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1 Heat conduction at macroscopic scale level in most
materials is described by Fourier’s law. According to
this law the heat flux is proportional to the tempera�
ture gradient. Being a convenient mathematical
model, Fourier’s law however leads to a number of
physical paradoxes, such as an instantaneous heat
propagation. Significant deviations from Fourier’s law
are also observed at small spatial and temporal scales
[1, 2]. Furthermore, it is known that in the simplest
discrete systems, such as a one�dimensional harmonic
crystal (a chain of particles connected by linear
springs) the heat distribution can not be described by
Fourier’s law [3–5]. At the present time the question
about the heat propagation in a perfect crystalline sys�
tems remains open. However, this issue is of particular
relevance, as with the development of nanotechnolo�
gies the creation of ideal defect�free crystals becomes
possible, which opens opportunities for application of
their unique thermal properties. In addition, the ratio�
nal description of the heat transfer processes is neces�
sary to close the mechanical equations of discrete
media [6–8] and for description of thermomechanics
of solids at the nanoscale level [9, 10].

This work is an extension of the work [11] for the
case of non�equilibrium processes: the equations con�

1 The article was translated by the author.

necting the heat flux and the kinetic temperature are
analytically derived for one�dimensional harmonic
crystals. Closed equations for the heat propagation are
obtained and their analytical solution is constructed,
which is confirmed by computer simulations. The
obtained results are based on the combination of two
approaches—the correlation analysis and the long�
wave approximation. The main idea of the correlation

analysis is to use co�variances2 of velocities of different
particles in the crystal [3, 12]. The covariances allow to
close the system of equations, and the variance deter�
mines the kinetic temperature [4, 11]. The long�wave
approximation is based on the principle that the aver�
aged values change little at the ranges comparable with
the distances between the particles [6, 13].

Let us consider an infinite one�dimensional har�
monic crystal: a chain of equal particles with a mass m
connected by linear springs with a stiffness C. The cor�
responding dynamics equations have the form

(1)

where uk is the displacement of kth particle; k is taking
arbitrary integer values. The following initial condi�
tions will be used

(2)

where ρk are independent random variables with zero
expectation and unit variance; σ is variance of the ini�
tial particle velocity. The variance is a slowly changing
function of the spatial coordinates x = ka, where а is

2 The mathematical expectation (average) of the product of two
centered random variables.
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the initial distance between neighboring particles. The
chosen initial conditions can be interpreted as a result
of an ultrashort laser impulse, acting on the crystal [2].

Let us rewrite the equations of motion (1) in the
form

(3)

where the particle velocity vk, the bond strain εk, and
the central difference operator Δ are determined by
the formulas

(4)

Here and below, integer values of k�index are used for
displacements and velocities; half�integer values are
used for strains.

Let us introduce a covariance energy � and a heat
flux � as

(5)

where 〈…〉 is a spatial averaging operator, defined by

(6)

where Λ is the averaging interval, λ is the characteristic
length for macroscopic waves in the crystal. Indexes ,

 are chosen equal to р, q or р + , q +  depending

whether integer or half�integer values of the indices
are used.

Time�differentiation of the expression (5) with the
use of (3) gives

(7)

where Δp and Δq are the central difference operators (4)
with respect to indexes р and q. Elimination of the
covariance heat flux from this system gives a closed
equation for the covariance energy, and vice versa.

Let us represent the quantities (5) as functions of

the spatial coordinate х = a and correlational

index n = q – р, so as �pq = �n(x), �pq = �n(x). Let us
denote

(8)

where ρ is the density (the number of particles per unit
volume), hn is an alternative representation of the heat
flux. Quantity hn is more convenient then Hn for the
forthcoming transfer to continuum equations. In par�
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ticular, h0 = – C〈(εk – 1/2 + εk + 1/2)vk〉 is a well�known

expression for the heat flux in one�dimensional crys�
tals [4, 6].

Assuming that the considered quantities are slowly
changing functions of x, we can use the decomposition

. (9)

Then Eqs. (7) in a first approximation take the form

(10)

where c  aω0 is the speed of sound in the one�
dimensional crystal, the dash stands for х�derivative.
The first equation from Eqs. (10) expresses balance of
the covariance energy, the second one is an analogue
of the Fourier law for the covariational heat flow,
together they provide a closed system of differential�
difference equations. The initial conditions for these
equations, according to (2), are of the form

(11)

where E0(x)  σ2(x) is the initial distribution of the

thermal energy in the crystal; the symbol δn is equal to
1 when n = 0 and it is equal to 0 otherwise. Elimination
of the covariational heat flux hn from the system (10)
gives the closed equation for the covariance energy:

(12)

Solution of the initial problem (10), (11) gives
uniquely the covariances �n(t, x) and hn(t, x). For n = 0
we obtain the usual (variance) energy E(t, x) and the
usual heat flux h(t, x). The kinetic temperature can be
found only after attenuation of the fast transients lead�
ing to equalization of the kinetic and potential ener�
gies [11] according to the virial theorem. In paper [11]
it is shown that Lagrangian (the difference between

kinetic and potential energy of the crystal3 satisfies

Bessel’s differential equation4 and it can be expressed
through the Bessel function of the 1st kind J0(z):

(13)

3 In the work [11] an averaging over the whole crystal was used,
however, the results of the paper can be easily transferred to the
averaging (6) applied to Λ�neighborhood of x.

4 There is a misprint in the Eq. (10) of paper [11]—the coefficient

at  instead of 1/t is mistakenly written as 16 , which, how�

ever, do not affect the other the results of the paper.
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According to (13), Lagrangian L performs attenuating
oscillations and tends to zero at times much greater

then τ0 = . The characteristic times for Eqs. (10)

are of the order of  � τ0. Therefore, after attenuation

of the high frequency processes the kinetic energy K
become equal to a half of the total energy Е. This gives
for the kinetic temperature of the one�dimensional

crystal the expression kТ = K = Е, where k is the

Boltzmann constant. Thus, after the system (10) is
solved the temperature Т and heat flow h can be found as

(14)

which gives a complete description of the thermal pro�
cesses in the crystal.

Solution of the initial problems (10)–(12) can be
obtained using an integral Fourier transform. Accord�
ing to (10)–(12) the initial problems similar to the one
considered in [11] are realized for the Fourier images
of the covariances. This allows to construct solutions
of (10)–(12) in the terms of Bessel functions of the 1st
kind with even indexes: J2n(z). Application of the
inverse Fourier transform allows obtaining the explicit
formulas for the unknown functions:

(15)

(16)

Calculation of the integrals with respect to κ for n = 0
gives an explicit representation for the kinetic temper�
ature and heat flux

(17)

where kT0(x) = E0(x) is the initial temperature distri�

bution.5 Direct differentiation of the expressions (15),
(16) with the use of Bessel’s differential equation and

the identity J1(z) = – (z) [14] gives for n = 0 the

5 Here the thermal energy is taken to be equally distributed
between the kinetic and potential ones. This virial equality is a
result of the quick transition process [11] described by the for�
mula (13).
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modified Fourier’s law, which connects the tempera�
ture and heat flux (14) as

(18)

Differentiation of this relation with respect to x using

law of energy�balance ρ  = –h' gives closed initial
problem for the temperature Т:

(19)

Using the formula (17) let us obtain an evolution of
the temperature and heat flux for the following two
variants of the initial temperature distribution.

(1) Sinusoidal distribution: Т0(x) = Asinκx + В.
The solution is

(20)

—according to properties of Bessel’s functions [14]
the temperature and heat flux perform oscillations

with an amplitude proportional to . For compari�

son: the heat equation in this case gives an exponential
decay (without oscillations), the wave equation gives
harmonic oscillations without decay.

(2) Step distribution: Т0(х) = А for х < 0, otherwise
T0(x) = 0. The solution for |x| ≤ ct is

(21)

for |x| > ct the initial temperature distribution is pre�
served and h ≡ 0. The obtained solution shows two fun�
damental differences from the thermal conductivity
on the basis of Fourier’s law: (1) the perturbation front
propagates with finite speed с, (2) there is a constant

heat flux h|x = 0 =  from the hot region to the cold

one (according to Fourier’s law at t = 0 the heat flux is

infinite, and for t > 0 it decreases as 1/ ). The figure
shows comparison of the analytical solution (21) and
the numerical solution of the initial problem (1), (2),
where a chain containing one million particles is used
for the computations. From figure it is clear that the
solutions coincide apart from small thermal oscilla�
tions.

Thus, in the paper a closed system of differential�
difference equations (10) is obtained. The system
describes thermal processes in one�dimensional har�
monic crystals. Solution of the system in the case of
instantaneous thermal perturbation leads to the ther�
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mal law, which is different from Fourier’s law. Below
one can see a comparison of Fourier’s law (a), the
empirical law of heat conduction by Maxwell–Catta�
neo–Vernotte (b) [1, 15], and the obtained law (c):

(22)

where κ is the coefficient of thermal conductivity, τ is
the relaxation time, k is Boltzmann’s constant, ρ is the
density, c is the speed of sound. In the Eq. (c) the con�
stant τ is replaced by the physical time t. Therefore,
when t is close to relaxation time τ, the laws (b) and (c)
give similar results, but for small and large times these
laws are significantly different. Law (c) gives the mod�

ified heat equation (19):  +  = с2Т ", which con�

tains the only one parameter—the speed of sound c.
Note that this equation is an analytical consequence of
the dynamics equations for the particles that form the
crystal. Equation (19) combines the properties of the

(a) h κT ', (b) h·– 1
τ
��h+ κ

τ
��T ',–= =

(c) h· 1
t
��h+ kρc2T ',–=

T
·· 1

t
��T·

classical heat equation and the wave equation, but it is
time�reversible (it does not change when t is replaced
by –t). It is likely that the processes described by the
law (18) and Eq. (19) play an important role in non�
equilibrium thermodynamics of ideal defect�free crys�
tals, which are expected to be widely used in the near�
est future due to the fast development of nanotechnol�
ogies.
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