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Abstract—This article presents a mathematical model of vapor bubble growth in a superheated liquid, which
simultaneously takes into account both dynamic and thermal effects and includes the well-known classical
equations, the momentum equation and the heat equation, written to take into account the process of liquid
evaporation. An approximate semi-analytical solution of the problem is found, its construction based on the
existence of a quasi-stationary state for the bubble growth process. This makes it possible to reduce the orig-
inal moving boundary value problem to a system of ordinary differential equations of the first order. The solu-
tion obtained is valid at all stages of the process and for a wide range of system parameters. It is shown that at
large times the solution becomes self-similar and in limiting cases it agrees with the known solutions of other
authors.
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Detailed research on the entire variety of processes
occurring during the boiling of a liquid is of interest
both from a purely scientific and from a practical point
of view and is relevant to this day. An elementary act of
the boiling process is the growth of a vapor bubble,
described by a complex problem in which the equa-
tions of hydrodynamics and heat transfer should be
solved concurrently. Attempts to obtain the law of
vapor bubble growth have a long history, from classical
works [1–5] to numerous modern studies [6, 7].

It should be noted that, when constructing mathe-
matical models for vapor bubble growth, the authors
propose to take into account various factors, dynamic,
kinetic, thermal, and others, that determine this pro-
cess. Since the factors change at one process stage or
another depending on the properties of the two-phase
system considered, various assumptions are used to
solve the problem, allowing us to construct simplified
mathematical models in which a single fundamental
mechanism controlling the process is selected. The
major, most popular of them are [8] the dynamic iner-
tial model, in which the bubble grows exclusively due
to inertial effects; the dynamic viscous model, in
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which bubble growth is limited by viscous forces; and
the energy kinetic model, which attempts to take into
account the kinetics of the phase transition and the
energy thermal model. The latter is the most common
in the literature. In this model, bubble growth is due to
the supply of heat to the interface from the external
superheated layers of the liquid; all the heat is spent on
evaporation. In this model the bubble radius depends
on time as a power function with an exponent of 1/2.
The proportionality coefficient is a function of the
Jacob number and is found by different authors in dif-
ferent ways. The most famous is the Plesset–Zwick
formula [1], which is valid for large Jacob numbers. A
sufficiently complete analytical solution of the prob-
lem in integral form was obtained by Scriven [4].
Along with this, various empirical dependencies
gained popularity [9].

Analysis of the energy thermal model shows that,
despite its widespread use, it has a limited scope. In
particular, this is reflected in the fact that a number of
approximations made in it result in a solution with an
infinite bubble growth rate at the initial moment of
time, which is physically incorrect. In this regard,
attempts are being made to create various kinds of
hybrid models that simultaneously take into account
both dynamic and thermal effects [10–13], which
turns out to entail significant difficulties. This work
aims to find an approximate analytical solution to this
problem, which would correctly describe all stages of
vapor bubble growth.
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Suppose that a vapor bubble originated and began
to grow at the initial moment of time in a uniformly
superheated liquid. The system of equations describ-
ing this process includes the well-known classical
equations written as applied to this problem, taking
into account the specifics of liquid evaporation. For
solving the problem, let us use the approximation of a
uniform equilibrium bubble, according to which the
vapor in the bubble is saturated and the temperature
and pressure are uniform [14].

The bubble dynamics is described by the momen-
tum equation (modified Rayleigh equation):

(1)

where R is the bubble radius; t is time; p is pressure; ρ
is density;  is the radial velocity of the liquid at the
boundary of the bubble, which, in the presence of a
phase transition, differs from the bubble growth rate 
and is related to it as , where j is the
density of the vapor f low formed during the evapora-
tion of the liquid. Hereinafter, the subscripts l and 
denote the liquid and vapor phases; superscripts i and
f are the initial and final states, respectively; the sub-
script R stands for the value of the quantity at the inter-
face.

The boundary conditions reflecting the conserva-
tion laws of mass, momentum, and energy are written
as follows:

(2)

(3)

(4)

where σ is surface tension; η is dynamic viscosity; L is
specific heat of the phase transition; λ is the coeffi-
cient of thermal conductivity; and T is the tempera-
ture.

This system of equations is closed by the heat prob-
lem, in which the dynamics of the temperature field in
the liquid is described by the heat equation:

(5)

where r is the radial coordinate with the origin at the

center of the bubble;  is the radial

velocity of the liquid (which is obtained from the con-
tinuity equation under the assumption that the liquid
is incompressible); and с is the heat capacity. Further,
the quantities characterizing the thermophysical
properties of the liquid are assumed constant.

−− =
ρ

v
v

2
21 d  ( ) ,

d 2

i
lR lR l

lR
l

p pR
R t

vlR

R
ρ − =v( )l lRR j

v

ρ + ρ =v v 1 ;
3

R R j

σ= + − − ηv

v
v

2 4 ;lR
lR lR lp p j

R R

=

  
 
∂= λ
∂

L  ,l
l

r R

T
r

( ) ( )∂ ρ ∂ ρ ∂∂  + = λ ∂ ∂ ∂ ∂ 
v

2
2

1      ,l l l l l l l
l l

cT cT Tr
t r r rr

( ) ( )=v v
2

 l lR
Rr
r

At the initial moment of time, the temperature of
the liquid is uniform and greater than the saturation
temperature at pressure  (pressure far from the bub-
ble): . Far from the bubble, the
temperature field remains unperturbed: .
On the bubble surface, the condition of local thermo-
dynamic equilibrium is satisfied: .
Here and below, the superscript s denotes the value of
the quantity on the saturation line.

The problem should be supplemented by the equa-
tion of state of the vapor in the bubble and the depen-
dence of the saturation pressure on temperature,
which in the general case have the following form:

(6)

(7)

These can be both model and more accurate
empirical dependencies. As a rule, the Mendeleev–
Clapeyron equation is used as the equation of state,
assuming the vapor to be an ideal gas, and the Clapey-
ron–Clausius equation is used for the equilibrium
curve. Admittedly this somewhat narrows the general-
ity of both the problem statement itself and the solu-
tions obtained. However, in most cases, this is quite
sufficient to ensure an acceptable accuracy of the solu-
tion obtained. Note also that dependencies (6) and (7)
uniquely define functions  and , which
will appear later.

In the general case, the formulated problem (even
without taking into account inertial effects) can be
solved only numerically. However, we can propose an
approach that provides a basis to construct an approx-
imate solution for the problem in almost the entire
time range of bubble evolution. From a mathematical
point of view, it is convenient to construct it after pass-
ing from variables (t, r) to variables , where χ =

, thereby reducing the boundary value problem to

a problem with fixed boundaries (similarly to how it
was done in [15] when solving the problem of diffusion
growth of a gas bubble).

Heat equation (5) takes the following form:

(8)

where  is dimensionless temperature;

 is the initial superheating of the liq-

uid;  and  are functions of time; and

a =  is the thermal conductivity.
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The initial and boundary conditions are written as
follows:

(9)

where  is the dimensionless vapor density.

Passing to the analysis of Eq. (8), let us note that
the structure of the solution depends on the behavior
of the control functions and . At the
initial stage of bubble evolution its growth rate is small;

therefore, the quantities . Then the term  in

parentheses on the right side of Eq. (8) becomes the
leading term in comparison with the rest. In this case,
Eq. (8) is reduced to the equation known for the heat
problem, the solution of which decreases asymptoti-
cally. As the system evolves further, the structure of the
solution changes due to the monotonic growth of α, β.
But it still contains an asymptotically decreasing term.
However, taking into account α, β leads to a tempera-
ture distribution for which the initial stage of the pro-
cess becomes irrelevant. Such a solution for the tem-
perature can be found under the condition that the
right side of Eq. (8) vanishes, and, taking into account
conditions (9), it is given by the formula

(10)

Solution (10) is not stationary from the point of
view of mathematics, since it depends on time by

, , so it is natural to call it quasi-sta-
tionary. In this case, numerical calculations for (8)
show that the relaxation time of a quasi-stationary
state is significantly less than the duration of the entire
process of bubble evolution. This means that solu-
tion (10) quite accurately describes the dynamics of
the temperature field that forms around the bubble
throughout its growth.

Modifying the original system of equations (1)–(4)
and substituting the obtained temperature profile (10)
into the dimensionless equation (4), we get the follow-
ing system of first-order differential equations:
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where  is the dimensionless pressure and

 is the initial excess vapor pressure
due to liquid superheating. Function  is
implicitly given by the equation

(12)

and functions  and  are obtained from

(6) and (7); Ku  is the Kutateladze number

characterizing the initial degree of metastability. Using
this approach, the solution of the heat problem is actually
reduced to solving the transcendental equation (12).

Thus, the problem was reduced to solving a system
of three ordinary differential equations of the form

, where  is the desired vector

function, and the function f(y) is given by the right-
hand side of Eqs. (11).

As the bubble grows, the pressure in it gradually
decreases and asymptotically tends to the pressure of
the surrounding liquid; the vapor density in the bubble
and the temperature of the liquid at the interface tend
to constant values: , where 

is the vapor density at pressure . At this stage of the
process, which, by the way, can be described within
the framework of the energy thermal model, the bub-
ble growth is determined exclusively by heat transfer to
the interface, the temperature field in the liquid
becomes stationary, the functions α and β become
constants, and the solution of the boundary value
problem is precisely self-similar:

(13)

Note that a similar solution was obtained by
Scriven [4]. At this stage coefficient βf, appearing in
Eq. (13), is a function of only the Jacob number Ja =

 and is found from the following

integral equation (which directly follows from Eq. (12)):
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Fig. 1. Dependence of the bubble radius  (1) and liquid
superheating at the interface ; (2) on time: solid line,
the obtained semi-analytical solution (11) and (12); dashed
line, direct numerical simulation; dash-dotted line, the
self-similar solution (13) and (14).
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In the case of small and large superheating at
, Eq. (14) has the following approximate solu-

tions:

The latter coincides with the well-known Plesset–
Zwick solution [1] (if we do not take into account the
additive correction to the Jacob number, which sig-
nificantly improves this asymptotic approximation).

Figure 1 presents the time dependences of the bub-
ble radius and liquid temperature at the interface,
plotted for water at atmospheric pressure and the ini-
tial superheating of 50 K; they clearly illustrate the
mechanism of vapor bubble growth in a superheated
liquid, which combines dynamic and thermal effects.
The initial bubble size was assumed to be 1.1 Rcr, where

Rcr =  is the critical radius at zero initial growth

rate and a vapor temperature equal to the temperature
of the surrounding liquid. As can be seen from the fig-
ure, the difference between the calculation results
obtained by direct numerical simulation of the initial
system of equations (1)–(7) and based on the derived
semi-analytical solution (11) and (12) is rather small,
which shows the consistency of the latter (the same
was observed in the calculations for other superheating
cases and for other liquids). Note also that the self-
similar solution (13) and (14) is valid only on large
times, since it is essentially asymptotic; that is, it is
bounded as applied to real systems, especially in the
case of great superheating, where the characteristic

ρv  1f

β ≈ Ja at Ja 1;f
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π
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time of the transition stage can be a much more char-
acteristic observation time.

Thus, we have obtained a relatively simple semi-
analytical solution to the problem of the vapor bubble
growth in an initially homogeneously superheated liq-
uid, which simultaneously describes both the inertial
and thermal effects controlling this process, and can
serve as a good alternative to direct numerical calcula-
tions.
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