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Asymmetric crystal plasticity theory for the evolution
of polycrystal microstructures
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Analysis of the lattice geometry and geometric properties of a yield polyhedron in crystal elastoplasticity theory demonstrates the
necessity of going to asymmetric measures of stress-strain states in the description of severe plastic deformation of polycrystals with deep
micro- and mesostructural rearrangements. A general two-level (macro- and mesolevel) physical theory for describing the evolution of micro-
and mesostructures of polycrystals is formulated in which each level is described by strain rate measures and associated stress and strain
measures. The elasticity tensor at the mesolevel is analyzed. Separate consideration is given to the choice of macroscale rigid motion.
Constitutive relations for the rotational mode are derived, and an algorithm is proposed to determine rotational elements — material
regions that experience rotation at a certain point in time. Simulation results for individual particular cases of loading are presented.
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1. Introduction

The application of the crystal plasticity theories for de-
scribing the elastic or inelastic deformation of single- and
polycrystalline solids raises an acute question as to what
measures of stress-strain states must be chosen. On the one
hand, the measures must provide the basis for the deriva-
tion of adequate stress-strain relations that describe defor-
mation at a given level; on the other, they must allow for
the physical and geometrical peculiarities of the objects for
which they are introduced (e.g., asymmetric properties of
single crystal lattices (grains, subgrains)). The crystal plas-
ticity theories often use quantities with a vague physical
meaning, e.g., so-called orientation tensors of slip systems
which appear in an explicit form in constitutive relations,
M(Sk) =1/2 @bp® +bp®n®) For the given quantity the-
re is a discrepancy between its physical meaning (namely,
it characterizes the orientation of the 4-th slip system of
edge dislocations with the unit vector (directed as the Bur-
gers vector) b® which determines the slip direction, and
the slip plane normal n(k)) and the relation that defines the
quantity. In this case, e.g., for the face-centered cubic lat-
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tice one more slip system with the normal b™® and shear
direction n® is actually “introduced” into the orientation
tensor. If the so-introduced orientation tensor of the
(111)[110] slip system is used to describe the irreversible
shear kinematics, then owing to symmetrization the orien-
tation tensor equation also “includes” the (110)[111] sys-
tem, which does not agree with the known crystallographic
data. The same holds true for some other tensor quantities
used in continuum mechanics and solid mechanics.

In many theories of elastoplastic (and elasto-viscoplas-
tic) crystals the criterion of slip system activation and hence
the condition of material transition from the elastic state to
plastic flow is the fulfillment of the Schmid law for the given
system:

b®n® .= ‘Egk), (1)
where k is the number of the slip system, k= 1-24 (for fcc
crystals the number of slip systems doubles), and s is the
stress deviator. Generally speaking, the critical shear stress
value ‘Egk) is not constant during deformation and can be
different for different slip systems. The set of Schmid’s law
equations written for all systems determines a hypersurface
in the stress space which serves as a boundary between the
region of purely elastic deformation and that of elastoplastic
deformation, i.e. the yield hypersurface (polyhedron). To
construct a physically adequate and mathematically strict
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theory of plasticity it is necessary first of all to study the
yield polyhedron geometry defined by a set of equations of
type (1), in order to find the number and order of the poly-
hedron vertices and edges. The highest possible order of
the vertices would demonstrate how much the available
approach to the description of deformation on the basis of
symmetric measures is mathematically and physically strict
and closed. As shown elsewhere [1], if the Schmid law (1)
is used as the plasticity criterion, the yield polyhedron for
fcc crystals has vertices of the 6-th and 8-th order only
(which is also consistent with paper [2]). Thus, when using
the symmetric measures of stress-strain states in the crystal
elastoplasticity theories a question arises under certain con-
ditions as to what active slip systems must be chosen. Since
having only 5 independent stress deviator components and
being in a vertex of the sixth or eighth order on the yield
surface, it is necessary to determine somehow the 5 sys-
tems out of 6 or 8 which will be assumed active in further
calculation.

The above reasoning requires such a crystal plasticity
theory to be constructed that is free from the physically
unjustified symmetrization of the measures of stress-strain
states and their rates. The theory must be developed on
physically justified assumptions and relations, all quanti-
ties used in it must have a clear physical meaning.

The development of such a theory presents some diffi-
culties, as well as those related to an expected increase of
the number of constants in constitutive relations, first of
all, constitutive equations of elasticity (Hooke’s law). A
positive point is that the relations of the model are clear. It
facilitates the addition to them, if necessary, of additional
deformation mechanisms, or the account of different effects
arising in severe plastic deformation. These are texturing,
fragmentation, hardening and softening, damage accumu-
lation and failure of polycrystals. Besides, the above-men-
tioned problem of the choice of active slip systems disap-
pears in this case. If an asymmetric strain measure (or asym-
metric strain rate measure) is introduced with the incom-
pressibility condition for the irreversible (plastic) compo-
nent of the measure, we have an 8-dimensional space. This
means that, from the viewpoint of the crystal plasticity theo-
ries, it becomes possible to choose eight rather than five
active slip systems. Even in the “worst” case when the ima-
ge point of stresses is in the 8-th order vertex the number of
equations in the model is sufficient to accurately define shear
along all active slip systems.

Attempts to construct mathematical models that describe
the meso- and microstructure evolution in a material under
various forces and are based on symmetric measures of
stress-strain states have been made since 30—50s of the 20th
century (G. Taylor [3], J. Bishop, R. Hill [4], T.H. Lin [5] et
al.). The Russian scientists have also made a notable ad-
vance in describing the processes of severe plastic defor-
mation accompanied by microstructural evolution (O.A. Kai-
byshev, R.Z. Valiev [6], Ya.D. Vishnyakov [7], A.N. Orlov

[8], V.A. Likhachev [9], V.V. Rybin [10] et al.). Tomsk scien-
tific school (V.E. Panin [11], P.V. Makarov [12] and others)
laid the foundation for a new discipline (physical meso-
mechanics) at the interface of solid mechanics and solid
state physics which studies among other things the struc-
tural evolution of the material. In the present paper by the
crystal plasticity theories are meant a wide class of plastic-
ity theories in which constitutive relations, hypotheses and
principles are formulated with an explicit consideration of
deformation mechanisms at the meso- and microscale; the
development of such theories strongly influenced the stu-
dies of the scientists listed.

Most of the modern physical theories that describe the
rotation of grains (used, e.g., in the studies on fragmenta-
tion and texturing) consider the so-called “material rota-
tion” determined by the orthogonal tensor entering into the
polar decomposition of the elastic component of the defor-
mation gradient; in so doing, the elastic distortion of the
lattice and the presence of neighboring grains are neglected.
Abundant evidence shows, however, that the rotation pro-
cesses are associated with the shear incompatibility in slip
systems of neighboring grains at dislocation glide (V.V. Ry-
bin, .M. Zhukovskii, N.Yu. Zolotorevskii et al.). In the stud-
ies on fragmentation no consideration is usually given to
the fact that the characteristic sizes of rotating regions in a
crystal vary, even though this effect is well described in
physical metallurgy (V.V. Rybin et al.).

Papers [13—15] put forward an approach to the construc-
tion of multilevel models (two-level, in the special case) of
a polycrystalline aggregate under deformation, and the ge-
neral structure of constitutive models with internal variables
for describing the micro- and mesostructure evolution in
the material. In the following, we will also use a two-level
model to describe the elastoplastic deformation of a poly-
crystalline aggregate. For simplicity sake the quantities for
the macrolevel are designated by the capital letters, the re-
lated parameters for the mesolevel are denoted by the same
small letters. The deformation scheme for the macrolevel
is specified, for the strain state at the mesolevel (grain,
subgrain) we take a modified Voigt hypothesis for the strain
rate measure. The Hooke’s law in the relaxation form in
terms of rate constants is used as a constitutive relation at
the macrolevel; the plastic strain rate is determined from
the second-level model (mesolevel) by the shear rate in
active slip systems, which are in turn determined with a
viscous constitutive relation. The deformation processes are
assumed to be quasi-static and to occur at low homologous
temperatures, which allows neglecting diffusion mechanisms
(recrystallization, recovery, formation of impurity atom at-
mospheres (Cottrell or Suzuki atmospheres)).

2. Asymmetric measures of strain rate and stress

Let us introduce the main kinematic variables neces-
sary for the description of elastoplastic deformation at the
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mesolevel (henceforward first-order (simple) materials are
considered). A transposed rate gradient is used as the strain
rate measure to describe the deformation processes in a
continuum:

{=wV. 2)

At least two configurations must be used, such as refer-

ence K and actual K,. The strain rate tensor § can be
0

represented in the form: = vwW=f-f7! where f=Vr'
is the transposed deformation gradient at the mesolevel. The
site gradient is multiplicatively decomposed into the elas-
tic (reversible) and plastic (irreversible) components:
f =f£°-fP. Substituting this relation in the expression for ¢,
we have:

G= (@ AP) - (1) (1) " =

=(f°-fP +£°-fP).(£°) . (f*) ' =
=ffP.(FP) L () £ fP ()T (0) T =
=1 (£°) 7 + 57 - (1)) - (). A3)

The augend describes reversible (elastic) strains in the
continuum, while the addend in such form, generally speak-
ing, cannot be referred to as the plastic strain rate. To rep-
resent {P, it is necessary to go to an unloaded configura-
tion K" (with the use of the operator (f e)_l), in this con-
figuration " =£P - (f?)™! (Fig. 1).

So, to consider the geometrical interpretation of the
given transformations, three configurations must be intro-
duced, namely, reference K, actual K, and unloaded K",
Figure 1 shows the linear operators that transform an in-
finitesimal segment dx in the reference configuration into
the same segment in the actual and unloaded configuration.

Then, we introduce the strain state measure q at the
mesolevel formally using the definition of the strain rate
measure as a derivative of the corresponding (nonholonomic
(not expressed through the displacement vector compo-
nents)) strain measure. In the context of constructing a model
suitable for the description of severe plastic deformation in
a continuum with regard to rotational modes it is not enough
to use a local derivative to determine the strain rate mea-
sure by the differentiation of the strain state measure; we
must use more adequate approaches to the problem, e.g.,
co-rotational differentiation:

q“=4-Q-q+q-Q={=wV. 4)

As a spin at the mesolevel we propose to use the lattice
spin Q, i.e. the tensor associated with the instantaneous rate

of lattice rotation. For the macrolevel the choice of quasi-
rigid motion requires separate consideration.

3. The choice of quasi-rigid motion at the macrolevel
One of the most frequent questions arising in the deve-

lopment of two-level (and multilevel, in the general case)

models is why does redundant information about stresses

dx* =f° - dx

Fig. 1. Schematics of the multiplicative decomposition of the site gradient

arises at the macrolevel? Really, on the one hand, stresses
at the macrolevel are defined from the Hooke’s law (in the
relaxation form) in terms of rate constants which involves
averaged inelastic strain rates determined in the mesolevel
model. On the other hand, the macrostresses can be de-
fined by averaging of the mesostresses. In so doing, it is
beyond reason to expect that the stress states calculated by
the two methods are identical or at least close.

It should be remembered, however, that at the macrolevel
the problem of the choice of quasi-rigid motion and of a
corresponding co-rotational derivative in the Hooke’s law
remains unsolved. Let Z, 6 respectively stand for the Cauchy
stress tensor at the macro- and mesolevel; Z, { are the cor-
responding strain rate measures; W, w are the spin tensors
for the quasi-rigid motion at the macro- and mesolevel (eve-
ry time their choice needs consideration depending on the
specificity of the problem solved; for example, in our pa-
per w=Q), C, c are the elasticity tensors at the macro- and
mesolevel. Use will be made of a modified Voigt hypo-
thesis, { = Z. The averaging operation (not specifying a par-
ticular procedure) is denoted by { ). The primed quantities
designate the deviation of the fields of the corresponding
quantities from the average.

At the macro- and mesolevel the Hooke’s law (in the
relaxation form) in terms of rate constants is used:

2 =C:(Z-Z"), T =3-W-Z+XZ-W, (5)
6 =c:({-C"), 6c"'=6-w-6+6-w. (6)
Let C=(c), c=C+¢, ZP =(L"), P = Z° + ¥, w=(w) +
+w, £ =(6), 6 =X +0". Rewrite the relation (6) as:
S—(W) Z4Z AW+ W Z+Z W+
+0 - (wy—(w)-0'-w'-0'+0"-w' =
=C:(Z-Z°)-C: L+ (Z-2P)-c:C”.  (7)
Before averaging the above relation, we will analyze
(7), the right-hand side first. The averaging of the first term
gives the term itself, while that of the second and third gives
zero tensors. In the last term, generally speaking, the quan-
tities can be both correlated and uncorrelated. At the same
time, the elasticity tensor deviation from the average over a

representative volume of the macrolevel is a result of dif-
ferent grain orientation (as well as initial), whereas {”" cha-
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racterizes the deviation of the instantaneous, here and now,
inelastic strain rate tensor from the average which depends
in arandom manner on many other characteristics (stresses,
hardening in slip systems). This allows, in the first approxi-
mation, the quantities of the last term in the right-hand side
to be assumed uncorrelated, owing to which the term will
also be zero in averaging.

Now turn to the analysis of the left-hand side of (7). In
averaging the first three terms remain unchanged, the 4—8th
terms in averaging give the true zero. To the last terms we
can apply a reasoning similar to the above for the last term
of the right-hand side, then in averaging these terms will be
equal to zero tensors. Hence, relations (5) and (6) agree
when the spin tensor at the macrolevel is defined as the
average of the spin tensors at the mesolevel: W = (w).

We may reject the hypothesis that the quantities in the
last two terms of the left-hand side of (7) are uncorrelated.
Then, for (5) and (6) to agree, we must assume that:

W=(w)+Z"(c"-W),
W=(wT+(c"-w)T.Z7" =
=—(wy—(w-c)-Z7".
In the last term the symmetry of the Cauchy stress ten-

sor at the macrolevel is taken into account; in the case of
the asymmetric tensor the second term has only =",

4. Asymmetric law of elasticity at the mesolevel

There are two different definitions of elasticity, namely,
the Cauchy elasticity (which requires that an elastic poten-
tial must exist) and the Green elasticity, for which the re-
quirement is introduced [16]. We will follow the second
definition. Notice that in the classical linear mechanics the
law of elasticity is derived from the series expansion of the
free energy in the vicinity of zero elastic strains. With re-
gard to the initial unstressed and unstrained state we finally
arrive at the following relation:

c —p—azF q
Y aqe[jaqekl "

where c is the fourth-order tensor that describes the elastic
properties of the material, p is the density, F is the Helmholtz
free energy. It is seen from (8) ¢ is symmetric with respect
to pairs of subscripts: ¢;;; = c¢y;.- However, we cannot as-
sert the symmetry of ¢ within the pairs of subscripts be-
cause the measures of the stress and strain states are asym-
metric at the mesolevel.

To determine the number of nonzero independent com-
ponents of the elasticity tensor, we use the symmetry prop-
erties of the physical object to which the developed theory
will be applied, namely, the lattice symmetry of a single
crystal. Paper [17], following [18], describes a method that
allows, in the general case, obtaining restrictions on the form
of the elastic moduli (components of the elasticity tensor ¢)
imposed by the lattice symmetry of the material. For this

=cud s 6=C:q", (®)

purpose, rotations relative to the crystal symmetry axes are
considered and the invariance conditions for the compo-
nents of the tensor ¢ in transition from one coordinate sys-
tem to another are written. As a result, a number of restric-
tions are obtained which relate the fourth-order tensor com-
ponents. As shown in [17], the given algorithm together
with the condition of symmetry with respect to pairs of sub-
scripts suggests that for a material with cubic lattice sym-
metry the elasticity tensor ¢ has only 4 independent com-
ponents: ¢y, C 122> Cia12> Ciaap (in the crystallographic
coordinate system).

Then, following from the above, the asymmetric law of
elasticity at the mesolevel can be finally written as:

c=c:q", ©)
where ¢ is the fourth-order tensor having 4 independent
components, or in the rate form:

6 =c:(° (10)
where 6" is the corresponding co-rotational derivative of
the mesolevel introduced above which takes into account
the rotation of the lattice-related crystallographic coordi-
nate system as a rigid whole. The law of elasticity for the
macrolevel reads:

X =C:(Z-Z"),

. (11)

LI=X-W-Z+XZ-W, W=(Q).

It is worth noting that the conclusion about the symme-
try of the stress state measure (particularly, the Cauchy stress
tensor) at one or another scale level must be made reason-
ing from the presence or absence of physical causes at the
given level which act as sources of asymmetry. For the
mesolevel the stress measure asymmetry is caused by couple
stresses (below we discuss how they arise and are taken
into account), while for the macrolevel such causes cannot
be identified. Hence for the mesolevel we propose to use
an asymmetric Cauchy stress tensor as the asymmetric stress
state measure. At the macrolevel stresses are assumed to be
symmetric, and the averaging of the elasticity tensor and
stresses at the macrolevel goes on simultaneously with sym-
metrization: £=(sym(0)), C;;, =1/(4N) §—'1 (c;-',;',) + c%’{; +
+cl-(j;7€) + c%’,z), i,j,k,1=1,2,3, where m is the number of a
mesolevel element (grain, subsgrain), and N is the number
of mesolevel elements entering into a macrolevel element.

Within the given approach an additional difficulty arises:
in symmetric theories the values of independent elasticity
tensor components are measured experimentally for vari-
ous single crystals; in our case, however, it is problematic
to identify the new elastic constants c;,;,, ¢;5,;- To solve
this problem, we performed a series of numerical experi-
ments on simple loading in which all independent compo-
nent values were determined. In [17] a molecular statics
simulation is used to qualitatively analyze the elasticity ten-
sor components Cj,,, €121, Whichreveals some divergence
(fractions of a percent) between these values. Below (Sec-
tion 7) we demonstrate that even an insignificant divergence
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between the elasticity tensor components influences greatly
the elastoplastic behavior of a representative material vo-
lume.

5. Description of lattice rotation and grain
fragmentation

The mathematical model developed to describe the mi-
cro- and mesostructure evolution in a material under se-
vere plastic deformation must be also appropriate for the
description of other effects observed in deformed polycrys-
tals, such as texturing that cannot occur without changes in
the orientation of individual grains (subgrains, fragments)
during continued inelastic deformation. Owing to this, the
model must incorporate both quantities that account for the
introduction of a new rotational mode, new variables that
reflect the lattice rotation kinematics and, what is most im-
portant, physically justified dynamic variables that reflect
the causes (induced by forces) of the rotation of grains and
their fragments.

Now we introduce the major terms describing the poly-
crystal structure which will be used in the following. By the
“grain” is meant the smallest material volume that (at least
in the initial moment of deformation) with adequate accu-
racy can be considered a single crystal. The term “rota-
tional element” is taken to mean any microstructural con-
stituent (grain, subgrain, fragment) or their aggregate ca-
pable of rotating as a whole, with the preservation (with
adequate accuracy) of regular crystal lattice of the constitu-
ents, their mutual position and orientation (Fig. 2). Note
that, generally speaking, the size of the rotational element
undergoing rotation is not known in advance. Moreover,
experiments show that with growing strain intensity the
characteristic sizes of rotating structural elements change
[10, 19]. To define a rotational element at every moment of
deformation, we introduce one more type of structural ele-
ments that can form a rotational element at every moment
of deformation (according to a below-discussed algorithm).
By “grain fragments” are meant microregions of the mate-

Rotational

element 1

vg.t

Rotational

eIen/1ent 2
Rotational .
element 3

Fig. 2. Structural elements in a polycrystal

Grain
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rial misoriented relative to each other at angles of the order
of a few minutes or degrees [10]. The introduced term “ro-
tational element” does not substitute the notion of “grain”
and “grain fragment”, because generally at an arbitrary
moment of deformation a fragment or a group of fragments
or a grain (or even an ensemble of grains) can act as a rota-
tional element.

In [20] one of the causes of the rotation of the lattice of
grains (except for the so-called “material rotation”) is con-
sidered to be the shear incompatibility in slip systems in
neighboring grains (that in turn model the motion of dislo-
cations). Then, the rate of change of the surface couple vec-
tor acting on a part of the interface of a considered grain
(grain fragment) as a result of resistance to dislocation
motion from the given grain (fragment) to neighboring (m =
=1, ..., M) can be defined as a sum:

M
m’ =} (m")", (12)
m=1

where ()" is the corresponding co-rotational derivative (the
issue of its choice is discussed below), (m")" is the rate
component of the couple vector resulting from the incom-
patibility of shear in the given fragment with shear in the
neighboring m-th fragment, and M is the number of neigh-
boring fragments.

The evolution of the couple vector m”™
the following relation:

is defined by

(m")" =ANx[ TN, (13)
where A is an experimentally found (in Pa - m) parameter,
N is the unit normal (external for the studied fragment) to
the interface with the neighboring fragment, [Lp T }m is the
abrupt change of the plastic component of the rate gradient
determined as:

m K ... K . .
|:LPT:| — ZYlnlbl _Z’Y](m)n](m)b](m)’ (14)
i J

where 7', 7/ are the shear rates, b’, b/ are the unit
vectors directed as the Burgers vectors, n’, n/™ are re-
spectively the normals for slip systems in the studied and
neighboring fragments, and K is the number of slip systems
(24 for an fcc crystal with regard to doubling).

Now define the form of the co-rotational derivative
which is necessary to use in relations (12), (13) to observe
the principle of material frame indifference. Let a rotational
element and all surrounding fragments rotate as a rigid
whole. In this case, the couple vector (as well as the couple
stress tensor) undergoes the same rotation. Note also that
in the calculations for an individual fragment all quantities
(strain rate, stresses, elasticity tensor, shear along slip sys-
tems, couple forces) are defined from the viewpoint of an
observer located in the crystallographic coordinate system;
the fragment material is rigidly “fixed” to the same coordi-
nate system. Since the crystallographic coordinate system
is rotated relative to the laboratory coordinate system as a
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rigid whole (together with the material), then for the prin-
ciple of material frame indifference to be satisfied it is ne-
cessary to choose such a co-rotational derivative that would
be “fixed” to the angular rotation rate of the lattice:

m=m-Q-m+m-Q, (15)
where Q is the spin tensor of the fragment lattice deter-
mined at every moment of deformation as the tensor asso-
ciated with the angular rotation rate vector of the lattice ®,
Q=—€e-m,with € being the Levi-Civita tensor.

Hence, for the surface couples we finally have:

(m°)” = ANX(S7nb — 3 §/Mn /™I N, (16)
i J
However, the beginning of rotations is influenced, in the
general case, by two components: couple forces (or the as-
sociated couple stresses) arising due to the incompatibility
of plastic strains in neighboring grains, and (generally speak-
ing) the asymmetric part of the Cauchy stress tensor which
also produces a torque of a couple on the rotational ele-
ment surface. Indeed, let e.g. 0,, # 0,,, then unbalanced
shear forces arise on the rotational element surface which
produce a torque of a couple. If ©,, >0,,, this torque is
directed along the unit vector k5 in the positive direction.
Thus, relations for the lattice rotation rates must be derived
with consideration for the both force factors: couple stresses
and torques due to the asymmetric part of the Cauchy stress
tensor.

In order to determine both the rotational element size
and the value of the lattice spin of the rotational element,
we need to “reduce” all dynamical causes of rotation (sur-
face couples on all parts of the rotational element interface,
asymmetric Cauchy stresses) to an equivalent quantity,
which we propose to be the body couple:

V[ m=l1 " "

where [M'] (Pa) is the body couple vector acting on the
rotational element i due to the incompatibility of disloca-
tion motion along slip systems of fragments of the given
rotational element and the neighboring fragments belong-
ing to other rotational elements, S is the area of a flat
region of the interface m between two rotational elements,
V' is the volume of the given rotational element, r"™ is the
radius vector from the center of mass of the rotational ele-
ment to the midpoint of the facet m, o' is the Cauchy stress
tensor acting in the given region of the rotational element,
and N" is the external normal to the facet m. The second
term of the right-hand side of (17) defines an additional
component of the torque arising at the rotational element
boundary because of an asymmetric (in the general case)
stress state.

In the present paper we put forward the following algo-
rithm of defining the region of rotation and the criterion of
grain rotation.

1. Initially, each grain G is a set of fictitious fragments
(in contrast to rotational elements which are defined at
every moment of deformation by a special algorithm consi-
dered below) that have the same orientation as the grain G
(Fig. 2).

2. To define the set of fragments that experience plastic
rotation as a whole at a given moment of deformation (i.e.
to define a rotational element), we propose a “growing pat-
tern” scheme: starting with triple (and more) grain junc-
tions we define the smallest set of fragments g of the grain
G such that the body couple calculated for the given set
according to formulas (12)—(17) reads:

NG

21 [mgsg +1r8 x(N¢ -6° )Sg], (18)
g=

where the upper summation limit NV ¢ emphasizes that the
summation is taken over the outer boundaries for the given
set, and reaches a critical value:

M= M., (19)

which is a material parameter in the general case (or even a
material function):
M, =M (¥,q,..,0,),

MG=l

t
where ¥ = _f VQ: Q dt is the accumulated “plastic” rota-

tion of the lerlt‘?ice, and o, ..., &, is the set of internal vari-
ables (the shape and size of the given rotational element,
the density of orientation misfit dislocations accumulated
in the boundaries by the current point in time, etc.). Notice
that much experimental evidence counts in favor of taking
into account the smallest material volume undergoing plas-
tic rotation. The data show that the rotation of fragments
begins with the rotation of small regions adjacent to grain
junctions by small misorientation angles [10, 19, et al.]. In
further calculations this set of fragments is assumed to be a
rotational element at a given moment of deformation, i.e.
for all fictitious fragments of the given physical grain frag-
ment the lattice spin at the given moment is the same.

After the rotational elements are defined, we must cal-
culate the rotation rate of the crystallographic coordinate
system for the given rotational element; in so doing, it is
important that the tensor defining the lattice rotation has an
orthogonality property. Therefore, the rotation at each inte-
gration step is described with the use of the orthogonal ten-
sor AR = (cosA@+1)ee +cosA@I +sinA@pexI (Lis the se-
cond-order unit tensor) which determines the coordinate
system rotation about the instantaneous rotation axis e by
an angle A, with the direction of e being assumed coaxial
with the body couple vector

G _ MY
M|
and for the angular rotation rate we take the hypothesis of
additivity and single-curve hypothesis:
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. 1
Lime) +L me|
A H
if IM%|=M_ and M® -M% >0,

¢% = (20)
e
A

if IM%|# M, and M° -M¢ <0,

where 4, H are the experimentally determined material pa-
rameters.

Generally speaking, the critical value of the couple force
M . must be determined each time for the given rotational
element, because the rotational element surface at a given
moment of deformation can present a set of grain boundary
regions, low-angle boundaries arising due to small rotations
of neighboring rotational elements at previous points in time
as well as “internal” boundaries (i.e. fictitious boundaries
of fragments within the grain which have not yet rotated);
in this case, the pattern of critical stress variation in diffe-
rent fragments is different. The critical couple forces must
also depend on the shape of the rotational element: the more
spherical it is, the smaller must be the forces needed for the
lattice to rotate. Hence, the critical M value in the first
approximation is calculated as follows:

M =lNG g EN®Y| S 21
e =7 DI x@N)S, |, @1
g=1

where M (Pa) is the critical value of the body couple, S,

is the area of the facet of the boundary fragment g entering
into the considered rotational element, T5 (Pa) is the ave-
rage critical stress for slip systems of the boundary element,
N is the number of boundary fragments of the given ro-
tational element, and ¥ is the rotational element volume;
the summation is taken over the “boundary” fragments of
the rotational element. Broadly speaking, for each boun-
dary region of the rotational element it is necessary to for-
mulate evolutionary equations for the critical stresses, in
the first approximation they are assumed to be average for
the slip systems of the fragment.

6. Structure of the asymmetric theory
for the mesolevel

Below we enumerate the major hypotheses of the meso-
level model:

1. The strain rate measure z can be represented as a sum
of two components: reversible strain rate ° and irrevers-
ible strain rate {P:

E=vW=C+0P, (22)
where £¢ =1°-(f)™" and P =f°-(fP-(£°)7")-(£°)".
2. The total strain rates of individual grains C(n) are

equal to the total strain rate of a polycrystalline aggregate
(a Voigt hypothesis analog is taken):

Cy=C=2,Yn. (23)

However, it does not follow from the equality of the strain
rate measures in grains that the strain measures are equal,
because at each moment of deformation the grains can have
different angular rotation rates (owing to the introduction
of co-rotational derivatives for defining the stress-strain state
measure).

3. The incompressibility condition may be imposed on
the irreversible strain rate (because as the irreversible de-
formation mechanisms we will consider the motion of dis-
locations, twinning and slipping of crystal parts relative to
each other, which preserve their volume):

LEP) =L -E-(E)™)-(t°) ) =
=sp(f*-(fP-(F*)™)- (1)) =
=sp((f°) " £°- (7 - (1)) =
=sp(f?- () ") =1,(f*-(f*)") =0. (24)
4. The irreversible deformation occurs through shear
along particular crystallographic systems, shearing along
slip systems is described with the viscoplastic law of the
form
1/m

(k) ‘
signt® | (25)

al
2

#9 =4 )

where m is the strain-rate sensitivity parameter of the material
[21], ¥, is the characteristic shear rate, 7® =b,n, :s is
the effective shear stress in the &-th slip system, ‘Egk) is the
critical shear stress value in the given slip system governed
by the hardening law, H is the Heaviside function, and s is
the stress deviator.

At any moment of deformation (through dislocation

glide) the irreversible strain rate is expressed as:

=1 ( 3 bEn 54 ] Ty, 6)

k=1
where K is the number of active slip systems.

The rate of change of the critical shear stresses in each
slip system is defined by a function of the total shear along slip
systems as well as of the shear rates (by the hardening law

X4

B

Xz
X2

Fig. 3. Relative position of the axes of the laboratory and crystallographic
coordinate systems
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[14, 22]):

0 = 60,4, 0,=1,24, (27)
Using the above-introduced rate form of the Hooke’s
law it is easy to derive an expression for the stress rate:

. K
¢ =c: (vv —f° [ 3 bEn®y® ]-(fe)‘1 ] . (29)
k=l

Before describing the numerical results obtained with
the constructed mathematical model, we will formulate the
complete statement of the mesolevel problem to verify the
mathematical completeness:
Im
nb; :s /

e

-k . k
Y =YoH(mb, :s—1;) Sign’rk,

s =dev0, k =1ﬂ,
10 = 7G040/ =124,

i’-p P -1 =f° A . ey\—1
(") =1 Xybm; |(£5)7
i=1

K
c=c:[c—fe -[Zbknk‘v"]wfe)‘l]—
k=1

-0-Q+Q-o0,
C(H)ZC,

the algorithm for defining rotational elements,

+Q-m; —m; 'Q}Srin +r" x(N" -O')S,Z},

ezﬂ,gzk-RT,

M|

Liva+L M, [M] = M, and M-M >0,
o=ldH

i|M|,|M|¢MC and M-M <0,

14
M, == 3 [[rf xNe)s, |,
=

AR = (cos A@ +1)ee +cos AQI +sin ApexL

The analysis of the system of equations (29) suggests
that the statement of the problem is correct: at each mo-
ment of deformation we have 49 scalar and 5 tensor equa-
tions of the second order to determine 49 scalar and 5 ten-
sor unknowns of the second order for each rotational ele-
ment.

7. Numerical results

First we will give some results obtained in the study on
how the elasticity tensor asymmetry influences the elasto-
plastic behavior of the material. We performed a number of
numerical experiments on uniaxial compression of a single

1 ¥ n [ &, =3 m, (29)
M= - 21 A N™x Zlyinibi - Zl Y iom ™ jomP jomy [N+
m= 1= J=

crystal that was differently oriented with respect to the load-
ing axis. To purposefully analyze the influence of the asym-
metry of the measures, hardening in slip systems was ne-
glected in the experiments. All stress-strain state problems
(for the meso- and macrolevel) are solved incrementally,
an explicit Euler integration scheme is used. Compression
was performed along the X; axis of the laboratory coordi-
nate system, the lattice orientation was defined by the angle
between the x; and X, axes in the crystallographic and
laboratory coordinate systems, respectively, at the align-
ment of the x, and X, axes (Fig. 3). Despite uniaxial com-
pression the crystal was deformed in all possible slip sys-
tems.

Figure 4 shows the stress-strain curves for the single
crystal in the context of the symmetric (Fig. 4(a)) and asym-
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Fig. 4. Stress intensity versus accumulated strain intensity ¢; =+/2/3q:q

under uniaxial compression of a single crystal, at different orientations:
symmetric physical theory being used (@); asymmetric measures being
used (b); comparison of the curves for some orientations (c)
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Fig. 5. Shear rate (@) and accumulated shear (b) for active slip systems versus accumulated strain intensity at 22.5° orientation, comparison of the
symmetric and asymmetric theories, slip systems are numerated according to Table 1

metric (Fig. 4(b)) crystal elastoplasticity theories at diffe-
rent orientations of the crystallographic coordinate system
of the single crystal relative to the laboratory coordinate
system. The asymmetric elasticity tensor components
Cia12> €1y are assumed to differ from the corresponding
modulus c¢,;, for the symmetric measures as 0.995 and
1.005 respectively (the material is copper). Noticeable is
the presence of two attractor-curves corresponding to ori-
entations of 15° and 30° which the diagram tends to de-
pending on the orientation angle as well as the presence of
the instability region in the diagram at an orientation of
22.5°.

There are some characteristic features of the diagrams
plotted for the symmetric and asymmetric case (at the same
values of the elastic moduli):

— for the majority of orientations, the curve correspond-
ing to the asymmetric case lies below the curve corres-
ponding to the symmetric theory (Fig. 4(c));

—the least deviation of the two diagrams is in the region
of 0° and 45° orientations, the largest occurs at a 22.5°
misorientation angle of the laboratory and crystallographic
coordinate systems.

We have plotted the dependence of the shear rate in
active slip systems on the accumulated strain intensity for
the case of the symmetric and asymmetric theories for 22.5°
orientation, the results are given in Fig. 5(a). In the asym-
metric theory at 6 % strain intensity there occurs shear re-
distribution over 8 slip systems, while in the symmetric
theory the number of active slip systems is invariant and
equal to 4. Figure 5(b) demonstrates the dependences of
the accumulated shear along slip systems on the accumu-
lated strain intensity at 22.5° orientation for the symmetric
and asymmetric theories. The behavior of the curves is seen
to be different: in some systems slipping is more intensive
in the case of the asymmetric theory, in others vice versa;
nevertheless, the total shear along all slip systems at the
given orientation is somewhat larger in the asymmetric
theory.

Now consider some results concerning the deformation
of a polycrystal consisting of a set of differently oriented
grains with regard to lattice rotations; the fragmentation of
individual grains is not considered in the present paper. At
the macrolevel the scheme of deformation is defined, at the
mesolevel the modified Voigt hypothesis is taken (see Sec-

Fig. 6. Stereographic projections of [100] lattice directions of grains after specimen deformation: projection along the OX, (a) and OX; (b) axes
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Table 1
Burgers vectors and slip system normals
i li i
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tion 6), the stress state in each grain is determined accord-
ing to the system of equations (29). The macrostresses are
calculated by averaging of the mesostresses with simulta-
neous symmetrization (see Section 4 for details).

We studied a specimen consisting of 512 grains sub-
jected to uniaxial compression along the OX; axis (up to
strain intensity 0.6), the initial lattice orientations were set

Fig. 7. Stereographic projections of the trajectories of [100] lattice direc-
tions of grains during deformation, projection along the OX, axis

by a random uniform law. Although the macrospecimen is
loaded uniaxially, the mesoelements undergo three-dimen-
sional deformation. Figure 6 illustrates the final sterco-
graphic projections of [100] grain directions, and figure 7
shows the trajectories of arbitrarily chosen points, which
was initially uniformly distributed on the projection plane,
during deformation. The analysis of the final positions of
the stereographic projections points to a consistency of the
rotations. The study of the trajectories of the stereographic

Fig. 8. Experimental data for compression along the OX, axis [24]: pole
figures for [100] directions, projection along the OX; axis
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Fig. 9. Stress-strain diagram for the uniaxial compression of a grain ag-
gregate with regard to rotations

projections of individual points suggests that a major part
of grains rotates about trajectories which are close to the
ones experimentally known for the so-called axial texture
(a stationary circular trajectory, or the grains nearly stop)
[23, 24] (Fig. 8).

Besides, in the same numerical experiment we plotted a
stress-strain curve for an aggregate of 512 grains without
hardening in slip systems (Fig. 9). As is seen, at the most
intensive rotations (accumulated macrostrain intensity from
12 to 25 %) stresses in the diagram slightly increase. This
is most likely related to the process when the system
“excitates”, during which one can see a stage-like (relay-
race) character of the lattice rotations and, consequently, a
growing inhomogeneity in the distribution of the rotations.
After the phase of active rotations ends and an ordered dis-
tribution of the grain orientations is established the system
again reaches dynamic equilibrium, which is expressed at
the macrolevel as a return to perfect plasticity.

8. Conclusions

The paper considers the issues concerning the construc-
tion of the polycrystal plasticity theory, which takes into
account the grain lattice rotations, on the basis of asymmet-
ric measures of stress-strain states. A two-level model of
elasto-viscoplastic deformation of a polycrystalline aggre-
gate is put forward, the issue of the choice of quasi-rigid
motion at the macrolevel is studied. The performed numeri-
cal experiments on the uniaxial compression of a polycrys-
tal are in a good agreement with the experimental data.

The work has been financially supported by RFBR
(Grants Nos. 10-08-96010-r Ural a and 10-08-00156-a).
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