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INTRODUCTION

It is known that N.N. Bogolyubov, when accepting
asymptotic methods, derived the Boltzmann equation
from the BBIGKY set (the derivation can be found in
section ADDITION of monograph [1]). In this
method, the Boltzmann equation is derived as the
equation for determining the single�particle distribu�
tion function in  scale, which is the zero�order term
of the small�parameter expansion of the BBIGKY set

, where n0 is the characteristic density of gas

molecules and  cm is the molecule (or atom)
size. Usually the size at which the intermolecular
interaction potential is nonzero is accepted as this

quantity, and  is the free�path length of mole�

cules in the gas.

Monograph [2] contains a review and characteris�

tics of studies in which corrections of order  were
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taken into account, as well as studies in which gas non�
ideality was taken into account. In this study, we con�
struct the set of kinetic equations that takes into
account the effect of formation of bound states by
molecules.

1. MODIFICATION OF THE BOLTZMANN 
EQUATION TO TAKE ACCOUNT 

OF GAS NONIDEALITY

If we follow the scheme of the derivation of the
Boltzmann equation described in [3], then in the zero
approximation for single�particle function

 in  scale and dimensionless form, we
will derive the following equation:

. (1)

 in (1) is the zero approximation of
the two�particle distribution function in d scale.
According to the formalism of the asymptotic method

for , we have the following equation:

, (2)

where  and U0 is the characteristic value of the

intermolecular interaction potential. In Eq. (1),
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 and  are the position of the center

of mass and its velocity of moving molecules having
phase variables  and , respectively;

, and  is the Knudsen num�

ber. The relation of dimensional variables with dimen�
sionless ones was as follows: 

ξ = ξ0ξ', and , where L is

the characteristic flow size and  is the scale value of
the temperature near the critical one. It is important
that the two�particle distribution function in d scale
stands under the integral in the right side of (1) since
the intermolecular interaction potential

 noticeably differs from zero at
distances of order d between molecules. This circum�
stance is associated with the fact that the diameter of
the coordinate integration region in (1)  (  is the
velocity space) in dimensional variables will be of
order , where  is such that , while

. In dimensionless variables, this diameter

will be .

When deriving the Boltzmann equation, the inter�
molecular interaction potential is assumed to be the

repulsion potential having form . In

this case, the projections of phase trajectories of
motion of colliding molecules (characteristics (2)) on
space  are unclosed and penetrate this space as a

whole. Thus,  is a continuous function in D along
with its derivatives, while D is a simply connected
region; therefore, the Gaussian theorem is applicable
at each fixed  and

,

where  is the surface limiting region  with diam�
eter  and  is the external normal to the above�
defined surface. Properly selecting  and assuming

that molecular chaos hypothesis 

 takes place in scale , we can per�
form the limiting transition at . Then, following
the procedure of the method of splicing asymptotic
expansions, we can derive the Boltzmann equation in
the form
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In the last formula,  and  are the velocities that

molecules colliding with velocities  and  acquired.

For the above�presented derivation of the Boltz�
mann equation, it is on principle that coordinate space D
can be presented as woven of characteristics (2), which
are unclosed in the case of the power repulsion poten�
tial. However, this is not the case for potentials, which
describe both attraction and repulsion of particles.

Particles with  cannot go to infin�

ity and will form closed trajectories. The presence of
actual interaction potentials of molecules of closed
trajectories is known in publications as the formation
of bound states. The rest of this article will be devoted
to the derivation of the Boltzmann�type equation tak�
ing into account the effect of the formation of bound
states.

Let us assume that the interaction potential of mol�
ecules with each other is as follows:

(3)

According to (3), molecules interact as rigid spheres at
distances smaller than d and are attracted as the Max�
well molecules at distances larger than d. It should be
noted that interaction potential (3) is rather often used
in various studies.

For interaction potential (3) in the phase space
region

(dimensionless variables are used) phase trajectories (2)

are unclosed and do not pass to infinity. Since  is

retained along characteristics (2),  will be discontin�

ued on surface , the equation of which ,

since the molecular chaos hypothesis is inapplicable

for two�particle distribution function  in the region
where trajectories are closed and the formal applica�
tion of the Gaussian theorem becomes invalid. Per�
forming corresponding division of  into elementary
regions after applying the Gaussian theorem, we will

find the equation for  in the form

,
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where

. 

From infinity, where the molecular chaos hypothe�

sis is applicable, function  comes to surface  with
zero energy; therefore, in the expression for 

.
When passing to dimensional variables and the dis�

tribution functions typically used, we should multiply

the above�derived equation by . Doing so, we

will derive  +  = JB – Jdel,

JB = ,

Jdel = sinωdωdθ,

, . 

It is mentioned in [2] that in addition to bound states
with , bound states with  can form, as well
as the fact that such states are metastable since they
disappear with time. The Boltzmann equation itself is
found in time scale ; therefore, metastable bound
states are not taken into account in the above analysis.
Molecules that are in the bound state will multiply
intersect this region itself (undergo numerous colli�
sions) by time instant  in  scale; therefore, the

authors assumed that , which figures in the derived
equation, will take the quasi�canonical form

. (4)

Functions  and , which fig�
ure in (4), are functions in  scale by essence. Since

, then  and

 can be considered dependent on x.

2. THE SET OF KINETIC EQUATIONS 
FOR A NONIDEAL GAS

To derive the equations that determine evolution of
functions  f0 and , let us introduce the following func�
tions:
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where  is the region of the phase space of bound
states;  is the number of molecules in the cou�
pled state, the coordinates and velocities of which are
arranged in the corresponding element of the phase
space; and  is their energy. Concrete expres�
sions for functions  and  will be as follows:

 and , where  and  are
expressed in the form of convergent series with respect

to powers of , and . It is

natural to accept previously determined  as the
source term in the equation, which determines the
evolution of function ; while the correspond�
ing term in the equation for  will be the work
that is performed by intermolecular forces in order to

transfer  into  through curve :

.

In this case, we have  and , where

is the transfer operator. If we use  instead of
path length  when reducing the equations to the
dimensionless form (see [4]), then we can derive that

, when  or . It follows from
this evaluation that, when taking into account nonide�
ality,  will be rather large. Therefore, we defined

unknown quantity ; in the transfer operator

as ; where W is the potential of the force

field in which molecules move from  in  scale.
The latter means that when constructing transfer
operators, the authors will use the ideology described
in [5]. In this case, if we reject terms of order  in

expression for W, we will derive ,

where  is the total gas density,  is

the particle density in the bound state, and 

is the particle density in the free state. The above�
described approach leads to a closed set of kinetic
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equations if we attach equations for  and h to the
Boltzmann equation. This set of equations is

, (6)

where all operators and quantities were determined
above.

3. CONSERVATION LAWS

Through the above�defined  and , the numeri�

cal gas density , while its mass density

. Let us define vectors ,

, and . Then

.

We define the stress tensor in a nonideal gas as

 and pressure P as

.

Quantity

is the total energy of the volume unit of the nonideal
gas. Along with W, we also introduce quantities

where  is the analog of the kinetic temperature of
the nonideal gas, while  is the vector of the heat flux.
Applying the procedure of the derivation of conserva�
tion laws developed for an ideal gas (see [3]) to (6) and
herewith taking into account that , we
will derive the divergent form of equations of conser�
vation
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Using the known procedure, second and third equa�
tions (7) can be transformed to equations invariant rel�
ative to the Galileo transform. They are as follows:

,

(8)

From the above�introduced macroscopic quantities,
we can derive that

. (9)

By form, (9) resembles the van der Waals equation of
state.

4. THE PROBLEM 
OF UNIFORM RELAXATION

In the case of the problem on uniform relaxation,
set (6) takes the following form:
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above�derived expressions for s and h, we will find
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then we derive that

From here, it follows that the solution of problem (10)
at  will attain the equilibrium state, at which
H = const.
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