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Abstract—The van-der-Waals interaction between carbon nanotubes leads to the formation of agglomerates
of bundles and strands. In such a self-assemblage, identical nanotubes are assembled into arrays with a high
degree of ordering forming a crystalline structure. However, the van-der-Waals forces also result in a strain of
the cross-section normal to their axes instead of only in the mutual attraction of nanotubes. This work pres-
ents an analysis of the nanotube strain and crystal-lattice parameters depending on the nanotube sizes and

crystal symmetry.
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1. INTRODUCTION

Under the action of van-der-Waals forces, nano-
tubes of the same structure can form crystalline struc-
tures, which are quite stable even under the effect of
external forces [1—4]. As is known [5], nanotubes of
sufficiently large diameter tend to collapse under the
action of van-der-Waals forces acting between carbon
atoms belonging to the same nanotube. However, their
stability increases with the agglomeration of nano-
tubes in an ordered array. In this case, generally speak-
ing, the nanotubes experience polygonization deter-
mined by the symmetry of their environment [3, 4].
The interaction of carbon nanotubes with other car-
bon nanostructures, i.e., graphene sheets, nanotubes
of various diameters and spatial orientations, and car-
bene fibers, has been studied many times [6—10] in the
approximation of nondeformable nanotubes. An
exception, perhaps, is [11] in which the contact prob-
lem for two nanotubes is considered. However, it is
obvious that the strain mode of a nanotube interacting
with its nearest neighbors should be determined by the
symmetry of its environment. In [12], a semi-empiri-
cal model of a crystal of nanotubes was considered
taking into account the strain of their cross section
caused by the interaction with neighboring nanotubes
for the case of a dense hexagonal (triangular) package.
It is shown that the specific energy of the crystal has a
nonmonotonic dependence on the diameter of nano-
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tubes. Current paper presents an analysis of the effect
of the diameter of nanotubes and the symmetry of the
nearby environment on the strain of nanotubes and
the lattice constant of the tube crystal.

2. GROUND-STATE ENERGY

We consider an ordered array of identical parallel
nanotubes, each of which has »n nearest neighbors. The
nanotubes are assumed to be long enough so that the
effect of the edges can be neglected. Each nanotube is
considered as an elastic thin shell characterized by the
radius R and the effective wall thickness | < R [13, 14].
In this case, the field of displacements of the points of
the surface of the nanotube depends on the number n
of nearest neighbors and can be written in the form

{u,v,w} ={U, cosnb,V, sin nb, W, cos nb}, (D)

where u,v,w are the longitudinal, tangential, and
radial displacement components, respectively; 0 is the
azimuth angle in the cross section normal to the axis of
the nanotube. The amplitudes V, and W, determine
the deviation of the cross section from circular.

In a nanotube crystal, the elastic-strain energy
together with the van-der-Waals energy determines
the ground state and the parameters of the crystal. The
potential energy of an ordered array of nanotubes can
be represented as

E=U,+Uy, +U,y, 2)

where U, is the energy of elastic strain determined by
the field of displacements {u, v, w}; U;, and U, are the
interaction energy between carbon atoms belonging to
the same and adjacent nanotubes, respectively. In the
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future, we consider the energy per unit length of
a nanotube without specifying it every time.

The van-der-Waals energy is described by the Len-
nard-Jones potential, the parameters of which for car-
bon nanostructures are well defined:

G (5 I

where € = 2.84 meV and 6 = 3.403 A.

In accordance with the above assumption, we
assume that carbon atoms are distributed over the

nanotube surface with the density p, = 4/3\3d> (a is
the length of the C—C bond in graphene). In this case,
the van-der-Waals energy can be represented in the
form of an integral over the surface of nanotubes:

oo 2n 2n

Usaw = 2rp,)* [ dz[ 6, [ d0,RODROIV (1), (4)
—co 0 0

where r is the distance between carbon atoms on the

surface of nanotubes. The values of R describe the
deviation of the contour of the nanotube cross section
from the circumference.

For the self-action energy (U,,), the value of r is
written as

P =7+ R[(1+W,cosnB,)" + (1 + W, cosnb,)’

-2+ W, cosnb,)(1 + W, cosnb,)cos(6, — 6,)],

where z is the coordinate along the nanotube axis.
When calculating the interaction energy between adja-
cent nanotubes, the distance is written as

(6))

P = z2 + Rz[(h + (1 + W, cosnb,)cos 6,
— (1+ W, cosnb,) cos 8,)’ (6)
+ ((1+ W, cosnB,)sin O, — (1 + W, cos nb,)sin 62)2],

where 4 2 2 is the dimensionless distance between the
axes of nanotubes (the lattice constant).

Calculation of the elastic-strain energy of a thin
shell is, generally speaking, a very difficult problem.
However, in this case, the strain of the nanotube is
similar to the strain of the thin elastic ring in which the
contour length of the cross section normal to the axis
of the nanotube is preserved. It permits us to relate the
amplitudes of the radial and tangential displacements
of the surface [15]:

V=i, ™)
n
Assuming that the longitudinal and shear strain s
are negligibly small, we obtain for the elastic-strain
energy [15]

2
o= TRB 2y, ®)
1-v-24
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where Y is Young’s modulus of graphene, v ~ 0.2 is
the Poisson ratio of nanotubes; B = /R (n = 0.67 A).

By minimizing energy (2) with respect to the

amplitude W, and distance / between the axes of the
nanotubes, it is possible to find the equilibrium con-
figuration and the crystal energy. Unfortunately, inte-
grals (4) cannot be represented in analytical form;
therefore, their estimates have to be performed by
numerical methods. The spontaneous agglomeration
of nanotubes leads to dense hexagonal (triangular)
packing; however, bearing in mind the modern devel-
opment of nanotechnology and for evaluating the
effect of symmetry on the properties of such a crystal,
we present below the results of calculations for the tri-
angular, square, and one-dimensional lattices.

3. RESULTS AND DISCUSSION

Since the approach discussed above is based on
description of a nanotube as a thin shell, the key
parameter is its radius, while other parameters have an
effect only through the elastic constants. Therefore, all
calculations were performed for nonchiral nanotubes
(m,m). Figure 1 shows a fragment of the crystal of
nanotubes with the radius R =10.85 A with dense
hexagonal packing. According to the data obtained,
the dimensionless amplitude of the radial displace-
ment amounts to W = —0.039 and the lattice constant
is h = 2.234. The figure clearly shows the polygoniza-
tion of the nanotubes—the cross section resembles a
hexagon with smooth vertices. In Fig. 2, we show the
values of dimensionless amplitudes W, and lattice
constants 4 for nanotubes of various radii and different
types of packings. It is noteworthy that the ratios
between the amplitude and lattice constant for square
and triangular lattices, although differing in value, are
of uniform character, whereas the dependence of
amplitude on the lattice constant is completely differ-
ent for the one-dimensional lattice. This fact is con-
firmed by the analysis of Fig. 3, which shows the
dependence of the amplitude of the radial shift on the
nanotube radius. For triangular and square lattices,
small radii correspond to smaller amplitudes, whereas,
for a one-dimensional lattice, the opposite occurs. For
nanotubes with the radius R = 8 A in the cases of trian-
gular and square lattices, the amplitude of the radial dis-
placement exceeds the threshold value of wy = —1/(n* +
1) above which the nanotube cross section ceases to be
convex. Therefore, the points corresponding to the
minimum distance between the walls do not lie on the
straight line connecting the nanotube axes, which is
clearly seen in Fig. 1. In this case, the minimum dis-
tance between carbon atoms belonging to adjacent
nanotubes must be calculated by minimizing expres-
sion (6) with respect to azimuthal angles 6, and 6,.
The corresponding dependences of the minimum dis-
tance between the walls of nanotubes for different
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Fig. 1. Fragment of an ordered array of nanotubes (16,16)

of radius R =10.85 A with hexagonal close packing. The
lattice constant L = 2.234R.
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Fig. 3. Dimensionless amplitude of the radial displace-
ment.

packings are shown in Fig. 4. It also shows the mini-
mum distances between the walls calculated in the
approximation of nondeformable nanotubes [10]. It
can be seen that this approximation describes well the
minimum distance only for the case of a one-dimen-
sional lattice. The nanotubes of a small radius R < 6 A
in the case of square and triangular lattices turn out to
be slightly deformed; therefore, they also correspond
to the approximation [10].

Thus, systematic analysis of the ordered arrays of
carbon nanotubes shows that it is both the diameter of
the nanotubes and the lattice symmetry that affect sig-
nificantly the strain of the nanotubes and the distance
between them. At the same time, the one-dimensional
array is closer in its characteristics to the crystal of
nondeformable nanotubes. The nanotubes in quasi-
two-dimensional lattices (triangular and square) have
significantly greater strain as compared with the one-
dimensional systems. Moreover, for the triangular lat-
tice, a pronounced extreme character of the depen-
dence of the minimum distance between the walls of
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Fig. 2. Values of the amplitude of the radial displacement
and the distance between the axes of nanotubes. Here and
in Fig. 3, the solid, dashed, and dash-dotted curves corre-
spond to the triangular, square, and one-dimensional lat-
tices.
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Fig. 4. Minimum distance between the walls of the nano-
tubes; /, 2, and 3 correspond to triangular, square, and
one-dimensional lattices. The dashed line shows the values
in the approximation of undeformed nanotubes [10].

the nanotubes on their diameter is observed. This
behavior, generally speaking, correlates with the
extreme dependence of the specific energy of a crystal
from nanotubes [12] and is explained by the fact that,
for the small-diameter nanotubes, the van-der-Waals
interaction is significant only for the relatively small
part of the surface, whereas, for larger nanotubes, their
strain leads to the fact that almost the entire surface of
the nanotube interacts with its neighbors, which
makes such a system similar to graphite. Stranger is the
behavior of the minimum distance for the square lat-
tice. In this case, the nanotube cross section resembles
a square and the contribution to the bending energy of
the shell at its vertices exceeds the gain from a closer
distance between the walls. However, in any case, the
presence of the initial strain of the nanotubes in an
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