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Abstract—The trinomial asymptotic expansions of potential f low kinetic energy in an ideal f luid are con-
structed for the motion of two spheres of variable radii in the vicinity of their contact. Based on these expan-
sions, it is possible to study the process of two pulsating gas bubbles approaching up to their contact.
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INTRODUCTION

It is convenient to solve the problem of the hydro-
dynamic interaction of two spheres moving in a poten-
tial f low of an ideal f luid using the method of general-
ized Lagrange coordinates. The coordinates of the
centers of spheres and their radii are accepted as gen-
eralized coordinates, and their time derivatives are
respectively taken as generalized velocities. The
kinetic energy of the f luid is the Lagrange function.
Such a method of solving the problem was first used by
Kelvin and Tait [1], who obtained an expression for
the kinetic energy of two spheres balls located far from
each other. The exact expression for the kinetic energy
of the f luid with solid spheres moving along the line of
their centers was derived by Hicks [2] using the image
method. Voinov [3–5] generalized the Hicks method
for the motion of spheres of variable radii and obtained
a general expression for the kinetic energy. In [6], a
technique was developed for obtaining asymptotic
expansions of the hydrodynamic interaction force with
respect to a small gap between the spheres in the vicin-
ity of their contact. With the help of this technique, the
main logarithmic asymptotics for the small gap was
calculated for solid spheres, and the next term of the
expansion was found in [6]. In [7], it was shown how
to find the main asymptotics of the forces of hydrody-
namic interaction of bodies without using the exact
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solution. To do this, it suffices to single out the singu-
lar asymptotics of the velocity field in the vicinity of
the contact.

It should be noted that the constant terms in the
asymptotic expansion of hydrodynamic interaction
forces are very important for studying the convergence
of spheres of variable radius along with the logarithmic
asymptotics. This study is devoted to constructing
these terms. It opens the possibility of studying the
process of approaching two pulsating gas bubbles up to
their contact and to find the conditions under which
no merging of bubbles occurs.

AN EXACT EXPRESSION
FOR THE KINETIC ENERGY

The motion of two spheres of radii  and  along
the line of their centers in a potential f low of an ideal
f luid is considered. The velocities of the centers of
spheres are  and , respectively, and they are
directed towards each other (Fig. 1). The kinetic
energy  of the f luid is calculated using the potential
of the velocity field. Its general expression first
obtained by Voinov is given in [4, 5, 8]:

(1)

1a 2a

1u 2u

T

=
= + + + + + ,

πρ
≠ , , = ,

∑ � � � � �

2
2 2

1
( )

2
1 2,

i i i k i i i k ik i k ii i i
i

T A u Bu u D a Ea a C u a C u a

i k i k

∞ ∞

= =
∞

=

⎛ ⎞ ⎛ ⎞
= + , = ,⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎡ ⎛ ⎞⎤
= + + − − ,⎜ ⎟⎢ ⎥

⎣ ⎝ ⎠⎦

∑ ∑

∑

3 33
1 1 2

1 1 1
1 1

3
3 2 21

1 1 1 2 2
1

2 2
3

11 (( ) 1) ln 1
( )

n nn n

n
n n n

a a aA B
A B

aD a B
A B
7



518 SANDULEANU, PETROV

Fig. 1. Problem formulation.
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The series for  are obtained by per-
mutation of 1 by 2 in the corresponding formulas. The
coefficients  can be calculated from the recur-
rence relations for the distance between the centers of
the spheres :

(2)

and the initial conditions , . It should be
noted that  are independent of subscripts because
the equality  holds.

The series of coefficients  for the
kinetic energy converge as geometric progressions
excluding the points of contact at which they converge
as 

EXPANSION IN THE VICINITY OF CONTACT

For the coefficients , recurrence relations (2)
can be solved as in [6, 9]:

where  is the root of the equation r2τ =
.

These expressions can be simplified by using the
substitution  [10]:
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In this case,  and  is found from

the equation . Thus tending
to the contact , we obtain that  and
the following limit expressions for  at :

(3)

Previously, Voinov proposed to determine the deriva-

tive  in the vicinity of the contact using the follow-

ing transformations [6]:

(4)

Applying transformation (4) to A1 and B, Voinov
found that [6]

and noticed that the series difference 

for the coefficient  remains finite when the spheres
approach their contact. It turns out that all other coef-
ficients of kinetic energy , have this
property instead of only . This observation simpli-
fies the deduction of the logarithmic and next terms of
the asymptotic expansions for them.

Indeed, this property implies that all the coeffi-
cients of the kinetic energy have the same structure in
the vicinity of the contact

(5)

where X is an arbitrary kinetic-energy coefficient and
 depends only on the radii of the spheres and does

not depend on h.

The expansions for the coefficients A1, B, D1, E,
 are obtained by integrating using formula
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(6)

This is the desired trinomial expansion of an arbitrary
coefficient  containing the constant term  and
terms like  and h. We omit the remaining terms of
the order of smallness of  and higher.

The expression for  can be obtained from exact
series (1) by substituting limit values (3) in them. We
write out the dependencies of  and  for each
kinetic-energy coefficient. For the first two coeffi-
cients  and B, they have the following form:

(7)

The remaining coefficients , are
calculated similarly by formula (6) in which only the
expressions for  and  vary:
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where  is the Euler constant and the
remaining coefficients of the kinetic energy can be
obtained by permutation of 1 and 2.

All series for  in formulas (7) and (8) are cited in
[3–6]. The series for  in formulas (8) were not cal-
culated previously, but their contribution to the force
is comparable with that from the series for .

PARTICULAR CASES

For spheres of identical radii , the fol-
lowing substitution  should be
made in the kinetic energy coefficients formulas.
Approximately calculating the numerical series in
them, we obtain

(9)

At the contact of spheres h = 0 the numerical values
of all coefficients were calculated in [3–5, 10]. No
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numerical values of the coefficients of  for Di, E,
 were calculated previously.

Of interest is the case of the motion of spheres of
identical radii and velocities ,
respectively. In this case, the kinetic energy deter-
mines the force acting on the sphere near the plane
and has the form

(10)

The numerical values of the coefficients can be found
using Eqs. (9)

(11)

HYDRODYNAMIC FORCE NEAR CONTACT

The hydrodynamic force acting on the first sphere
can be found using the Lagrange formula:

Using Eq. (1), we obtain that

Taking into account Eqs. (7) and (8), we can single
out the main asymptotics for the force at :

which agrees with [7]. If the distance between the spheres
does not change, that is,  = 0, the
logarithmic feature disappears as was indicated by
Voinov in [4] without derivation.

We obtain an exact formula for the force acting on
the sphere of variable radius a near the plane using
Eq. (10) and its approximate expression using Eq. (11):
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where h/2 is the distance between the sphere and the
plane, .

At , we obtain  and

From this formula at h = 0, we find the force acting
on the sphere with constant contact with the plane:

In [4] the force is given in the following form:

In case the bubble radius changes periodically, the
average force is  = 2πρa2 ×  which cor-
responds to the attraction force.
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