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The classic approaches to determining the yield
stress based on the Mises or Tresca criterion as the
moment of attaining a threshold value of stresses in a
material do not consider the majority of works devoted
to the plastic deformation of metals. Although numeri�
cal studies have shown that the use of the classic
approaches leads to errors in the case of dynamic defor�
mation [1], in some cases, which are traditionally con�
sidered as quasi�static deformation, relaxation pro�
cesses also occur during the deformation of a material.
Among these cases are whisker crystals of pure metals
[2], as well as numerous nanosized objects [3] and bulk
nanostructured metals [4]. In all these cases, the role of
the relaxation processes, which are responsible for
inertness in the development of plastic flow, in the for�
mation of the mechanical response of a material at the
initial stages of the deformation process can be not only
comparable with the role of static barriers, but also
dominant. In this work, we consider an integral yield
criterion [5–8] with the parameters of the barrier stress
(static yield stress) and the characteristic plastic�relax�
ation time (incubation time). Based on the concept of
the characteristic stress�relaxation time, which depends
only on the state of the defect substructure of a material,
the maximum stresses in a particular specimen of mate�
rial can be determined at a specific strain rate and other
external conditions of loading.

THE RELAXATION MODEL 
OF PLASTIC DEFORMATION

Let us assume that, in addition to elastic stresses,
the rheological relation for the material subjected to
dynamic deformation contains a plastic component,
which is proportional to the strain rate. This leads for�
mally to the integral criterion of the onset of plastic
flow [9, 10], which can be interpreted as follows using
the fading�memory concept [5, 6]:

(1)

Here,  is the time dependence of the stresses;  is
the characteristic stress�relaxation time (incubation

period);  is the static yield stress; and  is the stress�
sensitivity factor. Under the assumption of elastic
deformation , this criterion makes it pos�
sible to calculate the moment of the onset of macro�
scopic flow , which corresponds to the onset of
equality in (1).

We consider the simplest version of the relaxation
model of plasticity [9, 10]. Let the linear increase in
the deformations in the specimen obey the law

, where  is the Heaviside function. We
introduce the dimensionless relaxation function

 using the following condition:

(2)

Let us assume that the stress  averaged over the
incubation period and exceeding the right�hand side
of inequality in (1), “relaxes” in such a manner that at
the moments of time , which correspond to the
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plastic deformation of the material, the following con�
dition is satisfied [10]:

(3)

The true stresses in the specimen being deformed at
 are determined using the following relation:

, (4)

where  and  is the scalar parameter
( ), which controls the degree of strain hard�
ening. The case  corresponds to the absence of
strain hardening.

The lines without symbols in Fig. 1 show the

stress–strain curves for monocrystalline (  =
438 MPa, G = 76 GPa, and the grain size is 48.44 µm)

and nanocrystalline (  = 2072 MPa, G = 25 GPa, and
the grain size is 17 nm) nickel plotted at various rates
of deformation using model (1)–(4). The symbols
correspond to the data from [4]. It can be seen that the
calculated curves agree well with the experimental
data at the initial stage of deformation and that a sharp
yield point appears in the stress–strain curves with an
increasing strain rate. The characteristic relaxation
time for nickel increases nearly ten times when the
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grain size decreases from 48.44 µm (  = 0.575 µs) to
17 nm (  = 3.3 µs).

DEPENDENCE OF RELAXATION TIMES 
ON THE PARAMETERS OF THE DEFECT 

STRUCTURE OF A MATERIAL

According to [9, 10], the dependence of the char�
acteristic relaxation time on the parameters of the
defect structure of the material in the case of disloca�

tion plasticity can be expressed as follows: ,

where  is the coefficient of phonon friction for dis�

locations [1];  is the strength of dislocations; and 
is the density of dislocations. In Fig. 1, the time of
0.575 µs for microcrystalline nickel [4] corresponds to
the density of dislocations of ~1011 m–2, which is typi�
cal of the specimens of the metals used in the experi�
ments.

With a decrease in the grain size, the dominant
plastic deformation mechanism changes from disloca�
tion sliding into grain�boundary slip [11]. These
mechanisms are characterized by different values of
the yield stress of the material [12] and different relax�
ation times. In the case of plasticity that follows the
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Fig. 1. Illustration of the phenomenon of sharp yield point for (a) nanocrystalline nickel without strain hardening and (b) micro�
crystalline nickel with strain hardening in a wide range of strain rate (s–1) plotted using (1)–(4) the relaxation model of plasticity
and experimental data [4].
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Coble mechanism, the dependence of the relaxation
time on the grain size can be obtained using the Max�
well high�viscosity fluid model [13] and the relation
for the Coble creep over grain boundaries [14] in the
following form:

(5)

where  is the Boltzmann constant;  is the temper�
ature;  is the grain size; the parameter  is equal to
30–50;  is the width of the grain�boundary self�diffu�
sion region; and  is the coefficient of the grain�
boundary self�diffusion of atoms.

The use of the obtained dependences of the charac�
teristic relaxation times on the structural parameters
of the material makes it possible to describe the behav�
ior of the yield stress of the material not only when the
strain rate is varied, but also when its defect micro�
structure changes. To describe the grain�boundary slip
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curve, we use the following relation for the barrier
stress [12]:

where  is the Poisson ratio. In the range of large grain
sizes, the growth in the yield stress obeys the classic

Hall–Patch dependence [11] ,

where the stress  corresponds to the yield stress of a
single crystal and  is the Hall–Patch coefficient,
which is tabulated for the majority of metals. In the
general case, the yield stress of a material is deter�
mined as the lowest of the two “barrier stresses” that
correspond to the dislocation plasticity and grain�
boundary slip.

Figure 2 shows an example of the calculation of the
Hall–Patch curve for nickel at four different strain
rates using the relaxation model of plasticity. The sym�
bols correspond to the experimental data from [4, 15].
The hardening–softening transition in the nanomate�
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Fig. 2. (1–4) Grain�boundary hardening (Hall–Patch dependences) and (5–8) softening (“back” Hall–Patch effect) for nickel
at four different strain rate: (1, 5) 0.001; (2, 6) 1000; (3, 7) 3000; and (4, 8) 4500 s–1. Symbols correspond to experimental data
from (open circles) [4] and (solid circles) [15].
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rial and the behavior of the curves under dynamic
loading can be seen. Thus, the consideration of the
parameters of the barrier stresses and the characteristic
relaxation times, which correspond to different mech�
anisms of plasticity, makes it possible to predict the
unusual behavior of the material when its microstruc�
ture transforms in a wide range of strain rates.
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