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Abstract—The model of an orthotropic nonlinear elastic compressible material generalizing the known model
of an isotropic semilinear (harmonic) material and admitting a number of exact solutions at large strains is
proposed. For this model of the material, an exact solution of the plane problem on large bending strains of
a compound rectangular beam consisting of two layers, one of which is preliminarily deformed, is obtained.
When formulating and solving the problem, the theory of superimposed large strains is used. On the basis of
the calculations carried out, the effect of anisotropy on a strong bending of the compound beam with a pre-
liminarily deformed layer is analyzed.
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1. MODEL OF THE ORTHOTROPIC 
NONLINEARLY ELASTIC MATERIAL

Hooke’s law in the classical anisotropic theory of
elasticity [4] has the form of , where  is the
linear strain tensor,  is the stress tensor, the colon
means the double convolution of tensors, and the ten-
sor B of fourth rank is called the elastic compliance
tensor.

We extend this constitutive relation to the case of
large strains replacing the tensor  with the tensor

, and replacing the tensor  with the symmetric
Biot stress tensor S. We obtain

, (1)

where E is the unit tensor,  is the symmetric
positively defined stretch tensor,  is the
Cauchy strain measure, and F is the strain gradient.
The symmetric Biot tensor is related to the symmetric
Piola–Kirchhoff stress tensor  and the asymmetri-
cal Piola stress tensor P as follows:
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Here,  is the proper orthogonal rota-
tion tensor [1].

In the case of an orthotropic material, the compo-
nents of the tensor B in the basis of the principal axes
of orthotropy are determined from the formulas

(3)

The components of the tensor B not written in for-
mulas (3) on the basis of the principal axes of orthot-
ropy are zero. In these formulas, there is no summa-
tion over repeating subscripts. The values of , ,
and  are the elastic constants. They are connected
by the relations

.
This model of an orthotropic nonlinear elastic

material is correct from the thermodynamic viewpoint
because the Biot stress tensor S is conjugated in energy
to the tensor U. If all three Young’s moduli  coin-
cide among themselves and are equal to , all Poisson
ratios  are equal to  all shear moduli  are equal
to , and the equality  is fulfilled, then
this model of the material passes into the known
model of an isotropic semi-linear (harmonic) material
[1]. In the case of small strains, this model passes into
Hooke’s law for an orthotropic material [4]. For this
reason, the material with constitutive relations (1)–(3)
can be called an orthotropic semi-linear material.
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Similar to the isotropic semi-linear material, the
model of this material admits a number of exact ana-
lytical solutions for large strains of anisotropic elastic
compressible solids.

Because of linearity, constitutive relations (1) can
be transformed to the form

. (4)

Here, c is the elastic modulus tensor of the fourth
rank.

We consider one important special case of finite
strain of the orthotropic medium. We assume that the
principal axes of the tensor U coincide with the axes of
material symmetry, i.e., with the principal axes of
orthotropy. Then, from constitutive relations (1), (3),
it follows that the tensors U and S are coaxial. With use
of the solution of Eq. (2) with respect to  obtained
in [5], it is possible to show that the Piola–Kirchhoff
stress tensor  is coaxial to the tensor U and, thus,
commutes with it. In this case, according to Eq. (2),
the tensor  and the Piola stress tensor P are
expressed through S reasonably simply:

, . (5)

In the case of the plane strain, which is imple-
mented in a plane orthogonal to one of the axes of
symmetry of the material, the stress  is excluded
from relations (1)–(3) by means of the condition

, which results in the following dependences in
the basis of the principal orthotropic axes

(6)

(7)

2. NONLINEAR BENDING OF A COMPOUND 
RECTANGULAR BEAM FROM AN 

ORTHOTROPIC MATERIAL
The problem on bending of a compound beam is

formulated on the basis of the theory of superimposed
large strains [2, 3] and is similar to that of the corre-
sponding problem for an isotropic material [6–8].
Further, we use the designations and terminology of
this theory [6, 7]. For the sake of brevity, the sub-
scripts at the tensors describing the transition from the
initial to final state are omitted, for example, .
The problem is solved in the coordinates of an inter-
mediate state into which the lower part of the beam
passes after the preliminary strain. The Cartesian
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coordinates of beam’s points in this state are desig-
nated as 

We consider the plane strain of the rectangular
beam occupying the region , , in
the reference configuration. The size on the coordi-
nate  is of no importance. The region 

 is occupied with a preliminarily stressed
layer. The initial (preliminary) strain of this layer with
respect to the initial state is homogeneous and is set by
the following deformation gradient:

, (8)

where  are the coordinate unit vectors and  and 
are positive constants. The material of both layers of
the beam is assumed as orthotropic, the axes of the
material symmetry coinciding with the axes 

Let the constitutive relation of an elastic material
be known in the coordinates of the initial state

. (9)

Here, F is the deformation gradient, P is the Piola
stress tensor, and  is the tensor function. The consti-
tutive relation of the same material in the intermedi-
ate-state coordinates has the form

, . (10)

Further, we use the model constructed above for an
orthotropic semi-linear compressible material.

We search for the solution of equilibrium equations
for a compound beam in a form corresponding to non-
linear pure bending [9]:

(11)

where  are the Cartesian coordinates of the
beam points in the final state. For strain (11), each
straight line  is transformed into an arch of
a circle with radius . Therefore,  The
geometrical meaning of the parameter  consists in the
fact that  is the angle of rotation of the cross section

 around the unit vector . If , the
beam is bent with convexity upward, and, if , it is
bent with convexity downward.

The deformation gradient responsible for map (11)
has the form

(12)
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Hence,  should be positive and

the values of  and  have identical signs. Taking into

account this fact, we obtain from Eq. (12)

(13)

According to Eqs. (13), the eigenvectors of the ten-
sion tensor in the bending problem under consider-
ation are directed along the axes of symmetry of the
orthotropic material, which provides the validity of
relations (5). On the basis of Eqs. (2) and (13), we have
now

(14)

(15)

Introducing the designations

 and taking into account the

constitutive relations (6), (7) of the material, we obtain
the following expressions for the upper layer of the
compound beam  with the help of
Eqs. (13)–(15):

. (16)

The Piola stress tensor for the preliminarily
deformed lower layer has the form of

(17)

Hereinafter, the prime marks the characteristics of
the stress-strain state of the preliminarily stressed por-
tion of the beam.

To obtain the expressions for components of the
strain gradient F through the components of the Piola
stress tensor in the lower layer, it is necessary to make
the following replacements in representations (17)
because of Eqs. (8)–(10):

(18)

Transformation (18) results in the following depen-
dences valid in the region :
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Here we took into account that the orthotropic
material of the lower layer, as well as the material of
the upper layer, has the axes of material symmetry
directed along the unit vectors . The elastic
constants of the lower layer , and , generally
speaking, do not coincide with the elastic constants of
the upper layer , and .

The vector equilibrium equation for the Piola stress
 in the problem of bending according to

Eqs. (14), (17) is reduced to one scalar equation

(20)

Excluding the function  from the expressions
for  and , we come to the compatibility equation

. (21)

On the basis of Eqs. (16), (19)–(21), we come to
solving the equations of the problem of strong bending
of a compound rectangular beam

(22)

(23)

After finding the functions  and , the

stresses  and  are expressed from Eq. (20),
the functions  and  are determined with the
help of Eqs. (16), (19), and the function  is

expressed as .
The boundary conditions for Eqs. (22), (23) are as

follows:

(24)

The fourth boundary condition expresses the
requirement of continuity of the function  at the
point  and is written in the form
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The general solution of Eqs. (22), (23) has the form

(26)

The constants  are found from the
linear set of equations following from boundary condi-
tions (24), (25).

The parameters  and  setting the preliminary
strain of the lower layer are not independent. They are
connected by the relation

, (27)

following from the absence of stresses on the area ele-
ments  in the intermediate state of the lower
layer.

To satisfy the boundary conditions at the beam end
faces , in the integral sense, we determine
the force resultant vector f and the moment resultant
vector M operating in the cross section 
under strain of the type in Eq. (11). Using the same
approach, as in [6–8], it is possible to show that 
and the bending moment  is identical in all
cross sections of the beam and calculated from the for-
mula

( )
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The numerical calculations were fulfilled for the
case when the materials of both layers are identical, at

,  (  are the constants of
material in relations (4)). We investigated the depen-
dences of the bending moment M on the parameter 
at different values of the ratio  (Figs. 1, 2). In
Fig. 1, these dependences are given for the case of

 (when the material of the lower layer is ini-
tially compressed in the direction of the axis x) and, in
Fig. 2, they are for the case of  (when the mate-
rial of the lower layer is initially stretched in the direc-
tion of the axis x). At , an increase in  leads
to an increase in the highest value of the bending
moment and in the displacement of the point of the
peak to the left (towards smaller values of ). At

, there is a change in the sign of the
moment at reasonably high positive values of . At

 (Fig. 2), we observed the similar effects with
the difference being that the peak value of the moment
is replaced by the minimum.
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