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Abstract—In this work, we consider mixed problems of elasticity theory, in particular, contact problems for
cases that are nontraditional. They include mixed problems with discontinuous boundary conditions in which
the singularities in the behavior of contact stresses are not studied or the energy of the singularities is
unbounded. An example of such mixed problems is contact problems for two rigid stamps approaching each
other by rectilinear boundaries up to contact but not merging into one stamp. It has been shown that such
problems, which appear in seismology, failure theory, and civil engineering, have singular components with
unbounded energy and can be solved by topological methods with pointwise convergence, in particular, by
the block element method. Numerical methods that are based on using the energy integral are not applicable
to such problems in view of its divergence.
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1. Let us consider applying the integral factoriza-
tion method (which is a part of the block element
method) to studying a half-strip rigid stamp acting
statically without friction on an elastic layer of finite
thickness, which can be both isotropic and anisotro-
pic. It is well known that the mixed problem is reduced
to an integral equation of the following form:

(1)

Here,  is an analytical function of two com-
plex variables α and β; both variables are even, in par-
ticular, meromorphic, and positive when both vari-
ables are real; numerous examples were presented in
[1–3]. Function  means contact stresses under

Ω

− α +β

−

−

− ξ − η ξ η ξ η =

∈ Ω

= α β α β
π

≡ α β
Ω −∞ < < − ≤ ≤

α β = = α + β → ∞

∫∫

∫∫
2

( )
2

1
2

1 2 2

( , ) ( , ) ( , ),

, ,
1( , ) ( , )

4

( , ) ( , ),
( ; ),

( , ) ( ), .

i x y

R

k x y g d d f x y

x y

k x y K e d d

x y K
x c s y s

K O A A

F

⎡ ⎤⎛ ⎞α β = β + α → ∞⎜ ⎟⎢ ⎥α ⎝ ⎠α⎣ ⎦
3

1 1( , ) ( ) , .K C O

α β( , )K

( , )g x y

the stamp.  is the vertical displacement of the
stamp when it penetrates into the layer, and ,
F1(α) are operators of the two- and one-dimensional
Fourier transform, respectively. They have the form

It is supposed that the function  is twice
continuously differentiable and, for simplicity, expo-
nentially decreases as .

There are two analytical methods for studying inte-
gral equation (1) in the anisotropic case; numerical
methods are not effective. These are reduction to the
theory of normed rings, which leads to the method of
fictitious absorption [3, 4], and the direct factorization
method, i.e., the integral method of factorization
which is part of the block element method going back
to N. Wiener’s works [2, 5–9]. Applying the second
method, we introduce the topology induced by the
Euclidean space and consider the integral equation as
a topological object on a compact, namely, on the
whole plane. We extend the equation to the whole
plane by introducing new variables :

Let us agree upon the following notation for the Fou-
rier transforms and their properties.
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The regularity signs for functions in half-planes of
the complex plane are the plus sign above in the upper
half-plane and the minus sign above in the lower half-
plane. The subscripts indicate the parameter in which
the regularity takes place (α or β). As a result, we have

In what follows, to avoid frequent use of the symbol
of the Fourier transform and inversion operator, we
take upper case letters  and  for
the Fourier transform of functions having lower case
designations  and , respectively.
We also have to perform operations of function factor-
ization in the form of sums and products. These oper-
ations will be performed on functions depending on
two complex variables α and . The operation of fac-
torization in the form of a sum will be carried out using
the notation taken in [2] with curly brackets. For
example, if a function  is factorized as a sum in
the parameter α with respect to the real axis, the func-
tions obtained as a result of this operation are denoted
by the formulas

. (2)
The first function in the right-hand side is regular in
the upper complex plane; the second one is regular in
the lower complex plane. In the case in which the
functions are also subjected to factorization in the
parameter β, these factorized functions are denoted as

.
In the case in which the functions have indices,

e.g., denote quadrants that are supporters of the func-
tions, factorization is denoted by the rule according to
which the indices follow the designation of factoriza-
tion, i.e.,

Below, expressions of operators implementing fac-
torization in the form of a sum are presented [2]:
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The inequalities following the integral expressions
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(the second case). Factorization of functions in the
form of a product in the sequel is implemented only for
the function  and, when performed in α or β,
has respectively the form

(4)

The operators that implement the factorization
operation in the form of a product are represented by
the formulas

(5)

In cases of factorization in the parameter β, it is nec-
essary to replace α in all formulas by this parameter,
together with the replacement of the contour  by ,
which also coincides with the real axis of the complex
plane β. This leads to the following expressions:

(6)

The conditions imposed on the functions when
applying formulas of factorization in the form of a sum
or a product have been described in the literature in
sufficient detail, e.g., in [2, 3], and are not presented
here. Let us apply operator  to integral equa-
tion (1) and represent it as a functional equation of the
form

. (7)

We factorize functions K in (7) in the form of prod-
ucts

and transform the functional equation (7) by applying
factorizations (2)–(6) with the aim to obtain a system
of integral equations for finding the new unknowns
introduced. As a result, the following theorem is valid.
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(8)

Other unknowns are determined from the relations

.

Although the system of integral equations (8) seems
to be complicated, it can be reduced to a system of
algebraic equations by use of the theory of residues in
the case of the boundary problem for a layered
medium, and approximate solutions are obtained
rather easily. The solution of the integral equation
after finding all the unknowns can be represented in
the form

(9)

Endowing the kernel of the integral equation with
properties suggested by the mixed boundary problem,
one can easily study distinctive features of the solution
obtained, such as the behavior of the solutions in the
neighborhood of the boundary and at corner points
which are known sufficiently well.

2. In problems of seismology, lithospheric plates
have a more complex form. In spite of this, litho-
spheric plates with extended boundaries make contact
with each other just at the edges of their boundaries. In
connection with the fact that an initial earthquake [10]
arises only in the contact zone of boundaries of litho-
spheric plates, the role of other boundaries, in relation
to the scales of the plates themselves, is insignificant.
To understand the feature of the interaction between
lithospheric plates in more detail, we consider the
behavior of contact stresses of two semi-infinite rigid
stamps approaching contact but not interacting with
each other (Fig. 1). Therefore, let us consider the case
in which in the previous problem it is taken that

; i.e., a semi-infinite stamp acts on an
elastic medium from the left. The second stamp which
is constructed by analogy with the first one occupies
the half-plane  to the right from the  axis; i.e.,
it is situated oppositely to the first stamp. Then, the
integral equation of the boundary problem takes the
form of a convolution equation:
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The fact of the presence of two noninteracting
stamps is emphasized only by the right-hand side of
the integral equation, i.e., function  which can
vary separately in the right and left half-planes and, in
particular, have a discontinuity at x = 0. This disconti-
nuity testifies about the free vertical displacements of
each stamp. To resolve this integral equation in  with
kernel properties (1) and the requirement that the
solution must belong to the energy space [1, 2], it is
sufficient to satisfy the inequalities

(11)

However, the concentrations of stresses under
deformed lithosphere plates obtained for initial earth-
quakes by the topological method with pointwise con-
vergence in [10], without the requirement that the
solution must belong to the energy space, demon-
strated that similar concentrations of stresses must
also exist in the case of stamps. Indeed, they are easy
to find. To do this, it is necessary to reject the fulfill-
ment of conditions (11) and take the right-hand side

 of the integral equations in the form

.

The function  satisfies conditions (11), and
 is a finite function equal to zero together with

the derivatives beyond a certain segment. The choice
of a function means that one of the stamps penetrated
into the layer deeper than the other and the surface
underwent a discontinuity (Fig. 1b). Constructing the
solution of Eq. (10) in generalized functions [11], we
obtain its representation in the form
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Fig. 1. Two stamps (thin contour) are pressed in an elastic
layer (thick contour) by the forces P1 and P2 in the cases of
(a) the presence of a distance between them and motion of
the right stamp to the left one (dashed arrow); (b) in the
absence of a distance between them. In this case, the layer
boundary acquired a step and the contact stresses acquired
a singularity in its zone.
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(12)

Figure 1 schematically shows the approach of rigid
stamps. This process explains the formation of a step at
the layer boundary.

Let us again return to integral equation (1). Con-
sider the case in which  and  remains bounded.
In this case, the stamp becomes striplike, ,
|y| < s, and the integral equation turns out to be given
in this strip. Let the strip be a collection of  rigid
stamps with vertical boundaries passing through the
points xn, , which approached each other
by boundaries. It means that the function  in
the general case has a stepwise form at the points .
Functional equation (7) takes the representation

Here,  denotes contact stresses under the
whole collection of  stamps. In order to obtain
singular concentrations of stresses under the set of
approaching stamps, we use the properties of solutions
for a strip stamp; they have been obtained in many
works [2, 3] in which energy contact stresses were con-
structed. Comparing it with the result obtained above
and showing that singularities are generated only by a
discontinuity of the function , we obtain the
following representation for the concentration of sin-
gular contact stresses in neighborhoods of the
points xn in zones of approaching rigid stamps situated
in the strip:

.

CONCLUSIONS
Thus, the solution of the integral equation shows

that contact stresses in the zone of approaching stamps
at the boundary of each of them have a singularity
removing the solution from the energy space. This fact
demonstrates that the zone of singular stresses in real-
ity had broken before the stresses reached the singular
value. The problem of elasticity theory was only an
indicator that this process had occurred and had
resulted in an initial earthquake [10]. It is important to

note that, during an earthquake, the part of the Earth’s
surface that remains elastic almost exactly reflects the
fault displacement obtained theoretically (Fig. 1b).
Therefore, in spite of destruction that took place in the
earthquake source zone, the increase in stresses from
a certain value to the singular value has time to trigger
a fault shear of the Earth’s surface according to the
right-hand side of the integral equation. Another
important conclusion following from the result
obtained is that study of the conditions for the appear-
ance of an initial earthquake by numerical methods
involving the energy integral, e.g., by the finite ele-
ment method, will not be successful (as has already
been observed in many models) in connection with the
fact that the solution is not energetic.
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