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Abstract—Total Dissolved Solids, one of the most extensively used indicators for assessing groundwater qual-
ity, it useful to estimate salinity and hardness in water. The objective of the present study is to develop accurate
and dependable machine learning models for forecasting the total dissolved solids, parameter; as well to eval-
uate and explain the relationship of total dissolved solids with the mineral salts. Four machine learning mod-
els Decision tree, Random forest, Adaboost and support victor regression SVR have been successfully
employed for modeling the total dissolved solids using Electrical Conductivity (EC) and concentrations of
major elements (Ca2+, Mg2+, Na+, K+, Cl–, SO , HCO , NO ) of the groundwater aquifer in upper Cheliff
plain (the northwestern of Algeria). One hundred ninety-one of observations collected from wells by the
ANRH (national water resources agency, Algeria) for a period of 8 years between 2008 and 2016, were ran-
domly divided into training and validation sets. The overall prediction performance results indicated that the
models provided satisfactory estimation with priority to the support vector regression model, based on the
four parameters including: EC, Na+, SO , and Cl–, with the best support vector machine results of RMSE =
0.0328; NS = 0.9455. Feature selection method revealed that the correlation analysis results were reliable and
could be utilized as a first step in selecting the optimum input data for forecasting groundwater quality param-
eters. Generally, the proposed models are useful in predicting groundwater quality parameters and may aid
decision-makers in developing and managing groundwater plans.

Keywords: groundwater, total dissolved solid (TDS), support vector regression, Catboost, electrical conduc-
tivity, Algeria
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1. INTRODUCTION

Water is a crucial resource for supporting the sur-
vival and growth of all living organisms on Earth. It
plays a vital role in maintaining ecosystem balance and
providing habitats for a variety of plant and animal
species. Among these resources, the groundwater is
recognizing as one of the most valuable and essential
natural sources of freshwater in the world for human
consumption, agriculture and domestic purposes. The
90
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demand for groundwater is expected to increase in the
future due to population growth and economic expan-
sion [1]. Assessment of groundwater quality is an inte-
gral element of water management strategies, as it
ensures optimal utilization of groundwater resources
[2, 3].

Total dissolved solids (TDS) is a crucial parameter
in determining the suitability of groundwater for
drinking purposes, and is often used as a proxy for
water quality assessment. Accurate estimation of TDS
levels is crucial for effective freshwater resource man-
agement, as high TDS levels in groundwater can lead
to salinization, rendering it unsuitable for irrigation
and consumption [4] that can negatively affect soil
quality and crop growth [5].Total dissolved solids
(TDS) are primarily comprised of inorganic salts,
such as nitrates (NO ), sulfate (SO ), chloride (Cl–),
and bicarbonates (HCO ) as anions, as well as cations
such as magnesium (Mg2+), sodium (Na+), potassium
(K+), and calcium (Ca2+). These salts originate from
natural sources, including rocks and minerals, as well
as anthropogenic activities such as agricultural and
industrial practices. Apart from inorganic salts, TDS
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also includes dissolved organic materials, which con-
tribute to the overall water quality. The World Health
Organization (WHO) has published standards [6] for
TDS measurement in water, which provide a bench-
mark for ensuring water quality. Although laboratory
studies and computational methods are commonly
employed to quantify TDS, traditional laboratory test-
ing and manual calculations can be time-consuming,
error-prone, and may lack the precision necessary for
accurate calculations. Furthermore, such methods
can often be cost-prohibitive [7, 8].

It is important to support agricultural and hydro-
logical management studies by modeling the concen-
tration of total dissolved solids (TDS) [9]. Numerous
mathematical models have been widely used to predict
and estimate TDS, with various approaches proposed
in the literature. Among these, two popular methods
include Sorensen’s method [10], which estimates TDS
based on the sum of ion concentrations in the water,
and the method proposed by [11], which estimates
TDS concentration using a linear regression equation
derived from electrical conductivity. These methods
are used to provide valuable insights into the quality of
groundwater and its suitability for different uses. To
ensure sustainable management of groundwater qual-
ity, which includes monitoring parameters such as
TDS, EC, and major elements, it is crucial to utilize
innovative and efficient evaluation methods. Robust
and flexible models are essential for accurately pre-
dicting water quality and estimating future supplies,
which can aid in addressing the challenges of ground-
water planning and management [12, 13].

During the last two decades, the use of Artificial
Intelligence (AI) techniques has increased in many
fields, where have been explored algorithms for water
quality modeling recently, which is an alternative and
effective methods, these algorithms investigate hidden
and complicated correlations between input data and
output data in order to create models that effectively
represent these correlations [12]. AI models have been
widely used by researchers for predicting water quality
variables; for instance, artificial neural network
(ANN), multiple linear regressions (MLR), random
forest regression (RFR), adaptive neuro-fuzzy infer-
ence system (ANFIS), support vector machines
(SVM), and decision tree (DT). The literature review
showed that these models have its strengths and weak-
nesses and its behavior depends on the different data
and parameters in the selected study area. Moreover,
these models have proven that is highly accurate in
prediction; where these models include several advan-
tages over traditional statistical and physical based
models. Artificial intelligence (AI) models are known
for their robust, non-linear, and flexible structures,
which enable them to handle vast amounts of data at
varying time scales. Furthermore, AI models are gen-
erally less sensitive to missing data than traditional
approaches [12].
DO
Extensive research and studies have demonstrated
that machine learning (ML) models are highly accu-
rate in forecasting and evaluating water quality, both
for surface and groundwater. However, it is important
to note that the efficiency of ML models is not solely
dependent on prediction accuracy, but also on the
nature and number of predictors used in the model
[13].

The aim of this paper is to forecast the total dis-
solved solids in the upper Chellif aquifer using Ran-
dom Forest, Decision tree, Support victor regression
and Categorical boosting to obtain the optimum
parameters to model TDS and by comparing the per-
formances and the effectiveness of the different used
machine learning algorithms.

2. MATERIALS
2.1. Study Area

The upper Cheliff alluvial plain is situated in the
northwest region of Algeria and is an intra-mountain-
ous depression that spans 500 km from east to west and
30 to 80 km wide. It is also known as the KhemisMil-
iana plain (wilaya of Ain Defla) and covers an area of
approximately 21035 km2. The plain is bounded to the
north by the Zaccar mountains, to the south by the
foothills of Ouarsenis, to the west by the Doin massif,
and to the east by the threshold of Djendel (see Fig. 1).
The area has a semi-arid Mediterranean-type climate
with an average annual rainfall of approximately
380 mm, and the majority of the surface has a rela-
tively low slope of less than 10%.

The Upper Cheliff alluvial plain comprises a mixed
aquifer, consisting of Mio-Plio-Quaternary alluvial
deposits such as sandstone with a thickness of 50 to
100 m at the level of Chellif wadi. The substratum of
this aquifer horizon is composed of marls. Groundwa-
ter in this area is mainly derived from the alluvial aqui-
fer of the upper Cheliff plain and is extracted through
wells and drilling. The aquifer is recharged by seepage
water from precipitation and runoff from wadis (such
as Deurdeur, Chellif, Souffay, Boutane, etc.), as well
as excess irrigation water.

2.2. Used Data
One hundred ninety-one samples of ground water

quality from upper Chellif aquifer have been consid-
ered in this research that was collected in 36 wells
record by the national agency of hydraulic resources.
Groundwater sampling was carried out during the
period 2008 and 2016.These samples were analyzed for
several physicochemical variables, that is include the
measurements of the parameters that influencing on
water quality: TDS, EC, Ca2+, Mg2+, Na+, K+, Cl–,
SO , HCO , and NO . The data exhibits outlier val-
ues on nearly all parameters, which makes it crucial to
conduct thorough analysis prior to the modeling pro-
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Fig. 1. Location map of the study area. 
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cess. In the development of machine learning models,
exploring and cleaning the data are critical steps that
ensure the accuracy and reliability of the resulting
models.

In this study; the data pre-processing was con-
ducted following two steps; (i) the reliability of the
data was analyzed and consisted based on the verifica-
tion of the ionic balances. This verification was pre-
ceded by an analysis of the major ions involved in the
evaluation of the ion balances (IB). The ionic balance
represents the difference between the sum of the
anions and the sum of the cations, in other words, the
anion-cation balance which naturally equals zero, that
is to say the anions and the cations are equal (1). An
ion balance of less than 5% was obtained; this shows
that the results of the analysis are reliable. (ii) Data
normalization from 0.05 to 0. To avoid the impact of
variable dimensionality on model performance and
increase model generalization; and on the other side,
inaccuracy caused by a difference in measurement
units between input and output parameters (2).
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(2)

where xnorm is the normalized data set, xi is the original
data set,  and  are respectively the minimum
and the maximum values of the original dataset. Table 1
presents the statistical data of the training set 70%
(36 wells) and the testing set 30% (15 wells).

3. METHODOLOGY
3.1. Decision Tree Model (DT)

Decision trees are supervised machine learning
algorithms that are widely utilized for classification
and regression applications to predict a response to
data. The decision tree is one of the most important
data mining methods. Thus, the Training data is used
by this algorithm to create a set of decision rules.
Thereafter the decision tree represented as a tree
structure with a root node, branches, and leaf nodes.
The decision tree is built by determining which char-
acteristic or feature has the greatest information gain
at each level of the algorithm [14].

3.2. Random Forest Model (RF)
Random Forest method is a supervised machine

learning algorithm based on decision tree, introduced
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Table 1. Statistical parameters of the training and validation datasets

Variables
Training dataset Validation dataset

Min Max Mean SD CV Min Max Mean SD CV

TDS (mg/L) 452.00 6571.00 1975.91 914.12 0.46 609.00 5686.00 1973.39 962.87 0.48
EC (μS/cm) 610.00 6800.00 2943.10 1257.23 0.43 993.00 8100.00 2941.77 1330.96 0.45

Ca2+ (mg/L) 62.96 489.80 246.96 98.02 0.40 117.00 470.00 247.47 82.67 0.33

Mg2+ (mg/L) 3.00 224.00 84.69 46.19 0.54 2.45 349.09 91.44 63.74 0.69

Na+ (mg/L) 12.00 800.00 195.01 138.35 0.71 13.10 540.00 179.14 120.46 0.67

K+ (mg/L) 0.10 48.00 6.07 7.39 1.21 0.20 34.20 5.98 7.26 1.20

Cl– (mg/L) 60.00 1390.00 518.22 313.46 0.60 98.00 1690.00 529.80 315.59 0.59

SO  (mg/L) 40.00 2185.00 320.31 230.23 0.72 67.00 1540.00 330.13 247.38 0.74

HCO  (mg/L) 146.40 762.50 334.86 101.09 0.30 148.84 457.50 303.21 71.30 0.23

NO  (mg/L) 0.00 270.00 47.57 35.34 0.74 0.00 175.00 59.36 38.31 0.64
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by [15], which can be applied for classification and
regression learning [13]. This model is enhanced and
extensively used in numerous studies and provided
good performance. RF has emerged as a serious com-
petitor with the boosting approach [16]. To generate
predictions, the data is first partitioned into multiple
sub-datasets using bootstrapping, a method employed
by the random forest model. Decision trees are then
constructed for each sub-dataset. These sub-decision
trees are then combined using the random forest
model to generate final predictions, which reflect the
overall performance of the random forest model [17].

3.3. Categorical Boosting (CATBOOST)

The categorical boosting (catboost) is a new gradi-
ent boosting based decision tree (GBDT) algorithm
proposed by [18]. It makes use of a sophisticated
ensemble learning approach based on the gradient
descent framework. During model training, a set of
decision trees (DTs) are built sequentially to generate
each DT, which learns from the previous tree and
affects the next tree to improve model performance,
resulting in a robust learner. This algorithm is different
from the next traditional of gradient boosting trees
(GBTs) algorithms; thus, it has two notable features
are: ordered boosting and efficient handling of cate-
gorical features [18].
DO

Table 2. Feature importance order of the used parameters

Input variables EC Na+ Cl– SO

Value (%) 70.79 12.67 07.53 04.8
Rank 1 2 3 4
3.4. Support Victor Regression Model (SVR)

Support Victor Machine (SVM) is considered as a
supervised machine learning algorithm that was devel-
oped earlier by [19], which could successfully have
applied to solve classification, regression and pattern
recognition problems [19]. This model demonstrates
the correlation between input and output, with the
purpose of minimizing the variance between observed
and predicted data [20]. Support Vector Regression
(SVR) is a newer and more refined data-driven model
that seeks to minimize structural risk, thereby reduc-
ing high-limit errors compared to other machine
learning methods that only focus on local training
errors.

3.5. Model Development

The study aimed to evaluate the influence of differ-
ent input data combinations on the total dissolved sol-
ids (TDS) using feature importance, a method that
ranks input variables based on their significance in
output uncertainty. This method is crucial in the
development of predictive models. Sets of input com-
binations were selected based on the highest contribu-
tion of each parameter to TDS, determined by the
order of importance using the random forest tech-
nique (see Table 2). The resulting input combinations
at different steps are summarized in the table (see
Table 3).
KLADY EARTH SCIENCES  Vol. 512  Part 1  2023

Mg2+ CO3H K+ NO Ca2+

0 02.18 0.60 0.58 0.48 0.37
5 6 7 8 9

−2
4

−
3



FORECASTING GROUNDWATER QUALITY PARAMETERS 911

Table 3. Various input combinations used in the modeling

ML Different input combinations

ML01 EC
ML02 EC and Na+

ML03 EC, Na+, and Cl–

ML04 EC, Na+, Cl–, and SO
ML05 EC, Na+, Cl–, SO , and Mg+

−2
4

−2
4

3.6. Model Performance Evaluation

To evaluate and compare the models performance
of the validation set. Two statistical criteria were used:
Nash-Sutcliffe efficiency (NS) and The Root Mean
Square Error (RMSE). These criteria were defined as
follows:

The NS coefficient (NS) may be used to evaluate
machine learning model’s predicting capacity, where
the higher NS value indicates that models are more
accurate [21]. NS can accept values between –∞
and 1. A score of one show full agreement, whereas a
value of zero indicates that the model explains none of
the initial variation

(4)

The RMSE values represent the square root of the
variance of the residual errors between the observed
and predicted values. Hence; the accuracy of the
model estimation is greater when the RMSE values are
lower.

(5)

where  and  are the observed and pre-

dicted TDS;  is the mean of observed TDS;
is the total number of observations.
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Table 4. Performance indices of the four machine learning m

Input
combination

Mac

DT Catboost

NS RMSE NS R

ML01 0.6580 0.0869 0.6679 0
ML02 0.7960 0.0634 0.8327 0
ML03 0.8770 0.0492 0.9178 0
ML04 0.8677 0.0510 0.8914 0
ML05 0.8691 0.0508 0.9141 0
4. RESULTS AND DISCUSSION
The TDS comprise the total dissolved inorganic

salts and some amounts of organic substances that are
dissolved in water, where it is influenced by many
parameters. In the present study TDS is the target
parameter, which is considered in the present work as
one of the most important parameters for overall
assessment of groundwater quality. In this paper Deci-
sion Tree, Random Forest, Support Victor Machine
and Cat Boost machine learning models were used for
forecasting of the TDS. Thus, researchers adopted
broadly on use the ML models in various fields, where
can be useful to predict future scenarios of nature and
conservation processes. The Table 4 illustrates the
results obtained by ML models to predict TDS. Each
model was trained on the training dataset after
selected the most influential input variable and was
evaluated with the testing dataset; and the results were
compared by means of NS and RMSE statistics (see
Table 4).

According the Table 4, in the first application, five
input combinations were evaluated using DT, Cat-
boost, RF and SVR models to predict TDS in ground-
water quality of the upper Chellif plain.

The performance results of the selected combina-
tions varied between 0.65 and 0.94 in terms of Nash-
Sutcliff, with superiority indicated using the support
vector regress or depending on EC, Na+, Cl– & SO
variables with NS 0.94 and RMSE of 0.0328. Fol-
lowed by RF model were using the same input combi-
nation with NS 0.93 and RMSE of 0.0359. The results
using input combinations 3 depending on EC, Na+, &
Cl– showed very good values with small inferiority to
the latter results with NS 0.92, 0.92, and 0.91 and
RMSE of 0.0374, 0.0387, and 0.0402 for the models
RF, Catboost, and SVR, respectively. In regards to
SVM model, it was achieving best performance, which
had excellent accuracy with average NS (0.9455 to
0.9006) and RMSE (0.0328 to 0.0442).

The observed and modeled TDS variations in the
validation phase are presented in figures bellow (see
Fig. 2) for the best combinations in our ML models.
As it could be notice, there is very goodness of fit

−2
4

odels in the validation phase

hine learning models

RF SVR

MSE NS RMSE NS RMSE

.0809 0.7596 0.0688 0.9006 0.0442

.0574 0.8076 0.0616 0.9017 0.0440

.0402 0.9291 0.0374 0.9240 0.0387

.0463 0.9346 0.0359 0.9455 0.0328
.0411 0.9252 0.0384 0.9390 0.0347
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Fig. 2. Observed and predicted TDS of DT, Catboost, RF, and SVR algorithms of the best input combination. 
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between the observed and predicted TDS, and it is
obviously observed that there is a linear relationship of
the observed and predicted values presented in the
scatterplots.
DO
4.1. BRGM Analysis Reports of TDS
On the other hand; Based on BRGM analyzes

report of TDS [22]; where it divided and classified the
main elements according to their importance through
KLADY EARTH SCIENCES  Vol. 512  Part 1  2023
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their concentration in the water into four basic partials
groups; and from it, we got the following results:

The TDS1 is the sum of the concentrations (mg/L)
of the main major elements: HCO , NO , SO ,
and Cl–.

TDS2 is the sum of the major “secondary” ele-
ments: Ca2+, Na+, Mg2+, K+, and SiO2. These ele-
ments are less frequently measured than those
included in the calculation of TDS 1. They are also
expressed in mg/L.

TDS3 is the sum of F, Fe, and Mn. These three ele-
ments are expressed in mg/L in the database

The TDS4 corresponds to the sum of trace ele-
ments expressed in pg/L in the Observatory and the
most frequently measured: Cu, Pb, T.v, As, Cd,
and Al.

The results of this study were compared to the
BRGM report using the best performing combination
(ML N°04), which combines the elements Na+, SO ,
and Cl–. These elements are known to have high con-
centrations in TDS, with Na falling under TDS partial 2,
and SO  and Cl– falling under TDS partial 1. There-
fore, this comparison supports the results obtained in
our study.

CONCLUSION
Accurately forecasting water quality parameters is

crucial for effective groundwater management,
enabling the monitoring of pollution levels, popula-
tion needs, and human activities. The present study
aimed to investigate whether machine learning (ML)
models, including Catboost, Random Forest (RF),
Decision Tree (DT), and Support Vector Regression
(SVR), are effective tools for forecasting the salinity
parameter (TDS). This study also examined the sensi-
tivity of these models to the output variable using
hydro chemical and physicochemical groundwater
parameters as inputs. Therefore, 190 groundwater
samples of Upper Cheliffalluvial plain in northwestern
Algeria were used for training and testing for applied
the Catboost, RF, DT and SVR models. In consider-
ation of the correlation coefficient of TDS to physico-
chemical parameters, the model’s inputs were chosen
based on the priority by using feature selection of the
Random Forest algorithm of all parameters, and five
sets of variable combinations were constructed as
inputs to build and evaluate the models using these
variables (Na+, HCO , Ca2+, Mg2+, and SO ).

In overall, the inter-comparison of the results indi-
cated that the SVR model had the best performance in
forecasting TDS values among all the models with the
best result was obtained by application of input combi-
nation ML4, followed by RF and Catboost models of
the input combination 4 and 3. Although, the differ-
ences between the ML models were not high signifi-
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cant, but the SVR model was ultimately chosen as the
finest model according to better conditions during the
validation performance. In general, the performance
results indicate that the SVR, RF, Catboost and DT,
machine learning-based models are acceptable for
groundwater evaluation and that can be considered as
effective tools for predicting TDS values.
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