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Comparison of time dependent fracture in viscoelastic and ductile solids
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Effects of two parameters on enhancement of the time-dependent fracture manifested by a slow stable crack propagation that precedes
catastrophic failure in ductile materials have been studied. One of these parameters is related to the material ductility (p) and the other
describes the geometry (roughness) of crack surface and is measured by the degree of fractality represented by the fractal exponent o, or —
equivalently — by the Hausdorff fractal dimension D for a self-similar crack. These studies of early stages of ductile fracture are preceded
by a brief summary of modeling the phenomenon of delayed fracture in polymeric materials, sometimes referred to as “creep rupture”.
Despite different physical mechanisms involved in the preliminary stable crack extension and despite different mathematical representa-
tions, a remarkable similarity of the end results pertaining to the two phenomena of slow crack growth that occur either in viscoelastic or

ductile media has been demonstrated.
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1. Crack motion in a viscoelastic medium

In late sixties and early seventies of the past century a
number of physical models and mathematical theories have
been developed to provide a better insight and a quantita-
tive description of the early stages of fracture in polymeric
materials. In particular two phases of fracture initiation and
subsequent growth have been considered: (i) the incuba-
tion phase during which the displacements of the crack sur-
faces are subject to creep process but the crack remains
dormant; and (ii) slow propagation of a crack embedded in
a viscoelastic medium. According to the linear theory of
viscoelastic solids, the material response to the deforma-
tion process obeys the following constitutive relations
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Here s, is the deviatoric part of the stress tensor, s denotes
the spherlcal stress tensor, while G;(f) and G,(¢) are time
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dependent relaxation moduli for shear and dilatation, re-
spectively. The inverse relations read
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Symbols ¢; and e are used to denote the deviatoric and
spherical strain tensors and J,(¢) and J,(¢) are the two
creep compliance functions. For a uniaxial state of stress

these last two equations reduce to a simple form

e(f) = j J(t-n a"m 3)

The relaxation moduli G;(¢), G,(¢) and the creep compli-
ance functions J,(¢) and J,(#) satisfy the following inte-
gral equations

j G(t-1J(r)dt=1,
e
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For a uniaxial state of stress these equations reduce to a

single relation between the relaxation modulus £, (¢) and

the creep compliance function J(¢)

Original Text © M.P. Wnuk, M. Alavi, A. Rouzbehani, 2012, published in Fiz. Mezomekh., 2012, Vol. 15, No. 2, pp. 37-49.

Distributed worldwide by Springer.



14 M.P. Wnuk, M. Alavi, and A. Rouzbehani / Physical Mesomechanics 15 1-2 (2012) 13-25

t
[ Eq(t—T)J()dT=1. 5)

o

Atomistic model of delayed fracture was considered by
Zhurkov [1, 2], but this molecular theory had no great im-
pact on the further development of the theories based in the
continuum mechanics approaches. Inspired by Max Will-
iams, W.G. Knauss in his doctoral thesis considered time
dependent fracture of viscoelastic materials [3]. Similar re-
search was done by [4] followed by simultaneous researches
of Williams [5—7], Wnuk and Knauss [8], Field [9], Wnuk
[10—17], and also by Knauss and Dietmann [18], Mueller
and Knauss [19, 20], Graham [21, 22], Kostrov and Nikitin
[23], Mueller [24], Knauss [25] and Schapery [26].

What follows in this section is an attempt to present a
brief summary of the essential results, which have had a
permanent impact on the development of the mechanics of
time dependent fracture. After this review is completed we
shall point out an interesting analogy of delayed fracture in
polymers (intricately related to the ability to creep) with
the “slow crack growth” (SCG) occurring in ductile solids
due to the redistribution of strains within the yielded zone
preceding the front of a propagating crack.

Two stages of delayed fracture in viscoelastic media,
incubation and propagation, are described respectively by
two governing equations: (1) Wnuk—Knauss equation and
(2) Mueller-Knauss—Schapery equation. The duration of
the incubation stage can be predicted from the Wnuk—
Knauss equation
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Mueller—Knauss—Schapery equation relates the rate of crack
growth a to the applied constant load ©,, and the material
properties such as the unit step growth A, usually identi-
fied with the process zone size, and the Griffith stress

0 =+2EY/(na,), namely
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For a constant crack length equal the length of the initial
crack a,, theright hand side in (6) reduces to the square of
the ratio of the Griffith stress to the applied stress
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This quantity is sometimes referred to as “crack length quo-
tient” — it determines how many times the actual crack is
smaller than the critical Griffith crack. Therefore, the larger
is the number #, the further away is the initial defect from
the critical point of unstable propagation predicted for a
Griffith crack embedded in a brittle solid. For large n the
crack is too short to initiate the delayed fracture process,
see expression (15) for the definition of the n,,,. Beyond
N, growth of the crack cannot take place. For n>n,,,
one can assume that these are stable cracks, which — ac-
cording to the theory presented here — will never propa-
gate. These are so-called “dormant cracks” that belong to a
“no-growth” domain, see Appendix.

When crack length a is not constant, but it can vary
with time a = a(¢), then the right side in (7) reads

2
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Here x denotes the non-dimensional crack length, x = a/qj.
It is noteworthy that the physical meaning of the argument
A/a appearing in (7) is the time interval needed for the tip
of a moving crack to traverse the process zone adjacent to
the crack tip, say
dt=A/a.

(8)

)

(10)
The location of the process zone with respect to the cohe-
sive zone which precedes a propagating crack is shown in
Fig. 1.
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Fig. 1. Structured cohesive zone crack model of Wnuk [17, 27]. Note that of the two length parameters A and R the latter is time dependent analogous to
length a, which denotes the length of the moving crack. Process zone size A is the material property and it remains constant during the crack growth
process. Ratio R/A serves as a measure of material ductility; for R/A >>1 material is ductile, while for R/A>1 material is brittle
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Fig. 2. Schematic diagram of the standard linear solid model

To illustrate applications of the equations (6) and (8)
we shall use the constitutive equations valid for the stan-
dard linear solid, see Fig. 2. With 3; denoting the ratio of
the moduli E,/E, the creep compliance function for this
solid is given as

J () =Ei{1+B1 [1-exp(-t/1,)]}. (11)
1

Therefore, the nondimensional creep compliance function
Y()=J(t)/J(0) reads

() =1+B, [1-exp(-t/Ty) ] (12)
Substituting this expression into (6) one obtains
148, [1—exp(-t, / T,) | = n. (13)

Solving for ¢, one obtains the following prediction for the
incubation time valid for a material represented by stan-
dard linear solid

By
1+B,-n | (14

Inspection of (14) reveals that the quotient » should not
exceed a certain limiting level

nlnax:l+Bl' (15)
Physical interpretation of this relation can be stated as fol-
lows: for short cracks, when n>n there is no danger
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of initiating the delayed fracture process. These subcritical
cracks are permanently dormant and they do not propagate.

Figure 3(a) illustrates the relationship between the in-
cubation time and the loading parameter given either as n
or s(= 1/ Jn = 0,/0¢)- Figure 3(b) shows an analogous
relation between the time used in the process of crack propa-
gation and the loading parameter s. Note that the incuba-
tion time is expressed in units of the relaxation time T,,
while the time measured during the crack propagation phase
of the delayed fracture is expressed in units of T,/9, in
where the constant § contains the initial crack length a,
and the characteristic material length A, cf. (18). When the
variable s is used on the vertical axis and the pertinent func-
tion is plotted against the logarithm of time, then it is seen
that a substantial portion of the curve appears as a straight
line. This confirms the experimental results of Knauss and
Dietmann [18] used also by Schapery [26] and Mohanty
[28].

To describe motion of a crack embedded in viscoelastic
solid represented by the standard linear model one needs to
insert (11) into the governing equation (7). The equation of
motion reads then

n
1+B, [l—exp(—é‘)t/rz)]=;. (16)

Solving it for the time interval &t/t, = A/(at,) yields
A B a17)
T,d 1+, —n/x

It is seen from (17) that for the motion to exist, the quotient
n should not exceed the maximum value defined by Eq. (15).
For n>n,,, the cracks are too small to propagate.

If nondimensional notation for the length and time vari-
ables is introduced

d=A/ay, 0=t/1,, (18)
the left hand side of (17) can be reduced as follows

&_A_ A Na (19)
T, ma da) o dvy/de

d(er,)

o
2
=

=0y/0g
o
[}

o
13

<
~

. By =100 By=10

Nondimensional load s

o
w

e
o
=

01 1 10
19t /(T2/5))

Fig. 3. Logarithm of the incubation time in units of T, shown as a function of the loading parameter s for two different values of the material constant
B,=E,/E, (a).Logarithm of the time-to-failure used during the crack propagation phase, in units of T,, shown as a function of the loading parameter

s for two different values of the material constant B, = E,/E, (b)
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When this is inserted into (17) and with § = A/ ay, the fol-
lowing differential equation results

S 3[inGp, /1B, /)] (20)
or, after separation of variables
(8)d6 =In(B,/(1+B, —n/x))dx. 21

Motion begins at the first critical time #;, which designates
the end of the incubation period. Therefore, the lower limit
for the integral applied to the left hand side of (21) should
be 6, =1,/1,, while the upper limit is the current nondimen-
sional time 0 =¢/7,. The corresponding upper limit to the
integral on the right hand side of (21) is the current crack
length x=a/q,, while the lower limit is one. Upon inte-
gration one obtains

t/‘172 1)\*
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The resulting expression relates the crack length x to time 7,
namely

f—h:(%ﬁln(ﬁl/(lﬂi—n/Z))dZ- (23)
1

If the closed form solution for the integral in (23) is used,
then this formula can be cast in the following final form
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This equation has been used in constructing the graphs
shown in Fig. 4. At B, =10 three values of n have been
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Fig. 4. Slow crack propagation occurring in a linear viscoelastic solid
represented by the standard linear model depicted in Fig. 2 at B, = 10.
Crack length is shown as a function of time; points marked on the nega-
tive time axis designate the incubation times corresponding to the given
level of the applied constant load # and expressed in units of t,. The
time interval between the specific point # and the origin of the coordi-
nates provides the duration of the incubation period. Crack propagation
begins at # = 0. Symbol ¢, denotes time-to-failure, which is the time
used during the quasi-static phase of crack extension and it is expressed
inunits of 7,/8. Constant 3 is related to the characteristic material length,
the so-called “unit growth step” A

used (4.00, 6.25 and 8.16, which corresponds to the fol-
lowing values of s: 0.5, 0.4 and 0.35). It can be observed
that at x approaching # the phase of the slow crack propa-
gation is transformed into unrestrained crack extension tan-
tamount to the catastrophic fracture. The point in time, at
which this transition occurs, can be easily seen on the hori-
zontal axis of Fig. 4. This point of transition into unstable
propagation can also be predicted from (24); substituting
for x we obtain the time to fracture
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If the incubation time #, given by (14) is now added to
(25), one obtains the total life time of the component, namely
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Summarizing the results of this section we can state that
the delayed fracture in a viscoelastic solid can be mathe-
matically represented by four expressions:

— time of incubation ¢, given by (14) for standard li-
near model,

— equation of motion given by (24) for the same mate-
rial model and defining x as a function of time, x = x(?),

—time to fracture ¢, due to crack propagation given by
(25),

— lifetime 7, equal to the sum ¢ +¢,, as given by
Eq. (26). It is noted that while the first term in the expres-
sion (26) involves the relaxation time, material constant {3,
and the quotient #, the second term in (26) contains also the
internal structural constant 3. It is also noted that for the
quotient n approaching one, both terms in (26) are zero,
while for n exceeding n,,, , the expression looses the physi-
cal sense (since in that case there is no propagation). With
the constant § being on the order of magnitude varying
within the range 107 to 10°® the second term in (26) is
substantially greater than the first term which represents
the incubation time, see also Appendix.

For B, = 10 and three different levels of , the resulting
functional relationships between the crack length x and time
t are shown in Fig. 4 along with the values of the incubation
times, expressed in units of T,, and the times-to-failure
expressed in units of T,/8. A numerical example is given
in the Appendix.

Example described here, involving the standard linear
solid, serves as an illustration of the mathematical proce-
dures necessary in predicting the delayed fracture in poly-
meric materials. Knauss and Dietmann [18] and Schapery
[26] have shown how the real viscoelastic materials, for
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which the relaxation modulus G(¢) and the creep compli-
ance function J(f) are measured (or calculated from equa-
tion (4)) and then used in the governing equations of mo-
tion discussed above can provide a good approximation of
the experimental data.

2. Quasi-static stable crack propagation
in ductile solids

Crack embedded in a ductile material will tend to propa-
gate well below the threshold level indicated by the ASTM
standards. This phenomenon of slow crack growth (SCG)
is sometimes referred to as “subcritical” or “quasi-static”
crack propagation and it is caused by the redistribution of
elasto-plastic strains induced at the front of the propagat-
ing crack. The higher is the ductility of the material, the
more pronounced is the preliminary crack extension asso-
ciated with the early stages of fracture. For brittle solids
this effect vanishes.

Ductility of the material is defined as the ratio of two
characteristic strains, namely

f ef
p=t =142, 27)
€y €y

Here €' denotes strain at fracture, and it can be expressed
as the sum of the yield strain €, and the plastic component
of the strain at fracture 8;1. We will refer to the material
property defined by (27) as ductility index and we shall
relate it to the parameters inherent in the structured cohe-
sive zone crack model, cf. Wnuk [17,26] — see also Fig. 1.
According to Wnuk and Mura [29, 30] the relation is as
follows

R
p= A (28)

Here the symbol R,,; denotes the length of the cohesive
zone at the onset of crack growth, while A is the process

State 1 !

zone size or the so-called “unit growth step” for a propa-
gating crack. In order to mathematically describe motion
of a quasi-static crack one needs to know the distribution
of the opening displacement within the cohesive zone of
the crack shown in Fig. 1. When the cohesive zone is much
smaller than the crack length (this is the so-called Baren-
blatt’s condition) according to Rice [31] and Wnuk [27]
this distribution is established as follows

u, (xp,R) =%{\/R(R—X1) -

1

BEEEl

Here x; denotes the distance measured from the physical
crack tip, E, is the Young modulus E for the case of plane
stress, while for the plane strainitis E(1— v? )_1 where v is
the Poisson ratio. Symbol 6y denotes the yield stress pre-
sent within the end zone. For a moving crack both x; and R
are certain functions of time — or, equivalently — of the
crack length a, which can be used here as a time-like vari-
able. In agreement with Wnuk’s “final stretch criterion”,
cf. Wnuk [17, 27], two adjacent states of the time-depen-
dent structured cohesive zone should be examined simulta-
neously, as shown in Fig. 5. At the instant ¢ (state 2 in Fig. 5)
the opening displacement u, (x; (), R(¢)) measured at the
control point P, say u,(P), equals

LY ) dr
wa(P)= P R] o= {[RLI 4 A} (30)

Expansion of the variable R(x,) into a Taylor series is jus-
tified, since both states considered are in close proximity.
For simplicity the entity [ R])Cl _a shall be referred to as R(A).
Note that at the preceding instant “/—3¢” then (state 1 in
Fig. 5) the vertical displacement u, within the cohesive
zone, measured at the control point P, located at x; = A for
state 1, equals

(29)
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Fig. 5. Distribution of the COD within the cohesive zone corresponding to two subsequent states represented by instants ¢ and -7 in the course of quasi-
static crack extension as required in Wnuk’s criterion of delta COD; [v, () —v,(¢ - 8¢)] p = final stretch
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Accordmg to Wnuk’s “delta COD” or “final stretch” crite-
rion for crack motion to occur it is necessary that the diffe-
rence between (30) and (31) is maintained constant and
equal to the material parameter /2, where & is the final
stretch regarded invariant during the crack growth process.
Note that a similar requirement is postulated for the size of
the process zone or unit growth step, A = const. Therefore,
the final stretch criterion reads

uy(P)—u,(P)=9/2. (32)
Substituting (30) and (31) into the criterion of subcritical
motion (32) and naming R(A) by R, one obtains the follow-
ing differential equation

R +A2—R—«/R(R -A)+
[VR+R=R |_§( nt;
VRVrR-2| 2 [ 4o, J

We note that while both § and A are constant, the en-

tity R is a certain unknown function of the crack length a.
Using the nondimensional length of the cohesive zone, Y
and the nondimensional crack length X

R a

Y=—n, X=—n 34
R.. R. (34)

ini ini

(33)

and denoting the group of material constants on the right
hand side of (33) by M and referring to it in the sequel as
“tearing modulus”

_§( nE,
_2(4%]’ (33)

we rewrite the governing differential equation (33) in this
form

d—Y=M—pY+JpY(pY—1 -

dx
e

This equation can be further reduced if it is assumed that
we focus the attention on the ductile material behavior, when
R > A, and therefore consider the case when the ductility
index p substantially exceeds one. Physically it means that
the process zone A is much smaller than the length of the
cohesive zone. With such an assumption and some alge-
braic manipulations involving expansion of the pertinent
functions into power series one may reduce the right hand
side of (36) to the following simple form, cf. Wnuk [17,

27] and Rice et al. [32-34]
dy 1 1
— =M ———=In(4pY). 37
dx 2 2 (4pY) 37

Slow crack growth is possible only if the initial slope of
(37) is positive, i.e.,
{EZ} >0, (38)
dX Jy
This condition imposes a certain restriction on the tearing
modulus M. For motion to take place M must be greater
than a certain minimum tearing modulus, i.e.,

1 1
M . =—+—In(4p). 39
min 2 2 (p) ( )

To illustrate applications of the governing equation (37)
we shall assume in what follows that the tearing modulus
M(p) is 10 % higher than the minimum modulus defined by
(39)

M(p) = 1.1[%+%1n(4p)] (40)

Now we focus attention on the differential equation (37)
amended by the condition (40), namely

i; ()————mMpn @1

It is noteworthy that accordlng to the cohesive crack model
the length R differs only by a multiplicative constant from
Rice’s J-integral and from the Wells [35] opening displace-
ment”, COD. Denoting the COD by &;,, we recall the fol-
lowing well-known relations valid for a cohesive crack
model under the restriction of small scale yielding when
the Barenblatt condition applies

8oy 807
J=0yd;,, Sip = (nEl ]R J = [ﬂ:E ]R, (42)

1
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The last equation in (42) represents the Dugdale relation
between the length of the cohesive zone R and the applied
load o valid for a propagating crack for which both 6 and R
are certain functions of the crack length, while R is sub-
jected to the Barenblatt condition R << a. When physical
interpretation is applied to the equations listed in (42), one
comes to a conclusion that the material resistance J(a) due
to continuing crack growth can be readily represented by
the resistance curve R =R(a), or ¥ = Y(X). Denoting the
ratio 6/0y by P, we rewrite the last of the equations (42)
as follows

2 /2Y(X)
BX)= % (43)

Of course, B defined by (43) is a function of X. Let us now
denote the right hand side of the governing differential equa-
tion of a moving crack by F(Y, p). Equation (41) thus reads
dy
T F(Y, p). (44)
Solution of (44) is readily obtained by the separation of
variables followed by the integration, namely
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Fig. 6. Material resistance curves obtained for three different levels of
material ductility p = 20, 40 and 80 and for the initial crack length
a, =10R;;. Points of terminal instability for each case are marked with
little circles. Compared to a brittle solid, for which ductility index ap-
proaches one, the following increases in the effective material toughness
at the transition to catastrophic fracture are observed: 36.6 % at p = 20,

452 % at p = 40 and 54.2 % at p = 80

o
X(Y)=X —dz. 45
(Y) 0+{F(Z,p) (45)

Examples of the material resistance curves ¥ = Y(X), or
Jr = Jg(a), thatresult from (45) are shown in Fig. 6. It is
seen that the level of material ductility p has a substantial
influence on the slope and shape of such material resis-
tance curves. Figure 7 shows the graphs illustrating depen-
dence of the loading parameter 3 on the current crack length
at various values of the ductility index p. Equation (43) has
been used to construct these curves. At a certain value of X
each such “beta-curve” attains a maximum. When the slope
dB/dX approaches zero, the stable crack growth can no
longer be sustained. Effects of the specimen geometry and

[ C

G/0yo
©
w
=2

0.30

0.29

Loading parameter [3

10 11 12 13 14
Nondimensional crack length X = a/R;,;

Fig. 7. Nondimensional loading parameter B (=6/0y) shown as a func-
tion of the current crack length X =a/R,,;. During the quasi-static crack
extension the applied load increases with an increasing crack length up
to the point of maximum on the beta-curve. At this point the slow crack
growth process ends and the transition to unstable (catastrophic) crack
propagation takes place. Thus, the curves shown in the figure loose their
physical meaning beyond the points of maxima. Observed increases in
the loading parameter 3, compared to the case of ideally brittle solid, are
as follows: 4.4 % for p = 20, 8.3 % for p =40 and 10.4 % for p = 80

0.02

Stability index S
o
o
o

-0.02

-0.04

1 12 13 14
Nondimensional crack length X = a/R;

Fig. 8. Stability index S shown as a function of the current length X of the
propagating crack. It is noted that the function S passes through zero at
the values of length X exactly coinciding with the location of the maxima
observed on the beta-curves. The predicted increases in the crack length
occurring due to the preliminary slow crack growth are as follows: 20.8 %
for p =20, 23.7 % for p = 40, and 26.5 % for p = 80

loading configuration on the instabilities in fracture gov-
erned by equations (44) and (45) were studied by Rouz-
behani and Wnuk [36]. Some other aspects of the struc-
tured cohesive crack model and Wnuk’s criterion for sub-
critical crack growth were described in Wnuk [37-39].

Quasi-static crack extension is viewed as a sequence of
the local instability states. Attainment of the terminal insta-
bility state, which is tantamount to the catastrophic frac-
ture, is seen as the termination of the slow crack growth
process. There are several techniques to establish the exact
location (load and crack length) of the terminal instability
state. Perhaps the simplest approach is to seek the maxi-
mum on the beta-curve. To do just that let us rewrite (43) as
follows

N
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Fig. 9. Crack length X during the quasi-static crack growth process shown
as a function of the nondimensional time. In order to construct these
graphs a constant rate of load increase was assumed. At the points where
the slopes of these curves approach infinity the slow crack extension
undergoes a transition into unstable (catastrophic) crack propagation.
Note that this transition occurs at the values of X corresponding to the
maxima on the beta-curves shown in Fig. 7, or — equivalently — the
zeros of the S-functions shown in Fig. 8
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B = 4\2r
|7 x (46)
Differentiating both sides with respect to ¥ one gets
8 X—-(dx/dY)Y
A @
Hence
d 4(1 dx/dY)Y
B—B=—2 — 1_u ) (48)
dY # | X X

In order to convert this expression to df/dX one needs to
multiply it by dY/dX defined by (44), which yields

d 4 1 Y

e I (49)
dX n” BX X

For convenience we shall refer to the quantity proportional

to the derivative df/dX as the “stability index” S = S(X),

namely
2
S(X)=%XB%B, S =FIp-2. (50

Examples of the plots S vs. X are given in Figure 8. As can
be readily seen all curves intersect the axis S =0, and it is
easy to read (or evaluate numerically) those zero points
present in the stability indices diagrams. The results X .,
Y. and B, provide the coordinates characterizing the
terminal instability states. It should be noted that the first
term in the expression for the stability index S in (50) is
proportional to the rate at which energy is absorbed by the
ductile material, while the second term is proportional to
the rate at which energy is supplied by the external force.
Both terms can be shown to be related to the second de-
rivatives of the potential energy of a solid weakened by a
crack and subjected to certain kind of external loading con-
figuration corresponding to either “fixed grips” or “con-
stant load” boundary condition, cf. the Appendix.

In order to demonstrate the crack propagation process
the diagrams shown in Fig. 7 have been re-plotted in the
way shown in Fig. 9. Here the vertical axis represents the
current crack length, while the horizontal axis shows a
nondimensional variable proportional to time. To make these
graphs as simple as possible a constant rate of load increase
has been assumed. The graphs shown in this figure are re-
markably similar to the graphs shown in Fig. 4 obtained for
a crack propagating through a viscoelastic medium.

Despite very different physical interpretation of the
mechanisms that make slow crack growth possible in the
two considered cases, viscoelastic and ductile media, the
end results are strikingly similar.

3. Effect of crack surface roughness on the extent
of the quasi-static crack growth. Fractal fracture
mechanics

For almost all materials it is necessary to account for
the roughness of the crack surfaces. Mathematically this
can be achieved by application of the fractal model of a

crack, cf. Wnuk and Yavari [40—43] and Khezrzadeh et al.
[44]. The degree of fractality — proportional to the degree
of roughness of the crack surfaces — is suitably measured
by the fractal exponent o, which appears in the expression
for the near-tip stress field associated with a fractal crack,
namely

O~ r 51
The exponent a is related to the Hausdorff measure D of
the fractal used to represent a self-similar crack

D=2(1-0). (52)
Variation of the fractal dimension D from 1 (smooth crack)
to 2 (two-dimensional void) corresponds to the variation of
the exponent o from 1/2 to 0. Therefore, for o0 =1/2 ex-
pression (51) yields the relation well-known in the linear
elastic fracture mechanics (LEFM), while for the other ex-
treme of o approaching zero, the singularity in (51) disap-
pears. Wnuk and Yavari model [40] of an a crack embed-
ded in the stress field due to a fractal geometry of the crack
applies to the range of o close to 0.5 — corresponding to
the range of the fractal dimension D close to 1.

In what follows we shall study the effect of the degree
of fractality (measured either by o or by D) on the quasi-
static crack extension, which precedes catastrophic frac-
ture. We shall apply the formula for the opening displace-
ment within the cohesive zone associated with a structured
cohesive crack model of Wnuk and extended to the fractal
geometry, namely

) (5, R) = %w(a){\/kfuef ) -

2 \/F—\/Rf—xl

(53)

R/Rini

2.0

Effective material resistance Y
-
[$]

1.0E . ; :
10 11 12 13 14
Nondimensional crack length X = a/R;,;
Fig. 10. Material resistance curves R(a)/R,,; obtained for a smooth crack
(the lowest curve, oo = 0.5) and two fractal cracks defined by the fractal
exponent o equal 0.45 (or D = 1.1) and o. = 0.40 (or D = 1.2). It is noted
that increasing roughness of the crack surfaces, measured either by o, or
the dimension D, enhances the effects of the slow crack growth on the
effective material resistance. When the effective material resistance is
compared with the one obtained for a smooth crack, one observes 57.4 %
increase for the fractal crack described by o = 0.40 and 26.6 % for the
fractal crack with o = 0.45
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Fig. 11. Applied load shown as function of the current crack length. The
lowest curve corresponds to a smooth crack, while the other two describe
fractal cracks with rough surfaces. Degree of fractality is determined by
the exponent o or the dimension D; for the intermediate curve o = 0.45
(or D =1.1), while for the top curve o. = 0.40 (or D = 1.2). Enhancement
of the critical load compared to that of the smooth crack attains 20.8 %
for fractal with o. = 0.40 and 8.9% for fractal with o0 = 0.45

where the cohesive zone length R associated with a fractal
crack is related to R for the smooth crack by this expres-
sion, cf. Khezrzadeh et al. [44]

R" =N(o, X,Y)R,

Sfip =x(o)d

N(o, X,Y) = Ny(o)B(X)"*2,

Moy —drs” {L}/ _

(54)
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Fig. 12. Stability indices shown as functions of the current crack length
for a smooth crack and two fractal (rough) cracks. Intersection points of
the S-curves with the horizontal line drawn at S = 0 indicate the location
of the terminal instability states resulting for a given degree of fractality.
Enhancement in the terminal crack length compared to the result valid
for a smooth crack is 7.77 % for a fractal crack described by o = 0.40 and
5.53 % for a fractal with oo = 0.45
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Fig. 13. Crack length shown as a function of nondimensional time pa-
rameter for a smooth crack (ot = 0.5) and two fractal cracks (o = 0.45 and
0.40). It is seen that the increased roughness of the crack surfaces leads
to a more pronounced quasi-static crack growth. Onset of growth pro-
cess occurs at a certain threshold of the applied load f§; = 0.285, and it
continues until the slopes of the curves approach infinity

and the function K is defined as follows

1+ (o =1 sin(no)
2a(l—0) (55)

When all these expressions are substituted into the formula
for the vertical component of the displacement within the
cohesive zone associated with a fractal crack (53), and when
the “final stretch” criterion for the subcritical crack (32) is
applied within the restrictions of the Barenblatt’s condition
R <« a, the following differential equation results

K(o) =

dR 1
o m{M(p)—W -
~1/2In[4pN (o, X, Y)R/ Ry |} (56)

Numerical integration of this equation yields the material
resistance curves R = R(a) and the beta-curves shown re-
spectively in Figs. 10 and 11. The plots of stability indices
corresponding to each value of the exponent o are shown
in Fig. 12. All figures have been drawn at the ductility in-
dex p = 20 and the initial crack length X, = 10. Finally,
diagrams depicted in Fig. 13 show the crack length as a
function of time in an analogous way to the results pre-
sented in Fig. 4 (for cracks in viscoelastic media) and in
Fig. 9 (for smooth cracks embedded in ductile solids).

It is seen that the effect of the roughness of the crack
surfaces on the process of slow stable crack growth is sub-
stantial. Rougher surfaces of a propagating crack tend to
enhance the process of the slow stable crack growth, which
precedes onset of the catastrophic fracture.

4. Conclusions

Effects of two parameters on enhancement of the time-
dependent fracture manifested by a slow stable crack propa-



22 M.P. Wnuk, M. Alavi, and A. Rouzbehani / Physical Mesomechanics 15 1-2 (2012) 13-25

dQ/da=0

TG6/(26y)

dQ/da >0
Stable growth

dQ/da<0

Unstable growth
Qo g ¢

Loading parameter Q

No growth
range

a —| daj— a

Crack length a

[4]

Reserve strength used by @

smart materials with

enhanced tougr]ness
& Qr N
Q N
B Q|- I \_Steady state tougness
E \\upper bound
& Unstable ~~

~
5 growth S—
© 1l
g Stable . .
s growth Global instability
o l
D
c
£
3 No growth
- | Initiation locus
i (local instability)
2o a

Crack length a

Fig. 14. Phases of crack development in a thick-wall welded pressure vessel (), three ranges of crack growth in ductile solids (b): I — no growth region,
IT — stable quasi-static growth range of load, IIl — unstable growth (catastrophic fracture)

gation that precedes catastrophic failure in ductile materi-
als have been studied. One of these parameters is related to
the material ductility p and the other describes the geom-
etry (roughness) of crack surface and is measured by the
degree of fractality represented by the fractal exponent o,
or — equivalently — by the fractal dimension D. These
studies of early stages of ductile fracture were preceded by
a brief summary of modeling of the phenomenon of de-
layed fracture in polymeric materials, sometimes referred
to as “creep rupture”. Despite different physical mechanisms
involved in the preliminary stable crack extension and de-
spite different mathematical representations, a remarkable
similarity of the end results pertaining to the two phenom-
ena of slow crack growth that occur either in viscoelastic or
in ductile media has been demonstrated. For the viscoelas-
tic material the response to the deformation and fracture
processes consists in the time-dependent nature of the con-
stitutive equations that play the dominant role in determi-
nation of the stable crack extension. For the ductile materi-
als, even though there is no explicit time-dependence in the
first principles that govern behavior of these solids, the re-
distribution of plastic strains in the region adjacent to the
front of a propagating crack enables quasi-static continu-
ing crack growth. It has been shown that this process is
very similar to a “creeping crack” that propagates through
a polymer.

Figure 14 illustrates the three ranges of crack growth,
namely, region of no growth (I), region of stable crack ex-
tension (II), and region of unstable propagation (III).

Clearly, the existence of the incubation period followed
by the propagation phase for a crack embedded in a vis-
coelastic medium resembles those three growth stages. Our
study indicates that both material ductility and geometrical
irregularities, such as roughness of the crack surface, en-
hance the period of slow stable crack extension and sub-
stantially influence the characteristics of the terminal insta-
bility state attained at the end of the slow crack growth pro-

cess. For the purpose of fracture prevention both ductility
and crack surface roughness are desirable properties.

Appendix

Delayed fracture occurring in a linearly viscoelastic solid
such as the one discussed in Sect. 1, consists of two distinct
stages: (1) incubation phase, during which the opening dis-
placement associated with the crack increases in time, but
the crack remains stationary, and (2) propagation phase,
when the crack advances up to the critical length (Griffith
length), at which transition to unstable crack extension takes
place. Stage I (incubation) is described by the Wnuk—Knauss
equation (6) and for the standard linear solid (see Fig. 2)
the predicted duration of the incubation phase ¢ is given as

L="1 IH(HEﬁ]

The phase II (crack propagation) is governed by the
Mueller—Knauss—Schapery equation (7). For the nondimen-
sional creep compliance function ‘¥(#) defined by (12) the
resulting equation of motion, which relates crack length x
to time ¢, is given by (24), while the duration of the propa-
gation phase is predicted as follows

f,=| X2 " iy By +
2L 8 J[1+B, | 14B,-n
+ln{—1+61_n}}.

By

The total life time 7, of the component manufactured of a
polymeric material that obeys the constitutive equations
described in Sect. 1 is obtained as the sum of (A.1) and
(A.2), namely

By
T, =t +t,=T,In| —L— |+
cr 1 2 2 (1"'61_”

T n Bin 1+B,-n
+(§2j{1+61 IHL"'Bl —n}-ln{—ﬁl }} (A3)

(A.1)

(A.2)
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For Solithane 50/50, a polymer which is used to model
mechanical properties of the solid rocket fuel, the times ¢,
t, and T, were evaluated by Knauss [45] and Mohanty
[28]. The moduli £, and E, and the viscosity 1, involved
in the standard linear solid that was applied in these studies
are as follows

E, =6.65-10% Ib/in?, E, =3.69-10° Ib/in?,

N, = 1.36-10% slb/in’.
This leads to B, = 1.8, the relaxation time t, =m,/E, =
= 0.368 sec and the maximum crack length quotient »n,,, =
=1+, =2.8. The structural length A was estimated as
4.5-10* inch, while the pre-cut cracks used in the experi-
ments were on the order of 0.225 in. This yielded the inner
structural constant § =2-107. From (A.4) the “glassy” and
the “rubbery” values of the creep compliance function can
be readily calculated, namely

(A.4)

Jgasey = J(0) = 1.50- 10 *in?/Ib,
o (A.5)
Jruvbery = (22) = 4.22-10°* in*/Ib.

For detailed calculations the reader is referred to Knauss
[45] and Mohanty [28].

The glassy (instantaneous) and rubbery (upon complete
relaxation) compliance function values, as given in (A.5),
allow one to establish the domains of the delayed fracture,
such as “no growth”, incubation or the propagation domains.
It should be noted that the creep compliance functions in-
volved in these experimental investigations were obtained
by use of the Schwarzl and Staverman [46] method, see
also Halaunbrenner and Kubisz [47].

In general, the propagation of a crack embedded in the
viscoelastic medium will occur within a certain range of
applied load. The two limiting values are (1) the Griffith
stress evaluated for the initial crack size a,, which is

0 = (A.6)
KIC

\may

and (2) the propagation threshold stress

J,
Othreshold = /O O = Loy Og- (A7)
J(oo) Jrubbery

For the standard linear solid expression (A.7) reads
1

O'threshold = WGG'

Using these relations one can predict the range of the
applied loads for a successful delayed fracture test per-
formed on Solithane 50/50 as being between 6/10 of the
Griffith stress and the Griffith stress itself.

Summarizing, for the loads below the threshold stress
given in (A.7) and (A.8) one enters the “no growth” do-
main, where propagation does not take place and the cracks
in this region remain dormant. The other extreme is attained

(A.8)

when the applied constant stress G, reaches the Griffith
level 6;. When o, approaches the Griffith stress we ob-
serve an instantaneous fracture as in a brittle medium with
no delay effects. Therefore, one may conclude that the de-
layed fracture occurs only in the range

Othreshold < 00 <0G \/lcf—& S G =0g-
The second expression in (A.9) pertains to the standard lin-
ear model.

Let us now consider a numerical example for a polymer
characterized by the following properties 3, = 10, T, = 1's
and § = 10~*. Pertinent calculations are performed for three
levels of the applied load, measured either by the
crack length quotient n (= og / ;) or by the load ratio
s =0,/0, namely n=28.16 (s = 0.35), n=6.25 (s = 0.40)
and n =4 (s = 0.50). Applying (A.1) and (A.2) we obtain
the following incubation ¢, and time-to-failure #, values

n=28.16,5=0.35, 1, =1.26s5,

t, =(1/107)(0.277)s = 46.2 min,
n=6255=040, 1, = 0.744 s,
t, =(1/107)(0.720)s = 120 min,
n=4,5=050, 4,=0375s,

ty = (1/10_4)(1.232)s =205min.

It is noted that for this material the range of the applied
stress for the delayed fracture to occur is contained within
the interval (0.36;, 6). For applied stress less than the
threshold stress of 0.36 the phenomenon of delayed frac-
ture vanishes, and the crack remains stationary.

For ductile solids there are no time-dependent moduli
present in the constitutive equations. Yet, the process of
quasi-static continuing crack growth does manifest itself as
“slow crack growth”, which in almost all cases precedes
the terminal instability state tantamount to the catastrophic
fracture. To understand this phenomenon it is essential to
view each instant in the crack growth process as a state of
the equilibrium maintained between the applied external
effort, say the driving force G or the Rice’s J-integral or the
stress intensity factor K|, and the material resistance to
crack propagation designated by the index R. In mathemati-
cal terms this statement reads

G(G’ a) = GR (a)’ J(G’ a) = JR (a)’

K(0, a) = Ky (a).

Both measures of the external effort G and J are defined in
the well-known manner; J =G =K 12 / E;, while the enti-
ties on the right hand sides of (A.11) are defined by the
governing equations (37) for a smooth crack and by (56)
for a fractal crack. According to Wells the J-criterion for
fracture may be replaced by an equivalent COD (or Stip)
criterion — just as it is predicted for the structured cohe-
sive crack model, see Egs. (42). In this way all expressions

(A.9)

(A.10)

(A.11)
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Fig. Al. The nearly straight lines depict the functional relationship be-
tween the slope of the material R-curve, (dY/dX)y,r and the crack
length X, while the other set of curves represents the measure of exter-
nally applied effort (Y/X),pp.. Points of intersection between these
curves designate the terminal instability states, cf. Fig. 8

in (A.11) may be replaced by just a single relation

Rapp (0, a) = Ryar(a). (A.12)
For simplicity the symbol Ry, (a) isrepresented in Sect. 2
and 3 by R(a) — or in its nondimensional version — by
Y(X). In this way the equilibrium length of the cohesive
zone R serves as a measure of the external effort

2
1
R(o,a)=— o a.
2| 20y

This is a well-known expression resulting for the small-
scale yielding case (when the Barenblatt’s condition, R << a,
holds) from the Dugdale model. During the slow crack
growth phase the quantity defined by (A.13) must be equal
Ryar defined by the governing differential equations, ei-
ther (37) for a smooth crack or (56) for a fractal crack.
Attainment of the terminal instability state requires that two
conditions are satisfied simultaneously

RyppL(0, @) = Ryar(a),

ORApp. (0, @) _ dRya1(a)

da da
It should be noted that the derivative in the second expres-

sion of (A.14) is proportional to the second derivative of
the total potential of the system, namely
OR\pp. (O, @) _M
da - 0>
Using (42) and recalling that the J-integral equals
—dI1/d(2a) one can readily provide a constant of propor-
tionality between R,pp; and the J-integral and their de-
rivatives, which appear in (A.15). The potential of the
cracked body I1(o, a) is defined as follows
I(c,a)=1/2[ o,e;dV - [ Tu,dS —SE(a).
v s

T

(A.13)

(A.14)

(A.15)

(A.16)

Symbol SE(a) denotes the surface energy term intro-
duced by Griffith. Using (A.13) we evaluate the derivative
needed in (A.14)

ORxpp (0,a) _ 0 l( o ]Za

da dal 2 20y

: (A.17)

At the terminal instability point this expression should equal
the derivative dY/dX defined in (37) and/or (56), namely

EE
dx transition X transition

The index “transition” refers to the attainment of the termi-
nal instability state, which is tantamount to the transition
from stable to unstable crack propagation. It is noted that
the condition (A.18) is exactly equivalent to the require-
ment that the stability index defined in (50) equals zero.
Figure Al illustrates how the condition (A.18) may be used
to determine the state of the terminal instability. The inter-
section points shown in Fig. Al coincide exactly with the
results obtained in Sect. 2 for a smooth crack for three dif-
ferent levels of the material ductility, cf. Fig. 8.

In an analogous way the case of the fractal crack can be
resolved. Here one has

2
_1fmo ) _ R _ Y
20y a X

(A.18)

f f
OR AppL _ Rarpr _ N(o, X,Y) Ryppr _
a

da
_ N x, 1)L (A.19)
b b X b .
f
dRyiar _ N(o, X, Y)d_Y_
dx

When these two entities representing the rate of the exter-
nal effort and the rate of material resistance to continuing
crack extension, the factor N(a, X, Y) cancels out, and one
recovers the condition for the terminal instability expressed
by (A.18).
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