

geometric relations:

Vo =V oV = Clmn®" s Ky =V, 0. (3)

Here, 6, [i are the force and couple stress tensors; ¥, K are
the strain and bending-torsion tensors; V, @ are the displa-
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cement and independent rotation vectors; A, U, o, P, v, € are
elastic constants of the micropolar shell material. The sub-
scripts m, n, k take on the values 1, 2, 3.

Constitutive equations (1)—(3) of the three-dimensional
asymmetric theory of elasticity are added with appropriate
boundary conditions.

The shell front faces are assigned boundary conditions
of the first micropolar elastic boundary problem with free
rotation, and the shell end faces X are assigned boundary
conditions either in force and couple stresses, or displace-
ments and rotations, or in a mixed form, depending on the
type of external loading or fixing of shell points.

It should be noted that the main physical constant satis-
fying equations (1)—(3) of the micropolar theory of elasti-
city is the elastic modulus o (at o = 0, the given system
yields equations of the classical theory of elasticity).

In what follows, we use curvilinear orthogonal coordi-
nates o, (Lamé coefficients: H; = 4;(1+04/R;) (i=1,2),
H; =1) accepted in the theory of shells [37]. In so doing,
the physical tensor and vector components are left with the
previous notation. The boundary conditions at the shell front
faces o3 =+/h can now be written as

oy =14}, Oy =143, @)

My =tmi, Wy =Emy (i=12).

Notice that from Hooke’s equations (2) for the strains
Yi2- Y21 and ¥s;, Y3 (=1, 2) , itis sometime convenient to
consider their sums and differences which, in view of geo-
metric relations (3), in the accepted curvilinear coordinate
system can be written as follows:

LoV, 1 oM, 13

T2 - My - 7L
H,do, HH,do, ' H, oo,
1 oH 1
- 2V, =—(0}, +0y),
H/H, do, 2u
)
H,do, H,do, ' doy 2u =° 7
@3:_1 Lo 1 8H2V2 B
2|\ H, oo, HH, da
1 oV 1 oH 1
|t [+ (0 —0p).
H, oo, HH, do,

1 1 d 1 o0H av ©
o ==y | L L,
2|| H; 0o, H; da; 7| da
1
-(=1’ E(Gﬂ —03;).

Hereinafter, i,j=1,2 and i =.

It is assumed that the shell thickness is small compared
to the characteristic curvature radius of the shell median
surface. We stem from the following basic concept: in the
static case, the general stress-strain state of the three-di-
mensional thin body forming the shell comprises the inter-

nal stress-strain state of the entire shell and the stress-
strain state of boundary layers near the shell end face X.
The construction of a general two-dimensional applied
model of micropolar elastic thin shells is closely linked with
the construction of an internal problem.

Considering that the method of hypotheses is extraordi-
nary clear and is fast and rather easy in providing final re-
sults, we use the method to develop a theory of micropolar
shells. The hypotheses as such are formulated reasoning
from the result of asymptotic analysis of the three-dimen-
sional micropolar elastic boundary problem in a thin shell
region [32, 33].

In determination of the internal (as well as boundary)
stress-strain state of a shell [32, 33], an important role be-
longs to physical constants of the shell material. Therefore,
we introduce the following dimensionless physical para-
meters:

W Ru Ru R

T (7
o B Y €
where R is the scale factor or the characteristic curvature
radius of the shell median surface.

3. Model of micropolar elastic thin shells with
independent displacement and rotations fields

Taking into account qualitative data of asymptotic so-
lution of the system of equations (1)—(3) with the boundary
conditions specified above and asymptotic integration of
the boundary problem [32, 33] for the values of dimension-
less physical parameters (7):

2 2 2
B R R R (8)

o B Y €
we can put the following rather general assumptions (hy-
potheses) on which to base the theory of micropolar elastic
thin shells.

1. Under deformation, initially straight fibers normal to
the shell median surface rotate freely as a unity in space
through a certain angle, keeping their length constant but
changing the perpendicular orientation about the deformed
median surface.

This hypothesis can be represented in the mathematical
form: the tangential displacements and normal rotation are
distributed within the shell thickness by the linear law:

Vi=u;(0u, oy) + oy, (0, 0 ),

W5 =Q; (0, 0,)+ osu(ay, 0,) ©)

3 = 52300, Oy 3UGy, &y ),
and the normal displacement and tangential rotations are
independent of the traverse coordinate oy, i.e.,

Vy=w(ay, 0,), ; =Q;(0,a,). (10)

Note that in terms of displacements, accepted hypothesis
(9), (10) is in essence coincident with the Timoshenko ki-
nematic hypothesis in the classical theory of elastic shells
[38, 39]. Let hypothesis (9), (10) as a whole be named a
generalized Timoshenko kinematic hypothesis of the theory
of micropolar shells.
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2. The force stress 03, in generalized Hooke’s law (2)
can be neglected with respect to the force stress ;.

3. For determination of strain, bending-torsion and force
and couple stresses, the force stress ©5; and couple stress
W45 are first taken as

0 0

03 =03 (04, 0y ), M3z = Hs3(0, O). (11)

Once the specified quantities are calculated, we can more
accurately determine the values of 6;; and W;; by adding
(11) with terms derived from integration of the first two or
sixth equilibrium equation from (1) for which the averages
over the shell thickness are required to be zero.

4. The quantities o3 /R; compared to unity can be ig-
nored.

Static hypothesis 3 differs from the corresponding Ti-
moshenko hypothesis [38, 39]. Running ahead, we should
say that the applied two-dimensional theory of micropolar
shells based on hypotheses 1-4 will be an asymptotically
exact theory. Formulated assumptions 1-4 provide a possi-
bility to completely allow for shear strain and related strain
in the theory of micropolar elastic thin shells.

According to generalized Timoshenko kinematic hy-
pothesis (9), (10), equations (3) give the following expres-
sions for the strain and bending-torsion tensor components:

Vi =L (04, 05) + 0K (0, oy ),

Yy =L (0, 0y) + 03K (), 0y), (12)
Vis =150, ), v5 =I5(0y, 0,),

Xii =K (04, 00), Xy =Ky (0, 0y),

Wiz =Kz (04, 0) +0u3l5(0, Oy, (13)
X33 =K33(04, 0), Y33 =0, X3 =0,
where

1 dy; 1 04 w
i~ 5 - Uujt—,

4; 00, AA; 0o, TR,

1du; 1 94

T, = —Lu, —(-1)7Q,,
T4 90, A4 do SR
1oy, 1 094
iy agl YA a0,
1oy, 1 : .
ij = wj - Al W[ _(_1)]l:
A; 0oy AA; o
Ly ==0,+(-1/Q,, Ty, =y, - (-1)/Q,,
__Low w
" 4 00; R’
Kﬁ=1ag,.+ 1 aA,.QA+&7
4,00,  AA;do; 7R
109, 1 094
——t-——1Q, (15)

K, = o
A; 0o A:A; do;
10Q, Q, 1 o

K3 = , Ly =——
BT 4 00; R 7 4 00,

i

Next, from generalized Hooke’s law (2), equilibrium
equations (1), and accepted hypotheses follows the consti-
tutive formulae for the force and couple stress tensor com-
ponents:

(o :ﬁ(l} +vFﬁ)+a3§(Kﬁ +ij/.),
0; =[(w+a)ly +(u-o)l; ]+
+os[(u+a)K; +(L-0)K ;],
03 =(U+ o)l +(u—o)l,;, (16)

C]; -q3 O3, . -
033 =T+E(CI3 +43),

0
03; = 03i (0, 0ly) +

0 0
| B[Aj Gii) B[Ai Gji)
T 03— + +

4:4; oo,; do.;

1 aAj 0 1 04 0 O3

+ Gji— Cj———
4;4; do; 4;4; da.; R;

1

L] aAjé“_ 1 o4 L
Ad; 9oy A Qo [

_HBy o2 B o

TTOB+2y B4y Y B+2yu33’

Wy =(y+&)K; +(Y—8)K;, (17)
B+y o B

1= Us33— (Myy +15),

yoB+2y) 7 2yGB+2y) P
mt—m; o3 . 4+ -

=t 4+ S (m +m;

M’3l 2 2h(m1 ml ))

0
Ha3 =304, 0) +

) 1fémﬁh)+amﬁx)+
A4, L aa, ao.,

2 2
+ h.kui _(812_%21) + &_h_ X
R, R, 2 6

1| ) | A )
A A, ao, ao.,

+0

1 1
—(612—-0621)¢,
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—em'—-m;
Mi3:{4y£ Ki3+y = }'
Y+e Y+e 2

v, -
ra dye li3+Y em +m |
y+e y+e 2h

0 0 0 1 1 1 .
Here, Gii, Gjj, U;5, Gii, Ojf, U;3 are respectively the constant

and linear-in-oi; parts of the force stresses 0,0, and
couple stresses ;3.

With the aim to reduce the three-dimensional micropolar
elastic problem to the two-dimensional one, which is al-
ready done for displacements, strains, bending-torsions and
force and couple stresses, we introduce, instead of the force
and couple stress tensor components, their statically equiva-
lent integral characteristics — forces T};, S, N3, N3;, mo-
ments M;;, Hy, L;, L, L3, Ly; and hypermoments A3
which, in view of assumption 4, are expressed as follows:

h h
T, = [o,das, S; = [o,dos,
h h

h h
N = J.Gi3d0‘3a N;; = J.53id0‘3:

—h “h
h h

M, = fogc,-,-dog, H; = j'oc3cl-jdoc3, (18)
—h —h

h h h
L= fMiidOC3a L= J.Mijd%: Ly = f“33d0‘3=
“h

—h —h
h h

Liy = [updos, A= [osusdos.
—h —h

The main system of equations of micropolar elastic thin
shells with independent displacement and rotation fields
has the form:

equilibrium equations:

g 04 ; oS .
Lo, L2 g gy e 200
4; 0o A4, do 4; do;
1 04, N, ~
+ _1S+S +—l3:— T.}_ ),
4;4; aocj( #*5y) R; (9i +4:)
N 04; 0H ..
L%_}.;_](MH_MJ_]_)_'_L gy
4; do; 4;4; oo, 4; a(xj
1 04, _
+———L(H, ;+H.,)- Ny, =—h(qg7 —q7), (19
4;4; 306]-( it Hip) = Ny (g —q: ), (19)
A, N, AN
i.,.h_ 1 |94, 13)+8( 1V3) =q;+q3_,
R R, 44, aa, oo,
N 04; oL
1 aL” + 1 J ( = j/_)+i_]z+
4; do; A4;4; oo, A; aocj
1 04

L
(L + L) +—2+
A4;4; do; R,

1

FED (N = Nyj) ==(m] +m)),

i+ﬁ_ 1 8(A2L13)+8(A1L23) _
R, R, 44, oJo, dai,

~(S)p =8y =m3 +mj,

(20)
Lo 1 [ 0(4A3) + 9(4Ay3) _
33 A1A2 80(1 aaZ
—(Hyy — Hyy) = h(my —my3),
physical elasticity relations:
2Eh
T, :m(l“ﬁ +vl;),
Sy = 2h[(u+ o)l +(n—-o)l; ],
3
M, :2E—hz(]<ﬁ +VK ),
31-v°)
s (21)
2h
Ni =2h(u+ )l +2h(u - o)Ly,
N3; = 2h(+ )Ty, +2h(w— o)L,
L =on| 2B 2B B
B+2y B+2y | B+2y
L; =2H[(y+ &), + (Y —£)K ;],
Ly =2h[(B+2y)1+B(xy, +K5)], (22)
— Y m
L, :2}{ 4ve K;s +Y eEm; —m; }
V+E y+e 2

B3 y+e P y+e

To equilibrium equations (19), (20) and elasticity rela-
tions (21), (22) of micropolar shells we should add geo-
metric relations (14), (15).

Let us represent “mitigated” boundary conditions on the
boundary contour I' of the shell median surface assuming
that this contour coincides with the coordinate line
o, = const:

_an’ 4ye +y—8m[++m[_
’ 2n |

Ty =Tj) or uy=uy, S5 = 5p, 0r uy =u3,
N13:N1*3 or W:W*, (23)
M, =Mj, or Ky, =Kj,, Hy=Hjor Kjp =K,
L, =1L}, or X, =K|{, Li, =L}, OF Kj» =K},
1 11 11 1*1 12 12* 12 1*2 (24)
Liz =Lz or ki3 = K3, A3 = Ay; OF L3 =13,
The system of equations (14), (15), (19)—(22) of micro-
polar elastic thin shells with independent displacement and
rotation fields is a system of 18th-order differential equa-
tions with nine boundary conditions (23), (24) on each of
the contours I of the shell median surface. The system con-
sists of 52 equations in 52 unknown functions: u;, w, \,,
Qiag:blaﬁ Ty, S Ni35N3i’M Hy, L, L.i].’L:U’LiB’

is Lijs Oy iis 11455 L s
A, U Ty Ui, Ty Ky K %555 K55, K, L.

Model (14), (15), (19)—(24) of micropolar elastic thin
shells with independent displacement and rotation fields
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takes into complete account transverse shear strains and
related strains.

If we formally take o = 0 in model (14), (15), (19)-
(24), we obtain the system of equations and boundary con-
ditions of the classical theory of elastic shells with the
Timoshenko hypothesis [38, 39] (surely, somewhat differ-
ent due to static hypothesis 3).

If we neglect the transverse shear in model (14), (15),
(19)—(24), i.e., if we put

I3 +15,=0 or y; =9, (25)
we obtain a model of micropolar elastic thin shells with
independent displacement and rotation fields in which the
displacements are considered not from the Timoshenko
hypothesis but from the Kirchhoff-Love classical hypoth-
esis, namely:

Vi =u;(0y, 0p) + i3 (04, 0,),

Vs = wioy, ), 20
that should further be added with conditions for free rota-
tions ®; and ®; from formulae (9), (10):

0; =€, (0, aty),

03 =23 (0;, 0Ly) + 0310, Oy ). @7)

Assumptions (26), (27) as a whole will be termed a gen-
eralized Kirchhoff-Love kinematic hypothesis of the theory
of micropolar shells.

The constitutive equations of the model of micropolar
elastic shells with independent displacement and rotation
fields for the generalized Kirchhoff-Love kinematic hypoth-
esis (leaving assumptions 2—4 intact) are expressed as equi-
librium equations (19), (20) to which we should add

physical elasticity relations:
2Eh

T;'[ = 1_\)2 [Et +Vr1/]’
Sy = 2h(u+ o)y + (-l ],
2ER’
M;=————(K;+VK ), 28
3(1-v2) ! .

3

2h

Ny = N3 =4oh(l; - 13)),

Lo BB, 2B B
B+2y B+2y 7| B+2y
Ly =2h[(y+&)K; + (Y —&)K ;]
Ly =2h[(B+2y)1+B(K; +Ky))], (29)
- Y ms
LB:Z}{‘WS N L[ Sl }
Y+€ Y+e 2

21| 4 —em +m;
A[3:_ YE l[3+y € m; +m, ,
3 |y+e y+e  2h

geometric relations:

1 du; 1 04 w
+ u;+—,

4; 00, AA; 0o, TR,

1 0u; 1 04

. =

u

= -y, — (1)’ Q,,
77400, 4,4, 0o, 1
1 99, 1 94,
i = ! : ja (30)
4; do; A4 A; oo
108, 1 94 -
I bl el G
4; oo, A;A; da
9, =L OV 1
A4; 0o; R,
s =Ty =2[=9, + (1) Q,],
«, = 1 8Qi+ 1 094 QA+&7
4; 0o, AA; 9o, R
109, 1 094
K, = L - LQ,, (31)
4; do; A A; do;
10Q, Q 1 &
Kp=—F——~—= li3=——>—,
4; da; R, 4; ooy,
boundary conditions (at o, = 0):
Ty =T or uy=uj,
H -
Spp + =12 =5, or uy =u3,
R,
1 0H " .
Ni; +—a 12 = NJ; or w=w", (32)
A, do,
My, =M/, or Ky =K,
Ly =Ly, or Ky =Xy,
Lyy = Ljy OF Kj3 =K, (33)

Ly3 =Lj; or i3 =K,

A=Ay or l3 =155

If we formally put oo = 0 in the system of equations of
micropolar shells (19), (20), (28)—(33), this system and
boundary conditions gives constitutive equations and boun-
dary conditions of the Kirchhoff-Love classical theory of
elastic shells [37].

If equilibrium equations (19), (20) are incorporated,
from the D’ Alembert principle, with the inertia forces and
moments:

20h0%u; /012, 20hd%w/ 3%, 20h° [3 9%y, [0,

2Jhd%Q,; /0%, 2Jhd*Q, [0i%, 213 [3 91/ ar,
we obtain, using (14), (15), (19)—(24) and (19), (20), (28)—
(33), general dynamic models of micropolar shells with in-
dependent displacement and rotation fields with and with
no account of traverse shear.

The general theory of micropolar shells with indepen-
dent displacement and rotation fields (14), (15), (19)—(24)
(with regard for traverse shear) and (19), (20), (28)—(33)
(without regard for transverse shear), assuming the curvi-
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linear coordinates «, 0l, in the form [37]:

o, =RE, o, =RO
and hence putting for 4, 4,

A =4, =R,
gives corresponding models of micropolar circular cylin-
drical shells (R is the radius of the shell median surface).

Let us consider the axisymmetric stress-strain state prob-
lem of a hinged cylindrical micropolar elastic shell under a
normally distributed force load of intensity p = p,X
xsin(7x/l), where [ is the shell length.

In this consideration we use the theory of micropolar
shells with free rotation taking into account traverse shear
(equations (14), (15), (19)—(22), boundary conditions (23),
(24) for hinging) and neglecting traverse shear (equation
(19), (20), (28)—(31), boundary conditions (32), (33) for
hinging). For the above problems of a cylindrical micropolar
elastic shell, exact solutions were derived and were used in
numerical analysis. Table 1 presents the results of numeri-
cal calculation (note that micropolar materials, e.g., artifi-
cial bones [11, 12], are now available for which elastic con-
stants were determined; however, the shell material chosen
for calculations is here hypothetic).

It is seen from the data presented in Table 1 that the
micropolar elastic shell material (both with and with no
account of transverse shear in the micropolar theory with
free rotation) displays very high strength and rigidity charac-
teristics. The numerical results in Table 1 also show that
account of transverse shear strain is very important for the
theory of micropolar shells with free rotation. This means

that one should be very careful in applying the theory of
micropolar shells with free rotation based in the genera-
lized Kirchhoff-Love kinematic hypotheses.

4. Model of micropolar elastic thin shells
with constrained rotation

Let us consider the case where dimensionless physical
parameters (7) take on the values:
2 2 2
assp, TR R R (34)
p Y €
The asymptotic analysis [32, 33] of boundary problem
(1)—(6) for (34) shows that the asymptotic approxima-
tions of the rotation vector @ are related to the appro-
ximations of the displacement vector V like in the classical
theory of elasticity:

o =%r0tV. (35)

This means that the constructed two-dimensional theory
of micropolar shells lies in the domain of the micropolar
theory with constrained rotation (or, in other words, Cosserat
pseudocontinuum [40, 41]). It is readily seen from formula
(6) of the general micropolar theory of elasticity that con-
dition (35) is fulfilled when the physical material constant
o is very high: o0 — oo [36, 40] (the first expression in (34)
makes sure that the given condition, in this case, holds true).

The micropolar theory with constrained rotation has
certain peculiarities [41]. If the displacement vector V is a
vector differentiable a required number of times, constrained

Table 1

Strength and rigidity characteristics of a cylindrical micropolar elastic shell.
Model with independent displacement and rotation fields (with and with no account of traverse shear)

Shell dimensions Generalized Timoshenko hypotheses Generalized Kirchhoff-Love hypotheses
R, mm h, mm [, mm % ﬁ % ﬁ
’ ’ ’ Of i max Whax Of i max Whax
8=h/R=1/40
8 0.08 16 0.04525 0.374775 0.24424 0.24424
20 0.2 40 0.06515 0.387809 0.22892 0.22892
50 0.5 100 0.17292 0.458377 0.18672 0.18672
80 0.8 160 0.31875 0.553881 0.16531 0.16531
100 1 200 0.41412 0.616329 0.15805 0.15805
200 2 400 0.72957 0.822908 0.14612 0.14612
8=h/R=1/100
8 0.2 16 0.04533 0.375211 0.2446 0.2446
20 0.5 40 0.06526 0.388257 0.22925 0.22925
50 1.25 100 0.17317 0.458878 0.18698 0.18698
80 2 160 0.31914 0.554409 0.16554 0.16554
100 2.5 200 0.41455 0.616849 0.15827 0.15827
200 5 400 0.72992 0.823247 0.14632 0.14632

Note. The physical properties of the shell material: o0 = 1.6 MPa, L =2 MPa, A =3 MPa, y = € = 3 kN, the load intensity p, =

=100 Pa.



S.H. Sargsyan / Physical Mesomechanics 15 1-2 (2012) 69-79 75

rotation condition (35) gives the identity:

diver =0.

This means that the first invariant of the bending-tor-
sion tensor is equal to zero:

X+t X2 +%a3 =0. (36)

From formulae (2) for the first invariant of the couple
stress tensor follows:

iy +los W33 =GB+ 2)( 1 + Xz +X33)- (37

In view of identity (36), we obtain:

Wy +Hg 133 =0; (38)
whence it follows that
=—(Uy; +Uy). (39)

Formula (39) means that the couple stress ;5 isnotan
independent function in the sense that for this quantity it is
impossible to specify arbitrary boundary conditions on the
shell front face o, =xh (i.e., of six boundary conditions
on the shell front face o; =x/ (see (4)), there are five
left).

Moreover, as follows from (37), it makes no difference
to the theory with constrained rotation what the value of
the sum 3B+ 2y is (it can be stated that for this theory, the
value of the physical constant B is immaterial). Thus, the
micropolar theory with constrained rotation is determined
by four elastic constants: A, W (or E, V), ¥, € (or [, [41]).

Now we turn to construction of a model of micropolar
elastic thin shells with constrained rotation. On the grounds
of asymptotic integration data for boundary problem (1)—
(6) [32, 33] with the dimensionless physical properties of
values (34), we take the following assumptions (hypoth-
esis) for construction of the general applied two-dimensional
theory of micropolar shells with constrained rotation:

1) assumptions 1-4 made in the previous section (as-
sumption 3, in this case, should be applied only to the force
stress Gy;),

2) constrained rotation condition (35).

According to kinematic hypothesis (9), (10) and on the
grounds of hypotheses accepted in this case, the formulae
for the strain, bending-torsion and force and couple stress
tensor components are the same as formulae (12)—(17),
except that in formulae (17) the values for w; and s,
should be replaced by the simple expressions:

Wi = 2YK1'[7 M3z = ZYL (40)

The basic system of equations of the general applied
two-dimensional theory of micropolar elastic thin shells with
constrained rotation taking account of traverse shear strain
and related strain has the form:
equilibrium equations:

g 04; A
LT, , 1 (T )+L—”+
A 00, A4, Ao, 4; o

1 o4 Ny ol
+AA a (S Si)+ R (g; +9q;)s

+

) oA . o0H
LaMu +;—](M--_M17)+AL_][ (41)

4; do; A A; do; ; oa
1 04
AA oo
T, T A, N, AN
Ty, Ty 1 {(2 B, A4 23)} &

’(H +Hy)= Ny ==h(q —q7),

R, R, 44, do, ao.,
1 oL.. 1 04; 1 oL,
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do; 4 4; do; 4; do;

1 04

l L _
+A,.Aj doL; 90, L ‘f)+ R, ’
+ (=D (N3 =N3)) =~(m +m;),
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physical relations:

i

(42)

}Hu -H, =0,

2FEh
= _—\’2(Fi[ +vly),

3
M :2E—hz(Kﬁ
3(1-v?)
Siy + 8y =4ph(L, + 1), (43)
Nz + Ny =4un(l; +15),
2h°
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geometric relations:
1 au 1 04
T4 Ao AA doL;
1 du; 194
P74 0, AA; 0o,
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10Q, 1 094 Qs
Kj=——7——"+——1Q +—
4; 0o, AA; 00, R
oo 0Q;, 1 04
Y4 0oy A4, 0o
10Q, Q, 1 o
Kg=———"—=~—7" I3=—7—,
4; da,; R, A; oo,

1

>

(46)

1 1

Q[ :—(—l)jg(qu +13]), 93 =E(E2 _F21)>
1

1=— K —K .
2( 12 21)

To the system of equations (41)—(46) of the general ap-
plied two-dimensional theory of micropolar shells with con-
strained rotation we add “mitigated” boundary conditions
(23), (24) on the boundary contour I" of the shell median
surface.

The system of equations (41)—(46) of the theory of
micropolar shells with constrained rotation has the 18th
order with nine boundary conditions (23), (24) on each edge
of the shell median surface. This system contains 51 equa-
tions with 51 unknown functions: 7, M, S;, Ni3, N3;,
Hy, L, Ly, Lz, A3, Ty Ky, Ty K T, Ty Ky K, K3,
Liysup, wy Uy, 05, Q;, Qg

If we ignore transverse shear in the system of equations
(41)—(46), i.e., we take formula (25), the model of micro-
polar elastic shells with constrained rotation appears with the
generalized Kirchhoff-Love hypotheses rather than with
the generalized Timoshenko kinematic hypotheses.

The constitutive equations of this model of micropolar
shells with constrained rotation include:
equilibrium equations:

1 a(M11+L12)+ 1 8(H21+L22)+

4 da, 4, do.,
1 o4,

YO (M, + L) - (Mg — L)+
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1 aAl
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1 04,
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44, 90, (M = Ly) = (M +Ly)]
1 04,
+——2[(Hyy = Ly )+ (Hoyy + Lyy)]—
A, o, [(Hyy = Lyy) + (Hyy + Lyy)]
L - -
_%_NB =—h(q; —q;)+(m +my),
1
physical relations:
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geometric relations:
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To the system of equations of micropolar shells with

constrained rotation based on generalized Kirchhoff-Love

kinematic hypothesis (47)—(49) we should add the boun-

dary conditions on the boundary contour I" of the shell me-
dian surface (o, = 04):

* ® H —L * £
T, =T, or uy=uy, S, +M=Slz Oor U, =u,,
2
1 O(Hy — L)
A4, do.,
My =L, =M, or Ky =Kjj,

— * — * — * — *
Ly =Lj; or K3 =K;3, Az =Aj; or [j3=1;3.

Ny + =N, or w=w", (52)

If we neglect the moments and hypermoments due to
couple stress in the system of equations (41)—(46) and in
boundary conditions (23), (24) of the theory of micropolar
shells with constrained rotation (with regard for traverse
shear) or in the system of equations (47)—(50) and boun-
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Table 2

Strength and rigidity characteristics of a cylindrical micropolar elastic shell.
Model with constrained rotation (with and with no account of traverse shear)

Shell dimensions Generalized Timoshenko hypotheses Generalized Kirchhoff-Love hypotheses
R, mm h, mm [, mm % :1“::;?‘ % w,'i;i
Ollmax Winax Ollmax Winax
8=h/R=1/40
60 1.5 120 0.06231 0.38632 0.2675 0.2675
80 2 160 0.20167 0.47753 0.393653 0.393653
90 2.25 180 0.26774 0.52077 0.451054 0.451054
100 2.5 200 0.32974 0.56135 0.503577 0.503577
150 3.75 300 0.56953 0.71828 0.695347 0.695347
200 5 400 0.71318 0.81229 0.802279 0.802279
8=h/R=1/100
60 0.6 120 0.0622 0.38588 0.267271 0.267271
80 0.8 160 0.20138 0.47702 0.393374 0.393374
90 0.9 180 0.26739 0.52025 0.450764 0.450764
100 1 200 0.32935 0.56082 0.503284 0.503284
150 1.5 300 0.56909 0.71782 0.695099 0.695099
200 2 400 0.71282 0.81194 0.802094 0.802094

Note. The physical properties of the shell material: u =2 MPa, A =3 MPa, y= € = 3 kN, the load intensity p,= 100 Pa.

dary conditions (51) (without regard for transverse shear),
we obtain appropriate classical theories of elastic shells
(with and with no account of traverse shear).

From the general models of micropolar elastic thin shells
with constrained rotation with and with no account of tra-
verse shear we can pass to appropriate equations and boun-
dary conditions for cylindrical shells.

Let us consider a stress-strain problem, similar to that
posed in Sect. 3, for a hinged cylindrical shell based on the
theory of micropolar shells with constrained rotation with
and with no account of traverse shear. Numerical data for
the problem are presented in Table 2. These data suggest
that in the model of micropolar shells with constrained ro-
tation (with and with no account of traverse shear), the
micropolar material also displays very high strength and
rigidity characteristics. It should also be noted that in the
theory of micropolar shells with constrained rotation, ac-
count of traversal shear strains is of significance.

5. Model of micropolar elastic thin shells
with “low shear rigidity”

Let us consider the case where
2 2 2
o~ U, Ra<<1,Ra<<1,Ra<<1. (53)
p Y €
On the grounds of asymptotic analysis [32, 33] of boun-
dary problem (1)—(6) in a three-dimensional thin region of
a shell for (52), we can take the following asymptotically
substantiated assumptions (hypothesis):

1) assumptions 1-4 from Sect. 3,

2) in the moment equilibrium equations from (1) we
can neglect the differences of the force stresses 6; =0 ;,
6,3 —03;, but for dimensionless physical parameters (52)
(the physical constant ot at a given R is small), these differ-
ences in formulae (6) are retained.

It is significant that in the model of micropolar elastic
shells with the hypotheses taken (we term it a model with
low shear rigidity in the sense that the physical constant o
is a shear modulus of sort like the classical shear modulus
W), the “moment” part of the problem is an independent
boundary problem.

The basic system of equations and boundary conditions
of the model of micropolar elastic thin shells with low shear
rigidity and complete account of traverse shear strains is
written as follows: for the moment part of the problem, we
have equilibrium equations (20) without regard for the dif-
ferences S), —S,;, Nj3—Nj;, H;, —H, to which we
should add physical relations (22), geometric relations (15)
and boundary conditions (24); for the force part of the prob-
lem, we have equilibrium equations (19), elasticity rela-
tions (21), geometric relations (14) and boundary condi-
tions (23).

The basic system of equations and boundary conditions
of the model of micropolar elastic shells with low shear
rigidity without regard for traverse shear strain is as follows:
for the moment part, we have the same boundary problem
as in the model with regard for transverse shear strain; for
the force part, we have equilibrium equations (19), elastic-
ity relations (28), geometric relations (30) and boundary
conditions (32).
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Table 3

Strength and rigidity characteristics of a cylindrical micropolar elastic shell.
Model with low shear rigidity (with and with no account of traverse shear)

Relative shell Generalized Timoshenko hypotheses Generalized Kirchhoff-Love hypotheses
thickness Of Wini Of Wihi
d=h/R P T P T

/ Ofimas Wl Ofimas Wit
1/100 0.041363 0.3722294 0.24776 0.247762

Note. The physical properties of the shell material: o = 1.6 MPa, u =2 MPa, A =3 MPa, y = € = 3 kN, the load

intensity p = 100 Pa, the shell length / = 2R.

These two models of micropolar shells with low shear
rigidity (with and with no account of traverse shear) are
characterized by the following: when the moment boun-
dary problem has a zero solution (®; =0, ®; =0,1=0),
which is the case with homogeneity of the corresponding
equations and boundary conditions, the force boundary
problem will differ from the appropriate problem of the
classical theory of elastic shells (with or without regard for
traverse shear), because these equations will have terms with
a physical constant .

The foregoing general models of micropolar shells with
low shear rigidity allow us to derive constitutive equations
and boundary conditions for circular cylindrical micropolar
shells (with and with no account of traverse shear strain).

Let us consider a problem, similar to those posed in
Sect. 3 and 4, based on the constitutive equations and boun-
dary conditions for cylindrical micropolar elastic shells with
low shear rigidity (with and with no account of traverse
shear). Numerical data for the problem are presented in
Table 3. Analysis of these data allows the conclusion that
in the model of micropolar shells with low shear rigidity
(with and with no account of traverse shear), the micropolar
material displays very high strength and rigidity characte-
ristics, and account of transverse shear in this model is also
of significance.

6. Conclusion

In the work, using asymptotic analysis of boundary prob-
lems of the three-dimensional micropolar theory of elastic-
ity in a thin shell region and depending on values of the
dimensionless physical properties, we formulated the as-
sumptions (hypothesis) and constructed the general models
of micropolar shells with free rotation, constrained rota-
tion, and low shear rigidity with and with no account of
traverse shear.

The constructed models of micropolar shells were ap-
plied to the specific stress-strain state problem (in the axi-
symmetric statement) of a hinged circular cylindrical shell.
The calculations gave very high strength and rigidity prop-
erties of the micropolar material. Although the calculations
refer to the chosen hypothetic material, similar effective
properties are surely characteristic of micropolar material
as such. This conclusion is of interest from the standpoint

of materials science, physics and mechanics of new ad-
vanced materials. Another important conclusion from the
calculations is that in the micropolar theory of shells, ac-
count of traverse shear strains is of significance.
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