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MECHANICS
Plane Motions of Rigid Body Controlled
by Means of Movable Mass
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Abstract—The plane motions of a rigid body controlled by means of an auxiliary movable point mass are con-
sidered. Dry friction forces act between the body and the horizontal plane. It is shown that, under certain
conditions, the body can be transferred to an arbitrary state in the plane so that the system is completely con-
trollable.
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Q C
The problems of the dynamics of a rigid body that
carries movable masses are relevant in connection
with the creation of mobile robots, which have no
external movable elements [1–3]. These robots, called
capsule robots, can be sealed and able to move in
aggressive and vulnerable environments, in pipes,
inside living organisms, and to perform the operations
of inspection, monitoring, diagnostics, etc. A number
of studies have been devoted to the one-dimensional
translational motion of these systems in the presence
of external resistance forces, and the optimal driving
modes are constructed [4, 5].

The two-dimensional plane motions, which are
important for constructing rotations of mobile robots,
were studied in [6, 7] in the presence of dry friction
forces between the body and the horizontal plane. In
these studies, it is assumed that the internal moving
masses have two degrees of freedom with respect to the
carrying body and consist of a rotor and a material
point.

In this study, as in [8], we consider the case of one
movable point, which controls the plane motion of a
body in the presence of dry friction forces between it
and the plane. It is shown that the system is completely
controllable under fairly general assumptions. It can
be transferred to an arbitrary state on the plane even if
the point has only one degree of freedom and moves
relative to the body along a certain curve.
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MECHANICAL SYSTEM

The system consists of a rigid body P of mass M and
a material point Q of mass m (Fig. 1). Let us denote by
C the center of mass of the body P and assume that one
of the principal central axes of inertia of the body is
vertical. The body slides along the fixed horizontal
plane OXY in the gravity field leaning on three points Ai.
In the case of three supporting points, the rigid body is
a statically definable system; therefore, the normal
reactions Ni at the points Ai are unambiguously deter-
mined. The dry friction forces Fi acting on the body P
at the points Ai obey the Coulomb law with the friction
coefficient f. If  is the velocity of the supporting
point Ai, the friction forces are determined by the rela-
tions

(1)

The material point Q is equipped with an actuator
and moves relative to the body P along a horizontal
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Fig. 1. Mechanical system.
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plane parallel to the OXY plane. The point Q interacts
with the body P and does not interact with the fixed
plane OXY. Thus, the only external forces acting on the
system  are the forces Ni and Fi of gravity and
reaction in the supports Ai, i = 1, 2, 3.

For simplicity, we assume that the distances from
the center of mass C and from the horizontal plane
along which the point Q moves to the fixed plane OXY
are small as compared to the horizontal linear dimen-
sions of the body P. We also assume that the projec-
tions of the points C and Q onto the plane OXY lie
inside the triangle . These assumptions provide
the positiveness of the normal reactions Ni and
exclude the “overturning” of the body P. Therefore,
we assume that the center of mass C and the point Q
move in the OXY plane.

EQUATIONS OF MOTION
We denote the velocities of the points C and Q rel-

ative to the plane OXY by  and  and the force
applied to the point Q from the side of the actuator by
F. Then the force (–F) is applied to the body P at the
point Q, and the equation of motion of the center of
mass C of the body P has the form

(2)

where the forces Fi are defined by formulas (1). The
dots designate the derivatives with respect to the time t.
We write the equation of motion of the point Q

in expanded form representing its absolute accelera-
tion as the sum of its absolute, Coriolis, and relative
accelerations:

(3)

Here,  is the radius vector of the point Q rela-
tive to the center of mass C of the body P, v and w are
the relative velocity and acceleration of the point Q
relative to the body P,  is the angular velocity
of the body P, and k is the unit vector directed verti-
cally upward.

We also compose the equation of moments for the
body P around the vertical axis passing through its
center C. Denoting by J the moment of inertia of the
body P about this axis, we obtain

(4)

On the basis of Eqs. (2)–(4) of motion, we consider
certain types of possible motions of the P + Q system.
We assume that the actuator is capable of generating a
sufficiently large relative acceleration w, arbitrary in
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direction, of the point Q, which plays the role of the
control action.

SLOW AND RESIDUAL MOTIONS
If the point Q moves with respect to the motionless

body P with a sufficiently small relative acceleration,
then the body P remains at rest due to the forces of dry
friction, which keep it in this state. These slow motions
can be used for moving the point Q from the initial
state of rest to an arbitrary terminal state of rest relative
to the motionless body P.

If the point Q is motionless relative to the body P,
then the system P + Q is the rigid body of the mass

, which stops in a finite time under the action of
the dry friction forces. We call such motions residual.

RECTILINEAR MOTIONS
Let the whole system P + Q be at rest at the initial

moment of time t = 0, and the point Q is on one of the
straight lines , i = 1, 2, 3, for example, on the
straight line  (Fig. 1). We show that, if the point Q
moves rectilinearly along the straight line , then
the translational motion of the body P occurs along
the same straight line. Therefore, it suffices to make
sure that all Eqs. (2)–(4) are satisfied for such
a motion.

With the translational motion of the body P, the
velocities  of all its support points are equal to  and
in parallel to the straight line . According to
Eqs. (1), all frictional forces Fi are also parallel to a
straight line  and directed against the velocity .
Therefore, the vector Eq. (2) is reduced to the scalar
equation

(5)

where we introduced the following designation
reflecting Coulomb law (1):

(6)

The sum of all normal reactions is equal to the weight
of the system P + Q, i.e.,

(7)
where g is the acceleration of gravity. Equation (5) sub-
ject to Eq. (7) takes the form

(8)
Equation (3) for the translational motion of the body
P, i.e., at ω = 0, is reduced to the scalar equation

(9)
Ruling out F from Eqs. (8) and (9) and introducing the
designation
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Fig. 2. Functions (t) and (t).
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we obtain

(11)
Let us turn to Eq. (4) at ω = 0. The moments of the

forces F1 and F directed along a straight line  with
respect to the point C are zero, and the moments of
forces F2 and F3 balance each other, since the shoul-
ders of these forces like those of the forces  and 
are inversely proportional to the magnitudes of the
forces.

Thus, all Eqs. (2)–(4) are satisfied with the recti-
linear motion of the point Q along a straight line 
and the translational motion of the body P along this
straight line. These equations are reduced to one
dynamic Eq. (11). There are also the kinematic rela-
tions

(12)

where ξ is the displacement of the point Q along a
straight line  (Fig. 1) measured from the initial
position of this point,  is its velocity relative to the
body P, and x is the absolute displacement of the cen-
ter of mass C of the body P along the direction .
The initial conditions for Eqs. (11) and (12) have the
form

(13)
We set the control in the form of the piece-constant

relative acceleration

(14)

where the constants  and  satisfy the restrictions

(15)

Integrating the second equation in set (12) with
w(t) defined by Eq. (14) with initial conditions (13), we
obtain

(16)

The relative velocity (t) must vanish at t = t2. We
obtain

(17)

Let us integrate the first equation in set (12) for (t)
from set (16) and initial conditions (13). As a result, we
determine the total relative displacement of the point Q
also using formula (17):

(18)
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Referring to Eq. (11), we proceed from the fact that
the inequality  holds for all . Integrat-
ing Eq. (11) for w(t) defined by Eqs. (14) under initial
conditions (13), we obtain

(19)

From the last equality of set (19), it follows that 
vanishes at , where

(20)

Comparing Eqs. (17) and (20), we can make sure that
. At  and inequalities (15), we

have the inequality

(21)

Under condition (21), the second term on the right-
hand side of Eq. (11) compensates for the first term
because of property (6) so that we have  and,
therefore,  for . The dependences (t)
and  on the interval  are shown in Fig. 2. We
also determine the total displacement of the body P,
which is achieved at . Using Eq. (12) and initial
conditions (13), we obtain

(22)

The control w(t) specified by relations (14) and (15)
provides the relative displacement of the point Q along
a straight line  by distance (18) and, at the same
time, the translational displacement of the body P by
distance (22). At the beginning and end of the motion,
the entire system is at rest. Both displacements are
opposite in sign and proportional to . Therefore,
these motions can be arbitrarily small. After the end of
the displacement maneuver, i.e., at , the point Q
can be transferred to the initial point ξ = 0 with the
motionless body P by the slow motion with the accel-
eration satisfying condition (21). Repeating the
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Fig. 3. Rotation.
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maneuver described the desired number of times and
selecting the parameters , , and  each time, it is
possible to displace the body P by an arbitrary dis-
tance along the direction  in a finite time. In this
case, the point Q can move along an arbitrary finite
segment along the straight line . The problems of
optimization of motions as applied to Eq. (11) are con-
sidered in [4, 5, 8], where we constructed the motions
with the highest average velocity.

ROTATION

Let us consider the motion of point Q along a cir-
cumference S of radius a around the point C (Fig. 3).
We substitute the vector  from Eq. (2) into Eq. (3),
find the vector F, substitute it into Eq. (4), and obtain
after transformations

(23)

where μ is introduced by relation (10). We designate
the angular coordinate and the angular velocity of the
point Q as it moves along the circumference S as ϕ and

. The relative velocity v of the point Q is directed
perpendicular to r and is equal in magnitude to  =
aΩ, and its relative acceleration is the sum of the tan-
gential acceleration  directed perpendicular to
the vector r and the normal acceleration equal to 
and directed against r. As a result of simplifications,
Eq. (23) is reduced to the form

(24)

where we introduced the designations

(25)

The angular acceleration  plays the role of
the control action. Let ψ denote the angle of rotation
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of the body P relative to the fixed plane OXY and write
the kinematic equations

(26)

and the initial conditions

(27)
similar to Eqs. (12) and conditions (13) for the rectilin-
ear motions. Equation (24) is also similar to Eq. (11),
but the expression for R from Eq. (25) is quite cumber-
some, and, therefore, stronger assumptions are made
here. On the basis of relations (1) and (7), we obtain
the estimate

(28)

where Т is the characteristic value with the dimension
of time.

We set the control z(t) in the form

(29)

where the constants Z and τ are such that

(30)

Neglecting the terms of the order of ε2 in Eq. (24),
we have at ε → 0

from which we obtain under initial conditions (27)

(31)

The total angular displacements of the point Q and the
body P for the time 2τ are determined by the equalities
following from Eqs. (29), (26), (27), and (31):

(32)

From relations (30) and (32), it follows that angular
displacements (32) are finite at ε → 0, proportional to
each other, and opposite in sign. By choosing τ, they
can be made arbitrarily small. Performing the maneu-
ver described the desired number of times and choos-
ing the parameter τ each time, it is possible to rotate
the body by a set angle. Between these maneuvers, the
point Q can move along the circumference S by means
of slow motions. As a result, it is possible to rotate the
body P at a set angle and displace the point Q from the
initial position to an arbitrary position on the circum-
ference S. The center of mass C of the body P can
move during the described maneuver. After its com-
pletion, the rotation of the body P and the relative
motion of the point Q cease, but the translational
motion of the body P can continue. In this residual
motion, the system  comes to rest in a finite
time.
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CONTROLABILITY
Let us show that with the help of the considered

motions, the P + Q system can be transferred from an
arbitrary initial state of rest to a set terminal state of
rest.

(1) First, using a slow motion, we move the point Q
from the initial position to a certain point on the cir-
cumference S. In this case, the body P does not move.

(2) With the help of several rotational maneuvers,
we rotate the body P so that its final orientation coin-
cides with the set terminal orientation. There may be
slow and residual motions between rotational maneu-
vers, as described above. At the end of this stage, the
system is at rest and the orientation of the body P coin-
cides with the set one.

(3) With the help of rectilinear motions in two of
three arbitrary possible directions , i = 1, 2, 3, we
move the body P to a set final position in the plane.
Straight-line maneuvers can alternate with slow
motions for displacing the point Q along the straight
lines . In this case, the motion of the body P is
translational; its orientation does not change. At the
end of the motion, the point Q can be transferred to
the set position with a slow motion.

Thus, it was established that the system under con-
sideration can be transferred from an arbitrary initial
position to a set final position if the movable point Q
can move relative to the body P with a sufficiently large
acceleration. Under this condition, the system is quite
controllable.

For implementing the displacement specified, it
suffices that the point Q can move relative to the body P
along a certain (arbitrary) arc of the circumference S
centered at the point C and along two arbitrary recti-
linear segments , i = 1, 2, 3. It suffices to require,
for example, that the point Q can move relative to the
body P along a curve consisting of the straight-line

segment , an arc of the circumference S, and the
straight-line segment  (the bold curve in Fig. 1).
Thus, the point Q can have only one degree of freedom
with respect to the body P.

CONCLUSIONS
A rigid body moving along a horizontal plane in the

presence of dry friction forces and controlled by a
moving mass can be transferred from an arbitrary ini-
tial state of rest to an arbitrary terminal state of rest in
a finite time. The controllability of the system takes
place if the moving mass can move relative to the body
along a certain curve with a sufficiently large relative
acceleration.
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