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Abstract—It is proposed to divide the process of accumulation of irreversible deformations by a deformable
solid into successive parts differing in the mechanisms of production of such deformations. With the growth
of stresses in the solid due to mechanical action on it, initially irreversible deformations are produced due to
the viscous properties of the material of the deformed solid as a creep deformation, and, when the stressed
states emerge onto the loading surface, the mechanism of their production changes to plastic. Under unload-
ing, the sequence reverses from a rapid plastic to a slow viscous mechanism. The continuity in such a growth
of irreversible deformations is provided by the corresponding set of creep and plasticity potentials. The fea-
tures of this approach are illustrated by the solution of the boundary-value problem of elastoplastic deforma-
tion on the compression of the spherical layer by an external uniform pressure, when the viscous properties
of the material are specified using the Norton creep power law and the properties of the ideal plastic—by the
plastic potential in the form of the Mises plasticity condition.
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On the basis of the relationship between the model
of large elastoplastic deformations [1, 2], it is proposed
in [3] to divide the irreversible deformations acquired
by the solid into deformations of creep and plastic f low
by the mechanism of their production. Then the equa-
tion of variation of irreversible deformations is proved
to be common for the deformations of creep and plas-
ticity. The source of irreversible deformations is set in
it differently. In the first case, it is the rates of creep
strains during the deformation, which precedes the
plastic f low or, during unloading in the second case,
the rates of plastic deformations under the conditions
of matching the stress states of the loading surface.
The elastoplastic boundaries prove to be surfaces
where the mechanism of accumulation of irreversible
deformations changes from viscous (creep) to plastic
and vice versa. The laws of creep and plastic f low
should be coordinated in such a way that continuous
growth of irreversible deformations was implemented
on such surfaces, which is achieved by an appropriate
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choice of the conditions of plasticity and creep laws. In
[4, 5] by the example of solving the boundary-value
problems in the theory of large deformations, different
approaches are indicated for this consistent choice
using the generalization of the Tresca−Saint-Venant
plasticity conditions for the case of viscous resistance
to plastic f low. Here, we show such a match in the
Norton creep law [6] and the Mises condition for ideal
plasticity [7] by the example of solving the deforma-
tion problem under uniform compression of a hollow
sphere providing both active loading and unloading
including the possibility of repeated plastic f low.

1. We consider the one-dimensional problem of
the loading and unloading of a spherical viscoelasto-
plastic layer bounded by the surfaces  and 

 loaded by the pressure on its outer surface:

(1)

In relations (1),  is a set function and  is the
radial component of the stress tensor in the spherical
coordinate system . For the components 
of the displacement vector, the tensors of the small
complete , reversible , irreversible  deforma-
tions, and the stresses , we have
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The dissipative mechanism of deformation is
related to the viscous and plastic properties of the
material. The irreversible deformations are accumu-
lated from the onset of the deformation process and
can be deformations of both creep and plasticity. In
the regions where the stressed state has not yet
achieved the yield surface or where the plastic f low
proceeded but stopped, we assume the rates  of irre-
versible deformations in the Norton creep power law
[6] to be equal to the creep-strain rates :

(3)

Here  are the principal stress-tensor values and the
constants B and n are the creep parameters of the
material.

When achieving the stressed state of the yield sur-
face, the dissipative mechanism is changed—plastic
flow begins. Such a surface is set by the Mises plas-
ticity condition [7]

(4)

Without separating the irreversible deformations,
we assume that the creep strains accumulated at the
onset of the plastic f low are the initial values for their
further growth in the f low region.

2. We consider the deformation of the material
before the onset of plastic f low. For potential (3) and
the creep-strain rates, we obtain

(5)

Using dependences (2), (5), and the equilibrium
equation

(6)

we obtain a relation valid within the entire deforma-
tion process independently of the type of accumulated
irreversible deformation:

(7)

From equilibrium Eq. (6) with taking into account
Eq. (7) and boundary conditions (1), we find the stress

:
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Using Eqs. (5) and (7), we obtain the integro-dif-
ferential equation for the component 
of irreversible deformations:

(9)

The solution of integro-differential Eq. (9) under
the initial condition  was obtained by the
method of finite differences. From the known values
of stresses (7) and (8) from expressions (2), we obtain
the components of elastic strains and the distribution
of displacements along the spherical layer.

With a further increase in the function  at the
instant of time , plasticity condition (4) in the
form  is fulfilled on the inner spherical
surface. From this instant of time, the plastic-flow
region  develops from the surface 
and the region  remains the region with
the strains of elasticity and creep. The boundary r =

 is a movable boundary of the plastic-flow region.
Taking into account conditions (4) and (1) from

the equilibrium equation in the region of plastic f low,
we find the stress components

(10)

The expression for the stress  in the region of
 follows from dependences (6), (7), and

the first condition on Eq. (1)
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In the region of , as previously, inte-
gro-differential Eq. (9) is fulfilled taking into account
the equality of stress components (10) and (11) on the
elasto-plastic boundary 
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The relation for  in the region of 
follows from Eq. (7) and plastic-flow condition (4):
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Fig. 1. Modification of elastoplastic boundaries.
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Equations (13) in which  and (9) form a set
with respect to unknown functions  in the
region of  and m(t). This set was also
solved by the finite-difference method.

3. From the moment of time , the pres-
sure p(t) is assumed constant, the discharge starts in
the region of , the plastic f low contin-
ues in the region , and the viscoelastic
deformation continues as before in the region of

. The new boundary  separates
the reduced plastic-flow region from the region in
which irreversible deformations now are accumulated
due to the creep process. It should be noted that the
rate of displacement of the boundary  along
the medium is close to zero.

In the regions of  and ,
we have integro-differential Eq. (9) with the function

(14)

The component of irreversible deformations prr in
the region r0 ≤ r < m1(t) is calculated from relation (13).
As before, system of equations (13), where  r = m1(t)
and (9) with respect to unknown functions m1(t) and
prr(r, t) in domains m1(t) ≤ r ≤ m(t1), m(t1) ≤ r ≤ R is
solved by the finite-difference method.

From the moment of time , the pressure
p(t) is reduced, which leads to unloading the spherical
layer. Thus, from the moment of time , the plas-
tic f low ceases within the entire layer and the incre-
ment of irreversible deformations in the regions

, , and  is
associated only with the creep process. Equation (9)
for irreversible deformations  is now fulfilled in the
entire spherical layer in which the function c(t) and the
stress components are determined from Eqs. (7) and (8).

The stress difference at the inner boundary of the
layer  decreases, vanishes at the instant of time

, and then increases in magnitude remaining
negative. The spherical layer is divided into two
regions with different signs of the stress difference.
Therefore, according to Eq. (5), we have

(15)

With taking into account Eq. (15), Eq. (9) for  is
rewritten as follows:
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During unloading, the stress state can again
achieve the loading surface  for 
at the instant of time . With a further
decrease in  from the boundary , the region

 of repeated plastic f low is developed. In
the regions of , ,
and , the material is deformed viscoelas-
tically, where  is the moving boundary of the
region of repeated plastic f low.

Taking into account that, in the whole region of
, the condition  is satis-

fied, we find the stress components and the irrevers-
ible deformation by integrating the equilibrium equa-
tion with the second boundary condition from set (1)

(17)

In the region of , ,
and , integro-differential Eq. (16) con-
tinues to be fulfilled in which
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Fig. 2. Distributions of stress components.
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boundary  is unambiguously related to the
decreasing external pressure. Under complete unload-
ing (the external pressure  at ) in the rela-
tions setting the residual stresses and strains,  takes
the form

From the moment of time , the plastic f low
ceases and further change in the irreversible deforma-
tions is associated with the creep process within the
entire layer.

The dependence of the elastoplastic boundaries
 on the time  is shown in Fig. 1. The

components of the residual stresses  and 
during their relaxation after removing the loading
forces from  (solid lines) to  (dashed
lines) are shown in Fig. 2.

During the calculations, the linear function of
pressure was used

as well as the following values of the constants: n = 3,
, ,  = 0.1, ,

and .
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