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The Force Acting on a Cylinder in a Ring Flow
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Abstract—A system consisting of two circular cylinders one inside the other with parallel axes is considered.
The outer cylinder of radius  is fixed, and the inner cylinder of radius  rotates with a sufficiently large
angular velocity. The region between the cylinders is filled with an incompressible viscous f luid and, in the
case of coaxial cylinders, Couette f low along circular trajectories arises. Upon an eccentric small displace-
ment of the axis of the inner cylinder, the symmetry of the f low is disturbed and a force exerted on the inner
cylinder by the f luid is created. Within the ideal f luid model, the force depends linearly on the transverse
velocities and accelerations of the cylinder. In a viscous f luid, the force depends on the previous motion of
the cylinder. It is expressed in terms of the velocity functional by analogy with the Basset force acting on a ball
moving in a viscous f luid with a variable velocity.
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1. PROBLEM STATEMENT
Consider a system consisting of two circular cylin-

ders: an external rigidly fixed cylinder of radius  and
an inner mobile cylinder of radius . The space
between the cylinders is filled with a viscous liquid, in
which a plane-parallel f low arises. We study the plane
problem of the f low of a viscous f luid between two cir-
cles in the cross section of the cylinders. If the centers
of the circles coincide, then Couette f low along con-
centric circular trajectories arises. Upon an eccentric
displacement of the center of the inner circle with the
coordinates  (Fig. 1), the symme-
try of the f low is disturbed. This gives rise to a force
exerted on the inner circle by the liquid. It is required
to determine the force acting on the inner circle upon
its given motion . P.L. Kapitsa [1] supposed
that, on each element, a frictional force proportional
to the square of the mean fluid velocity between the
boundaries of the circles must act. According to this
hypothesis, as a result of the integration, Kapitsa
obtained a force the components  and Sy of which
are proportional to the displacement of the center of
the circle .

In a more accurate formulation but within the ideal
f luid model, the force acting on the inner circle was
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found in [2]. The f low is assumed to be vertical, and
the displacements  are considered to be small.
Earlier, in Chisotti’s work [3, p. 120], the force acting
on a fixed circle in the case of its finite displacement
was found exactly.

Now let us turn to the formulation of the problem
within the model of a viscous incompressible f luid.
The f luid velocity field is sought in the form of an
expansion in a small displacement  of the center of
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the circle. We assume that the generating f low is
caused by the rotation of the inner cylinder with an
angular velocity . It is the well-known Couette f low
with the current function

which exactly satisfies both the Euler equations of an
ideal f luid and the Navier–Stokes equations of a vis-
cous f luid. In the polar coordinates ( ), the radial
( ) and transverse ( ) velocity components are
expressed in terms of the stream function :

The velocity field satisfies the no-slip conditions at the
boundaries of the circles  and :  =
Ω0R1 and 

This f low consists of the potential f low of a point
vortex with the angular velocity component

(1)

and the f low with a constant vortex:

. (2)

It is required to determine the force acting on the inner
circle upon a small displacement x0.

2. THE FORCE ACTING ON A CIRCLE
IN AN IDEAL FLUID

If the center of the inner circle is displaced by a
small amount x0 along the axis x, then the stream
function changes by a small quantity:

(3)

Here, the origin of the polar coordinates coincides
with the center of the inner circle (Fig. 1).

The f low velocity field with the stream function
 is potential and does not change the circula-

tion  and the vortex ω of the main f low. Let us show
that, in the linear approximation in , it satis-
fies the conditions for the normal velocity at the
boundaries of circles. Indeed, at the boundary of the
inner circle, we have
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and, at the boundary of the outer circle, r = R2 –

x0cosα + , the normal velocity  =

 has a quadratic smallness.

The tangential velocity at the boundary of the inner
circle of the perturbed motion does not satisfy the no-
slip condition:

(4)

Upon a small displacement of the inner cylinder in
the resulting f low with stream function (3), the pres-
sure acting on the inner circle with force  is
created. It can be shown that the components of the
force can be expressed by the Lagrangian

(5)

by the Lagrange formulas

(6)

These formulas are consistent with the expressions for
the forces obtained in [1]. With the help of expressions
(1) and (2) for the circulation and vortex, formulas (5)
and (6) are simplified. It is convenient to write the
force in complex form:

(7)

3. THE BOUNDARY VALUE PROBLEM
FOR A VISCOUS FLUID

The vortex in a viscous liquid,

(8)

where  is a constant vortex (2) and  is the pertur-
bation of the vortex, satisfies the vortex transport
equation

(9)

where  is the kinematic viscosity of the f luid.
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With the Reynolds number , at
the boundary of the inner circle, a boundary layer with a
thickness on the order of  appears.
In view of the estimates

where  is a quantity of the first order of smallness
, and , Eqs. (8) and (9) for the perturbed vortex

, and the stream function in the boundary-
layer approximation take the form

(10)

We assume that, at the initial instant of time, the per-
turbed vortex is zero:

(11)
Outside of the boundary layer, the perturbation of the
vortex must tend to zero:

(12)
The perturbed velocity must satisfy the no-slip condi-
tion at the boundary of the inner circle. Hence,
using (4), we obtain the no-slip boundary condition in
the form

(13)

Integrating the second equation in (10),  =

, and substituting it into boundary condition (13),

we obtain

(14)

4. SOLUTION OF THE BOUNDARY 
VALUE PROBLEM

We seek the solution to boundary value problem
(10)–(12) and (14) in the form 2ω' = Re ,
r')]. Then, we obtain for the function  the fol-
lowing boundary value problem:
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(15)

The function  is found from boundary condi-
tion (14).

The solution on boundary value problem (15) has
the form

Using the equality

we find

Substituting this expression into boundary condi-
tion (14), we obtain for the function  the Abel
integral equation:

It has the solution

(16)

5. TANGENTIAL STRESS AND FORCE
The complex tangential stress  at the boundary of

the inner circle on the complex plane  has
the form
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where  is the dynamic viscosity of the f luid.
Using the obvious formulas

we calculate the resulting complex viscous friction
force:

.

Substituting into this formula expression (16), we
obtain the final expression for the viscous force:

(17)

The total force acting on the circle is the sum of the
force determined by the ideal f luid model with the
help of (7) and viscous force (17). Viscous force (17) is
an analog of the hereditary Basset force acting on a
sphere of radius , moving by the law  [4, p. 132]:

6. SPECIAL CASES
Let us consider a special case in which the center of

the inner circle moves from the center of the outer cir-
cle by some law  and stops at point  at time :

. Then the integral in (17)
at a sufficiently large time  has the asymptotic
expansion

and tends to zero as 
Thus, the part of the viscous force linear with

respect to the displacement, acting on the inner fixed
cylinder, is zero. Only the force corresponding to the
ideal f luid approximation (7) remains. However, by
virtue of the equalities , it is also zero.

Let us consider the second case, in which the cen-
ter of the inner cylinder moves along a circular trajec-
tory of a small radius  with an angular velocity . In
complex form, the motion of the center can be written
as . In this case, , and,
using the ideal f luid model, we find from (7) that

.

The viscous force component is found with the help of
the integral

Substituting this expression into formula (17) for the
viscous force, we obtain
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