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It is known that the escape velocity for a spherical
body with mass  and radius of the outer surface  has
the form

 (1)

 (2)

where c is the velocity of light and rg is the so�called
gravitational radius (  is the gravitational constant).
Expression (2) was derived by Michel in 1783 and by
Laplace in 1796 and was interpreted as the radius of a
“dark star,” for which the escape velocity equals the
velocity of light. Subsequently, this interpretation
based on Newton’s gravitational model and the cor�
puscular model of light was rejected [1]. It follows
from the results presented below that this conclusion
can turn out to have been anticipatory.

To determine the escape velocity, let us introduce a

spherical system of coordinates , , ,

and  in the GR and corresponding metric form

(3)

in which the components of metric tensor  depend
on  and use the equation determining the trajectory
of the geodesic line [2]

(4)

To investigate the motion of the particle, which
moves away from the body along the radius, let us write

Eq. (4) for . Using the known transformation,
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which allows us to replace variable  by variable  [2]
and expressing the Christoffel symbols in Eq. (4)
through components of the metric tensor, we finally
derive

(5)

where 

The coefficients of metric tensor , which enter
this equation, are the solution of GR equations. For a
spherically symmetric problem, these equations have
the form [2, 3]

, (6)

 (7)

where  is the tensor of the pulse energy and 

is the gravitational GR constant. We note that there
are only two mutually independent Eqs. (6) and (7) in
the GR for three coefficients , , and .
Attempts to add these equations by the so�called har�
monic coordinate conditions are known [4].

The classical solution of the GR spherically sym�
metric problem derived by Schwarzschild in 1916 is

the solution of Eqs. (6) and (7) at . For the

outer empty space ( ), in which , it has the
form [3]
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where  is determined by equality (2). Allowing for
equalities (8), Eq. (5) is reduced to the form

. (9)

This equation is integrated under the initial condi�
tions, according to which we have at :

(10)

where  is the physical velocity of the particle [5] and
 is its initial velocity.

Ratio  for a weak gravitational interaction can be

considered small compared with unity. Then we have
 from equalities (8), and Eq. (9) is simpli�

fied as follows:

. 

The first integral of this equation has the form

. (11)

Determining integration constant  from second
condition (10), we will find

(12)

Integration of Eq. (11) allowing for first condition (10)
gives

(13)

Equation (13) determines the time dependence of the
radial coordinate. This dependence is meaningful if

. Finally, it follows from equality (12) that

. (14)

The expression found for  coincides with for�
mula (1); i.e., the solution of the GR problem for a
weak gravitational interaction leads to the escape
velocity following from Newton’s gravitational theory.
We note that this velocity can be found without apply�
ing Eq. (13). Indeed, substituting  from equality (12)
into expression (11) for velocity, we find

.

From here, we find at  that
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Determining  as the minimal initial velocity, at
which , we derive equality (14). If , then

, and the solution of Eq. (11) determines the fol�
lowing time dependence of the radial coordinate:

.

Let us find the escape velocity corresponding to the
Schwarzschild solution. The first integral of Eq. (9)

(15)

determines the velocity of motion, which has the form
according to second equality (10)

. (16)

Assuming , we find the integration con�
stant

. (17)

The equation similar to Eq. (13) is rather cumbersome
and is not presented here. However, as before, it fol�
lows from it that in order for the solution to be mean�
ingful, the fulfillment of condition  is necessary.
Finally, we have expression (14) from equality (17). A
similar result follows from condition . Thus, the
Schwarzschild solution leads to the same expression
for the escape velocity as Newton’s gravitational the�
ory [1]. At , we have .

Let us assume that . Then accepting 
in Eq. (15) and integrating this equation allowing for
first condition (10), we can derive the following
dependence between time  and radial coordinate :

We have  at ; i.e., an infinitely long time is
required at the escape velocity equal to the velocity of
light.

It follows from equality (8) for metric coefficient 
that the Schwarzschild solution is singular if the mini�
mal radial coordinate  turns out to be equal to .

In connection with this,  is called the event horizon
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radius of the “black hole.” The authors of [6, 7] derived
the solution of the GR spherically symmetric problem

for generalized metric form (3), in which .
The need for such a solution is determined by the fol�
lowing reason.

In 1916, Schwarzschild derived the solution for the
internal  region of the spherical body with
constant density . This solution follows from Eq. (7)

if we accept  and  in it. Finally, we
have (index i corresponds to the internal space)

(18)

Solutions (8) and (18) should coincide on the body
surface ( ), which is provided by equality

. (19)

This resulted in the fact that solution (18) accepts the
following final form [3]:

(20)

If we now substitute expression  and  into equal�
ity (19), then we will find the mass

(21)

corresponding to the Euclidian space. This contra�
dicts the main GR idea, according to which the space
inside the body is the Riemann space. Indeed, we have

for metric form (3) at  and  determined by
equality (20):

 

The last part of this relationship comprises the expan�

sion in regards to parameter , from which it follows

that  only if .
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consider  as the unknown function of radial coordi�

nate . Accepting  and  in Eqs. (6)
and (7) and assuming , we can find the
following metric coefficients for the external field:

(22)

Accepting  and  in Eq. (7) and
assuming , we can find the radial metric
coefficient for the internal field

(23)

Here,  and  corresponds to the
outer sphere surface. The expression for the body mass
has the form

(24)

Let us determine functions  for the external and
internal fields from conditions

. (25)

Substitution of the second of these conditions into
equality (24) gives , where  is determined by
equality (21). Thus, the body mass turns out to be
Euclidian. This result can be interpreted physically:
gravitation, when varying the geometry inside the
body according to the GR equations, does not vary the
body mass. Since , we can use equality (19), and
coefficient (23) takes the following form:

. (26)

It also follows from conditions (25) that continuity
of metric coefficient  on the body surface is pro�
vided if function  is continuous.

With the help of expressions (22) and (26), condi�
tions (25) are reduced to the following equations for
function  for the internal and external spaces:
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For the internal space, the solution of first equa�
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(28)

Taking into account  in solution (28), we
derive the following equation associating , i.e., the
value of  on the sphere surface, with :

(29)

For the external space, the solution of second
Eq. (27) satisfying the continuity condition of func�
tion  on the surface of the sphere can be written in the
form

 (30)

 (31)

The asymptotic analysis of Eq. (30) shows that
. The numerical analysis of dependences

 and  [6, 7] shows that the solution found at
 and  coincides with the Schwarzschild

solution. The greatest difference takes place on the
surface of sphere . In this case, the Schwarzs�
child solution for  diverges when approaching 
to , while the found solution remains finite.

It follows from equality (31) that the constructed
solution is meaningful if minimal value  is larger
than  or equals it. Thus, we have  in the limit�

ing case. Assuming  in Eq. (29), we find the

minimal possible value of radius . If

, the solution turns out to be imaginary. In this
case, in contrast to the Schwarzschild solution, it is
nonsingular at . Taking into account formula (2)

for , we will finally derive

. (32)

The definition of the escape velocity for the space
with metric coefficients (22) is similar to the above�
constructed solution for the Schwarzschild metric (8)
(variable  in Eq. (9) is simply replaced by ), and the
result has the form

.

For the sphere with a limiting minimal radius, we
have  and, consequently, . This result can
be treated as the generalization of the Laplace concept
of a “dark star,” which has no singularity in contrast
with a “black hole.” The assumption on the occur�
rence of such starts makes it possible to explain the
phenomenon of dark matter.

If “dark stars” occur, then the radii of visible stars
should be smaller than . For the largest of visible
stars—the UY Scuti red supergiant—we have

 m and  kg [8]. Determin�
ing the average density according to formula (21) and
using equality (32), we will derive  exceeding the
radius of this star by approximately 4000.
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