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Abstract—In this work we consider the controlled motion of a pendulum spherical robot on an inclined plane.
The algorithm for determining the control actions for the motion along an arbitrary trajectory and examples
of numerical simulation of the controlled motion are given.
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This paper is an extension of recent studies [1] on
the controlled motion of a spherical robot of pendu-
lum type moving on an inclined plane. In [1], equa-
tions of controlled motion of a spherical robot of pen-
dulum type on an inclined plane are presented and
integrals of motion and partial solutions (with con-
stant control) are found. A linear stability analysis of
partial solutions is carried out.In this paper, using the
results obtained in [1–4], an algorithm is presented for
constructing an explicit control during motion along a
given trajectory on an inclined plane, in particular, in
a straight line and a circle.

1. EQUATIONS OF MOTION OF A SPHERICAL 
ROBOT OF PENDULUM TYPE 

ON AN INCLINED PLANE

Consider the motion of a spherical robot of pendu-
lum type rolling without slipping on an inclined abso-
lutely rough plane. The spherical robot is a spherical
shell of radius  (Fig. 1) with an axisymmetric pendu-
lum fixed at its center. The pendulum (Lagrange top)
has mass m, the distance from the center of the spher-
ical shell to the center of mass of the pendulum is ,
and in the system of principal axes of the top the cen-
tral tensor of inertia has the form .
The system is set in motion by forced oscillations of
the pendulum. In this paper, we address a model prob-
lem in which it is assumed that the mechanism setting

1 The article was translated by the authors.
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the pendulum in motion produces control torque Q,
applied at the point C of attachment of the pendulum.

All vectors describing the motion of the spherical
robot will be referred to a fixed (inertial) coordinate
system  (the -plane coincides with the
inclined plane of rolling of the spherical robot, the
unit vector  is directed to the observer perpendicu-
larly to the plane of the figure, and the unit vector  is
directed along the outer normal to the inclined plane),
see Fig. 1.

The velocity of the center of mass of the top  is
determined from the condition that the velocity of the
center of the shell  is equal to that of the point of sus-
pension of the pendulum. This condition is expressed
by the (holonomic) constraint

(1)
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Fig. 1. Schematic model of a spherical robot on an inclined
plane.
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where n is the vector directed along the symmetry axis
of the pendulum and  is the angular velocity of the
pendulum.

The velocity of the center of the shell is related to
the angular velocity of the shell, , by the condition
that there is no slipping at the point of contact :

(2)
where  are the coordinates of the center of the
sphere, , and  is the angular velocity of the
shell.

With respect to the chosen coordinate system and
in view of (1) and (2), the equations describing the
controlled motion of the system of interest on an
inclined plane have the form (for a detailed derivation,
see [1]):

(3)

where J = , M,
I are the mass and the central moment of inertia of the
shell,  is the vector of free-fall
acceleration, and  is the angle of inclination of the
plane of motion.

Let  denote the angle of inclination of the plane
at which the symmetry axis of the pendulum is hori-
zontal and the line of action of gravity ,
applied to the center of mass of the entire system,
passes through the point of contact of the shell with
the plane of motion P. Then

where  is the distance from the
center of the spherical shell to the center of mass of the
spherical robot.

In [1], it was shown that in the case of constant
control action of the form

and at the inclination angle of the plane , the
system (3) admits two families of steady-state solu-
tions:

(4)

where ,  are the parameters of the family. The
solutions (4) correspond to motion on an inclined
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plane in a straight line with constant angular velocity
of the shell , which, like the angular velocity of rota-
tion of the pendulum about its symmetry axis , can
take any value and is defined from the initial condi-
tions.

2. CONTROLLED MOTION AT AN ARBITRARY 
ANGLE OF INCLINATION

Consider the problem of the controlled motion of a
spherical robot, formulated as follows.

Suppose we are given the position of the spherical
robot, r(0), the position of the pendulum , the angu-
lar velocity of rotation of the pendulum  and the
velocity of rotation of the shell about the normal to the
plane of motion  at an initial instant of time. Can
control actions Q be chosen in such a way that the spher-
ical robot (its center) moves along a prescribed trajectory

 for a given time interval?
For the motion of the spherical robot of pendulum

type on a horizontal plane this problem has been
solved in [2, 5]. In particular, in [5] an explicit algo-
rithm is presented which determines control actions
for motion along a given trajectory. In [2], an addi-
tional integral for the case of uniformly accelerated
motion in a straight line is found and it is shown that
in this case the system (3) is reduced to one degree of
freedom, where the angle of deviation of the pendu-
lum from the vertical position in the plane along the
direction of motion has been chosen as a generalized
coordinate.

In [2, 5], it is also pointed out that a necessary con-
dition for controlled motion is that an inequality
which holds for motion on an inclined plane

must be satisfied. This can be done by appropriately
choosing mass and geometric characteristics of the
system.

Below we present an algorithm that makes it possi-
ble to solve the problem of determining a control input
for motion on an inclined plane.

(1) Define the law of motion along the trajectory
(5)

From the condition that there is no slipping at the
point of contact (2), we obtain expressions for the
change in angular velocity  and acceleration :

(6)

The projection  of the angular velocity of the spher-
ical shell onto the axis Oz is in the general case an arbi-
trary function of time.

In what follows we shall assume that . This
assumption corresponds to the rubber rolling model
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[6] (it is assumed that there is no slipping and spinning
at the point of contact).

Substituting the trajectory Eq. (5) into (6) taking
the assumption , into account, we obtain
explicit dependences . Here we assume that
the initial angular velocity of the shell  is matched
with the trajectory  and that Eqs. (6) are satisfied at
the initial instant of time.

(2) Introduce new variables 
related to the variables  by

(7)

The variables , , and  have the obvious physi-
cal meaning:  is the angular velocity of rotation of
the pendulum about its symmetry axis,  is the angle
of deviation of the pendulum from the line drawn from
the center of the sphere to the point of contact of the
plane (see Fig. 1), and  is the angle between the axis

 and the projection of the vector  onto the inclined
plane. The variables ,  are related to  and  by

(8)

(3) Eliminating the control  from the system, add
the first two equations of (3). Substitute the explicit
dependences  obtained earlier into the resulting
equation and the third equation of (3). The resulting
equation, written in the variables X, and Eqs. (8) form
a closed system of five differential equations explicitly
depending on time:

(9)

where ,  are, respectively, the matrix and
the vector of the coefficients of the equations, which
depend explicitly on time.

(4) Integrating (numerically) the resulting system
with given initial conditions , find the depen-
dence . Further, knowing , find the explicit
dependence of the control torque  from the first
equation of (3).

2.1. Uniform Motion of a Spherical Robot along
an Arbitrary Straight Line

2.1.1. Reduction of the system to one degree of free-
dom. For uniform motion in a straight line with veloc-
ity  we represent the law of motion along the trajec-
tory (5) in the form

(10)
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where  is the angle between the axis Ox and the
direction of motion of the center of the spherical
robot.

Substituting (7) and (10) into the sum of the first
two equations of (3) and the third equation of (3) tak-
ing (6) into account, we obtain the following system of
equations

(11)

where , .
We note that Eqs. (11) do not depend on the direc-

tion of motion  and the initial velocity , so the cal-
culations below hold for any direction of motion

 and for any initial velocity bounded only by
physically realizable values.

The system (11) admits an integral that is linear in
the angular velocities

(12)

Thus, in view of (12) the system (11) can be reduced
to a system of four differential equations, which need
to be solved with the given initial conditions .

In the general case, such systems are non-Hamilto-
nian in nature and may exhibit chaotic behavior such as
strange attractors. For a detailed discussion of Hamil-
tonization of such systems, see, for example, [7, 8].
Thus, a control that is unstable with respect to small
perturbations can arise in the system of interest under
some initial conditions.

In the example we consider here, the system (11)
admits an invariant manifold lying on the zero level set
of the integral F and defined by the equations

(13)

This manifold corresponds to oscillations of the pen-
dulum in the vertical plane along the axis Ox (the pen-
dulum does not rotate about its symmetry axis).

If  lies on the manifold (13) at the initial
instant of time, the system (11) simplifies and its solu-
tion can be analyzed explicitly.
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2.1.2. Analysis of a system with one degree of free-
dom. On the invariant manifold (13), the system (9)
reduces to a system with one degree of freedom:

(14)

To determine a control torque that ensures uniform
motion in a straight line according to the law (10), we
substitute the relations thus obtained into the first
equation of (3) and obtain:

We analyze the system (14) in more detail. This sys-
tem admits an integral of motion that is quadratic in
angular velocity and is an analog of the integral of gen-
eralized energy in the reference system whose motion
is uniformly accelerated:

(15)

Figure 2 shows a phase portrait of the system (3) on
the plane  in the case of uniform motion of the
spherical robot in an arbitrary straight line for different
values of the angle of inclination of the plane  and the
following mass and geometric parameters of the sys-
tem:

For the above parameters the value of the critical
angle of inclination  rad.

At  (Figs. 2a, 2b) and the chosen mass and
geometric parameters of the system on the phase plane
there are two fixed points corresponding to the partial
solutions (4) with , whose stability is
investigated in [1]. Under the initial conditions from
the region bounded by the separatrix, the solutions (4)
correspond to unbounded motion on an inclined
plane in a straight line with constant angular velocity
of the shell, which can take any value and is deter-
mined from the initial conditions.

When  (Fig. 2c), a bifurcation occurs at
which the two fixed points merge to form a single
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point [1]. As the numerical experiment has shown (see
Fig. 2c), this point is unstable.

For  there exist no closed trajectories (see
Fig. 2d) and there are no fixed points. The absolute
value of the angular velocity of the pendulum 
increases indefinitely on average linearly in time (see
Fig. 3а). This increase is due to the presence of a linear
(in ) term in the integral (15).

2.1.3. Physical interpretation. In a real physical sys-
tem the angular velocity of rotation of the pendulum
relative to the spherical shell, which is controlled by
the motor, is bounded by some maximal value ,
which is determined by the structural features of the
spherical robot. When it is reached during rolling with
velocity , the absolute angular velocity of the pendu-
lum is

(16)

When , the value of (16) is reached in finite
time  (see Fig. 3а). Consequently, the time of uni-
form motion and the ascent height, defined as h =

, are bounded and depend on the initial
deviation of the pendulum  and the initial
velocity .

Figure 3b shows the dependence  for  = 0,
which allows one to determine the optimal initial posi-
tion of the pendulum in which the ascent height will be
maximal (in the above example this is the value  =
1.02 rad).

When  the motion of the spherical robot up
the inclined plane does not stop, but ceases to be uni-
form. In particular, even if the control is switched off
completely, the motion of the spherical robot upwards
will be uniformly decelerated until a complete stop.
The choice of an optimal control regime for further
motion upwards to the maximal possible height is an
interesting open question.

2.2. Uniform Motion of the Spherical Robot in a Circle
Consider an example of determination of control

actions for the uniform motion of a spherical robot in
a circle on an inclined plane. In this case, the law of
motion along the trajectory can be written as

(17)

where  is the radius of the circle and T is the time it
takes for the spherical robot to pass a complete circle.

For numerical integration of the resulting equa-
tions we define the angular velocities and the initial
position of the shell in accordance with (17) and the
initial position of the pendulum, which corresponds to
the steady-state solution (4), and direct the initial
angular velocity of the pendulum along the perpendic-
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Fig. 2. Phase portrait of the system (3) in the case of uniform motion in a straight line on an inclined plane at different angles of
inclination δ.
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Fig. 4. The angular velocities of the pendulum , ,  the angles  and , and the control torque vector components versus

time for uniform motion of the spherical robot in a circle of radius  for time T = 5, under the initial conditions (18) and at

the angle of inclination of the plane .
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):

(18)

Substituting the resulting functions into the first equa-

tion of (3), we obtain the time dependences of the con-

trol torque vector components .

Figure 4 shows the angular velocities of the pendu-

lum , , , the angles  and  and the control

torque vector components ,  as functions of time

for uniform motion of the spherical robot along a cir-

cle of radius  for time T = 5, which were

obtained under the initial conditions (18) and at the

angle of inclination of the plane  (δ = 0.1).

As can be seen in Fig. 4, the time dependences of

the controls and phase variables are quasi-periodic.

The periodic character of the controls can be obtained

by a numerical search for periodic solutions (9).

The algorithm and the examples presented above of

explicit control for motion in a straight line and a cir-

cle can be used to construct control along a more com-

plex trajectory (composed of individual segments), by

analogy with gait control [2, 4, 9].

ACKNOWLEDGMENTS

The authors extend their gratitude to A.V. Borisov
and I.S. Mamaev for fruitful discussions of the results
of this study.

This work was carried out at the Steklov Mathe-
matical Institute of the Russian Academy of Sciences
and was supported by the grant of the Russian Science
Foundation no. 14-50-00005.

REFERENCES

1. T. B. Ivanova, A. A. Kilin, and E. N. Pivovarova, Dokl.
Phys. 63, 302 (2018).

2. T. B. Ivanova and E. N. Pivovarova, Russ. J. Nonlin.
Dyn. 9, 507 (2013).

3. A. V. Borisov and I. S. Mamaev, Regul. Chaotic Dyn.
17, 191 (2012).

4. A. A. Kilin, E. N. Pivovarova, and T. B. Ivanova, Regul.
Chaotic Dyn. 20, 716 (2015).

5. D. V. Balandin, M. A. Komarov, and G. V. Osipov,
J. Comput. Syst. Sci. Int. 52, 650 (2013).

6. A. V. Borisov, I. S. Mamaev, and I. A. Bizyaev, Regul.
Chaotic Dyn. 18, 277 (2013).

7. A. V. Borisov and I. S. Mamaev, Siberian Math. J. 48,
26 (2007).

8. I. A. Bizyaev, A. V. Borisov, and I. S. Mamaev, Regul.
Chaotic Dyn. 19, 198 (2014).

9. T. B. Ivanova, A. A. Kilin, and E. N. Pivovarova,
J. Dyn. Control Syst. 24, 497 (2018).

Oxz
×n β

θ ξ

∗θ = , ξ = ,
ω = , ω = . , ω = .

3(0) arccos (0) 0

(0) 0 (0) 9 02 (0) 0n

n

( )tQ

θω ξω ωn θ ξ
1Q 2Q

=1 2R

δ < δ∗
DOKLADY PHYSICS  Vol. 63  No. 10  2018


	1. EQUATIONS OF MOTION OF A SPHERICAL ROBOT OF PENDULUM TYPE ON AN INCLINED PLANE
	2. CONTROLLED MOTION AT AN ARBITRARY ANGLE OF INCLINATION
	2.1. Uniform Motion of a Spherical Robot along an Arbitrary Straight Line
	2.2. Uniform Motion of the Spherical Robot in a Circle

	ACKNOWLEDGMENTS
	REFERENCES

