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Abstract—A new universal function f(x, z) describing electron energy losses over depth ϕ(z) and the lateral
distribution of electron energy losses ψ(x) in a scanning electron microscope is developed in the context of a
multiple electron scattering model at energies of 1–50 keV in condensed matter, where two groups of back-
scattered primary electrons are taken into account for the first time.
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INTRODUCTION

Quantitative electron probing techniques for mate-
rial diagnostics in micro-, opto- and nanoelectronics,
such as quantitative X-ray spectral microanalysis
(QXRSMA), cathodoluminescence (CL), induced
current (IC), or electron backscattering spectroscopy
(EBSS), require data on the spatial and energy distri-
bution of the electron beam in a scanning electron
microscope (SEM) over a small sample volume. This
information is essential in calculating particle-gener-
ated informative signals and in estimation of the spa-
tial resolution upon detection of these signals. At pres-
ent, this is all the more relevant, as electron beams
with a diameter of a nanometer become the routine
tool for SEM studies, whereas the linear dimensions of
individual microrelief details in modern structures
reach tens of nanometers.

Simple analytical functions ϕ(z) that describe the
depth distribution of energy losses in QXRSMA were
derived in [1–3]. As was assumed in a then-used
model, all backscattered electrons (BSEs) of a probe
are truly backscattered, i.e., they are primary electrons
which undergo single scattering at a large angle of θ > π/2
and leave a sample after a certain amount of small-
angle interactions. Further (in [4]), a contribution to
the electron backscattering coefficient η of a beam of
truly backscattered primary particles η1 and those
leaving a sample after multiple scattering η2 was estab-
lished, and the in-plane lateral distribution function
ψ(x, y) of energy losses was proposed.

This work is aimed at plotting a two-dimensional
function f(x, z) = ψ(x)ϕ(z) describing the depth and
in-plane distributions of energy losses by SEM probe
electrons. For the first time, it takes into account two
different BSE groups that allow the energy loss distri-
bution of charged particles to be represented in the
bulk of the studied sample. The basic function is the
first-approximation solution of the transport equation
which describes energy losses by charged particles in a
substance [5]. The application of this function in
quantitative local X-ray spectral microanalysis
(QLXRSMA) and for the description of induced cur-
rent in a short-circuited diode is considered, as well.

BASIC STATEMENTS AND PRELIMINARY 
RESULTS OF THE APPLICATION

OF SIMULATED DISCRETE MULTIPLE
FAST-ELECTRON SCATTERING

IN A SUBSTANCE
The basic statements of the model describing the

transport processes of fast electrons in a substance and
their energy dissipation as a result of inelastic scatter-
ing are, as follows.

(i) SEM beam electrons upon their motion in a
substance experience elastic and inelastic scattering.
The averaged effect of these processes on the spatial
distribution of primary electrons in the model was
described using the transport length Ltr of the electron
beam as the universal parameter. It characterizes the
range of primary electrons which is followed by the
complete loss of directional motion in the sample, i.e.,
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all directions for primary electrons become equiprob-
able. The transport length Ltr of an electron beam with
an energy of Е0 in a substance with the atomic density
N0 is defined through the transport cross section σtr of
electrons by the formula:

Ltr = 1/(N0σtr), (1)

where  is the average cross sec-
tion over all possible directions of collisions θ, and is
the transport cross section of primary electron scatter-
ing in a substance.

Taking into account the effect of elastic and inelas-
tic scattering channels on the process of interaction
between electrons and a substance

σtr = 

where  and  are the transport lengths of elec-
trons along the elastic and inelastic scattering chan-
nels, respectively. The  and  values are calcu-
lated using the formulae for the transport cross sec-
tions from [5, 6].

(ii) The model assumes the presence of two flows
of primary electrons in the sample bulk. The first f low
is formed by electrons that have undergone single scat-
tering at a large angle θ > π/2 and leave the sample
after a certain amount of small-angle interactions.
They are truly backscattered electrons with the coeffi-
cient η1. When moving into the interior of the sample,
the effect of multiple scattering on the electron distri-
bution over the ranges z in the target is small. As is
hereby shown in [7], the distribution itself is well
described by the Gaussian function with the maxi-
mum at a distance of zss = Z–1/3Ltr from the surface and

by the dispersion σ2 = 0.5  The second f low of par-
ticles is formed by electrons which are either absorbed
by the target (absorbed electrons) after multiple elastic
and inelastic scattering in the sample, or leave the
sample (BSEs with a coefficient η2). The η coefficient
for measured experimentally BSEs is the sum of two
groups: η = η1 + η2. In [4], the ratio of BSE contribu-
tions of both groups to coefficient η was established to
be, as follows:

η = η1 + η2 = η1 + 0.24αη, (2)

where the parameter α = 1 – exp{–[Re/2.8Ltr]6.67}.
The range of electrons Re in the expression for the

α parameter at the electron energy E0 is calculated
using the formula [3]:

 (3)
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where q is the elementary charge, N0 is the atomic den-
sity in the sample, Z is the average atomic number of
the latter, Cm = 790 eV.

In samples with Z < 16 the α parameter is small (≈ 0),
thus η2 = 0, and η = η1, and the function ϕ(z) (see [1])
in such targets retains its status as correct description
of the depth distribution of energy losses.

(iii) The distribution of electrons experiencing
multiple scattering over ranges z in a sample can be
described by means of the modified first-approxima-
tion function based on the one-dimensional transport
equation which was earlier established in [5]:

(4)

where ΔE = Ep – E; ΔEp = E0 – Ep; A1 is the normal-
ization factor; b is the coefficient taking into consider-
ation different amounts of atomic electrons involved
in inelastic scattering (b = 1 at x > Ltr, b = 4 at x  Ltr).

As is shown in [5], the F1(ΔE, ΔEp) function
ensures a trivial and reliable approximation for deter-
mining the electron distribution with respect to the
one-dimensional and steadily increasing variable ΔE.
However, its use in the task concerning the description
of electrons over the ranges z in a sample for the case
of multiple scattering necessitates the following mod-
ification of this function. Two factors making the
F1(ΔE, ΔEp) function different from the required F(z, zp)
one were taken into account. First, it is the recurrent
movement of a part of primary electrons towards the
surface after passing a path equal to the transport
length Ltr, whereas for charged particles any scattering
direction becomes equiprobable. This factor was con-
sidered via trivial balancing of the F1(z, zp) function
relative to the zp coordinate, as the recurrent move-
ment of a part of electrons from the beam towards the
surface shifts the distribution maximum from zp ≈ Ltr
to zp = 0.77Ltr and additionally increases electron
spread over ranges in the near-surface area. The sec-
ond factor is the presence of two channels of interac-
tion between primary electrons and the substance:
elastic and inelastic scattering. In samples with the
average atomic number Z ≥ 28 elastic scattering domi-
nates upon the formation of the electron path distribu-
tion during multiple scattering. The transport length

 along the inelastic-scattering channel thus
exceeds  along the elastic scattering channel. For
example, in 32Ge the  ratio is ≈ 10.0 at an
electron energy of 20 keV. Therefore, the path distri-
bution function in the sample at z > zp is identical to
F1(z, zp). For samples with low Z values it is essential to
consider the effect of the inelastic-scattering channel
on the electron path distribution. For example, in alu-
minum (13Al) for electrons with an energy of 20 keV

the  parameter is ≈ 3.8, in carbon (6C)
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 ≈ 1.6, and in beryllium (4Be) the 
ratio is ≈ 1.15. The effect of this factor on the distribu-
tion is thus a weaker particle-range spread dependence
on the range value, which is taken into account by
introduction of the above parameter α [1].

As a result, the sought one-dimensional electron
distribution function over the given ranges (variable
t = z/zp) can be obtained from the F1(t) function by its
transformation into the piecewise continuous function
FM(α, t), as follows:

inel el
tr trL L inel el

tr trL L

(5)

Figure 1 displays the FM(t, α) functions plotted for
different values of the α parameter. It is seen that vary-
ing α from 0.01 to 1.0 causes drastic changes in the dis-
tribution at t > 1 from a quasi-Gaussian profile to the
F1(t) curve, which is characterized by a quasi-expo-
nential decline in the “tail” range. Modification
makes the FM(α, t) function multipurpose, i.e., the
latter becomes suitable for description of the electron
distribution over variable t in samples with any Z value.

(iv) It is assumed that samples, subjected to elec-
tron bombardment and SEM probing, retain one-to-
one correspondence between spatially distributed
energy losses of the electron beam and primary elec-
trons distributed over the ranges.

Φ(Z) FUNCTION OF INFORMATIVE-SIGNAL 
GENERATION FOR ELECTRON PROBING 
TECHNIQUES DESCRIBING THE DEPTH 

DISTRIBUTION OF ENERGY LOSSES
OF AN ELECTRON BEAM

If the transport processes of primary electrons in
the sample are considered as the motion of two f lows
of particles described statistically by multiple and sin-
gle scattering, respectively, the required function ϕ(z)
can be written as the sum of two distribution terms:
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where zp is the depth of maximum energy losses by
electrons that have undergone multiple scattering in a
sample (zp = 0.77Ltr); zss is the depth of maximum
energy losses by truly backscattered electrons in a sam-
ple (zss = Z–1/3Ltr); η1 is the coefficient of truly back-
scattered electrons; AN and CN are the normalization
factors. The first term is the distribution of energy
losses by electrons that have experienced multiple
scattering in a sample, and the second one is the dis-
tribution of energy losses by truly backscattered elec-
trons which leave the sample after single scattering at a
large angle and a certain amount of small-angle inter-
actions. The AN coefficient allows one to distinguish
the normalization of the function (5) from the Gauss-
ian function at α > 0 and is shown in Fig. 2 as function

of the α parameter. The CN coefficient takes into con-
sideration a relative increase in the contribution to the
distributed energy losses of absorbed electrons on
account of the second BSE group after replacing η by η1.
Its value was found using the following property of the
ϕ(z) function: the improper integral of ϕ(z) with
respect to z in the generation range for a sample with a
low mean value of Z at η1 = η equals the absorbed
energy Eabs of the electron beam in the studied sample:

(7)

This is due to the fact that the cofactor (1 – Z–1/3)
in Eq. (7) well describes the average reduced energy
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Fig. 1. Modified function of the first-approximation solu-
tion of the transport equation for an electron beam that has
experienced multiple scattering at α parameter values of
0.01 (1), 0.30 (2), 0.50 (3), 0.70 (4), and 1.00 (5).
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/E0 as a function of the atomic number Z of a target
for a primary electron beam that experienced single
scattering at a large angle and left the sample as a result
of backscattering. For materials with any Z value this
physically natural property must be preserved by the
appropriate choice of the CN coefficient as:

The second-term ϕ(z) function in expression (6),
changed relative to ϕ(z) from [1] due to only truly
backscattered electrons being taken into account, and
the CN coefficient arisen in the first term are plotted in
Fig. 3 for electrons with an energy of 20 keV in copper
and gold samples. The dotted lines denote separately
the contributions from each of the two electron flows.
It is evident that taking into account two groups of pri-
mary electrons in BSE significantly reduces their
energy losses in the vicinity of the distribution maxima
compared to the approach assuming all BSEs to be
truly backscattered.

The compliance of the obtained ϕ(z) distribution
with the experimental spectra of energy losses by elec-
trons of the probe over the target depth of was verified
by comparison of the calculated data with the experi-
mental results from classical works [8–10], where the
energy loss spectra were established from experiments
on thin film perforation (V.E. Cosslett and
P.N. Thomas) and by the “labeled layer” method
(R. Casteaing, J. Descamps; A. Vignes, and G. Dez).
The approved results are displayed in Figs. 4–6. It is
obvious that the ϕ(z) function calculated using formula
(6) coincides with the known experimental data over the
whole range of the chosen materials (from aluminum to
gold) and electron-beam energies (from 10 to 29 keV).
This also applies to the distribution-maximum positions,
the full width at half maximum (FWHM), and the spec-
tral behavior in the “tail” range of distributions in
samples with various atomic numbers Z.
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From the point of view of practical importance,
using ϕ(z) in the form of ϕ(ρz) is essential for such a
widespread and frequently applied electron probe
method as QXRSMA. The most significant matrix
correction in X-ray spectral microanalysis is absorp-
tion adjustment fabs of the analyzed X-ray line:

where ρ is the sample density; χ = (μ/ρ)cosecθ, (μ/ρ)
is the weight absorption coefficient; θ is the angle of
selection of radiation going beyond the sample.

It is evident that a more perfect function ϕ(ρz) is
able to provide higher-accuracy quantitative analysis
results in the case of establishment of the real element
concentration in the sample. To date, the accuracy
required for standard QXRSMA is 2–5%. The appli-
cation of a new ϕ(ρz) function for calculation of fabs

abs
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Fig. 2. Normalization factor AN as a function of the
parameter α.
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Fig. 3. Depth distribution of electron energy losses at an
energy of 20 keV for (a) copper and (b) gold samples:
(1) taking into account the presence of two groups of back-
scattered electrons, (2) without them taken into account.
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adjustment in the microanalysis of copper–gold alloys
of known composition, as well as comparison of the
results with data obtained in [11], reveals that the
changes caused by the contribution of two BSE groups
and by the replacement of η with η1 in (6) are small,
but they improve the QXRSMA accuracy for the alloy
(by 0.1–1.0%).

Ψ(X) FUNCTION OF INFORMATIVE SIGNALS 
FOR ELECTRON PROBING METHODS 

DESCRIBING THE LATERAL ENERGY LOSS 
DISTRIBUTION OF AN ELECTRON BEAM

The function ψ(x, y) describing the in-plane lateral
distribution of energy losses was reported in [4]. In the
present study, the functional dependence of the
energy-loss distribution for truly BSE upon their
movement towards the surface was established. It fol-
lows that for a small-diameter electron beam (d → 0),
incident perpendicularly to the surface of the sample

studied, the one-dimensional distribution of energy
loss by electrons ψ(x) can be written as:

(8)

where: xss = 0.275Z–1/3Ltr, BN1 = 0.92165AN, BN2 = 0.78.
Here, the first term is the distributed energy losses

by absorbed electrons and BSEs thaat have undergone
only multiple scattering in the sample. The second
term is the distribution of energy losses by truly back-
scattered electrons which leave the sample after single
scattering at a large angle θ > π/2 and subsequent mul-
tiple small-angle interactions. For this group of BSEs
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Fig. 4. Results of verification of the obtained energy loss
distributions ϕ(ρz) for the electron beam at energies of 10,
15 and 20 keV (a) in copper and (b) in gold: the solid line
shows calculations using Eq. (6); +, × and s denote exper-
imental data from [8] for 10, 15 and 20 keV.
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the approximating distribution is a function of the
energy-loss distribution over the variable x applied to
small-angle electron scattering conditions from [12].

When performing SEM studies, one always
attempts to implement conditions for the formation of
an electron beam with the minimally possible diame-
ter d to achieve the best lateral resolution. In modern
SEM systems this corresponds to a value of d ≈ 1–10 nm.
In order to take into account the effect of these finite
electron-beam sizes on the distribution (8), it is neces-
sary and sufficient to replace the magnitude xss in ψ(x)

with xds = (  + 0.48d2)1/2, and xp by xdp = (  +
0.36d2)1/2. Since xss ≈ 0.1xp, the distribution (8) has
first to be broadened for truly BSEs due to the finite
sizes of the electron beam.

Unlike the ϕ(z) distribution, a direct verification of
the ψ(x) function is difficult because of a lack of

2
ssx 2

ssx

experimental data. However, the validity of the pro-
posed function can be assessed indirectly, using func-
tion (8) for calculating the informative signal, such as
indirect current in a short-circuited diode, and com-
paring the calculated IC distribution with the experi-
mentally measured distribution of the same signal.
Herewith, the main requirement lies in excluding or
minimizing the broadening effect of the narrow peak
of energy losses for truly BSEs due to diffusion and
drift processes in the electric barrier field of generated
non-equilibrium carriers (NECs). These requirements
are met for an IC signal detected in a short-circuited
diode and upon scanning of a cleavage with an elec-
tron probe, perpendicular to the plane of the p–n
junction, of a semiconductor structure with a small
diffusion length of NECs and at relatively high ener-
gies E0 of electrons.

As the model experiment for verifying the validity
of Eq. (8), we used experimental data from [13],
among them were the IC-signal distribution for a
cleavage of GaP0.65As0.35 (a structure with a p–n junc-
tion) at an electron-beam energy of E0 = 40 keV and

Fig. 6. Results of verification of the obtained energy loss
distributions ϕ(ρz) for the electron beam (a) in aluminum
at E0 = 10, 15, 20 keV: the solid line shows calculations
with α = 0.044; o denotes experimental data from [9],
obtained by the labeled layer method; (b) in titanium at
E0 = 25 keV; the solid line shows calculations with α =
0.35; the points denote experimental data from [10],
obtained by the “labeled layer” method.
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using Eq. (8); the points show experimental results from [13].
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the diffusion lengths of NECs Lp,n ≈ 0.08 μm. The
transport length of electrons with an energy of 40 keV in
this material is 2.3 μm at xp = 1.77 μm and xss = 0.21 μm.
The IC-signal distribution found from Eq. (8) for
describing the lateral distribution of NECs generated
by the electron probe is shown in Fig. 7 with a solid
line. The contributions of electron–hole pairs associ-
ated with the energy losses of two groups of BSEs to
the IC signal are depicted with dotted lines, and the
points denote the experimentally measured IC signal.
Good agreement between the calculated and experimen-
tal data is evident, which is on account of the presence of
two BSEs groups in the context of the model used.

To conclude, we mention that namely BSEs of the
first group, being the main reason for the formation of
the narrow peak of energy losses by electrons in a sub-
stance, are able to ensure the high spatial locality of
studies upon the use of quantitative electron probing
methods. It is obvious that its implementation neces-
sitates the application of very thin electron beams with
d ≈ 1 nm at relatively low electron probe energies E0 =
1–10 keV in research equipment. Thus, high lateral
resolution in surface experiments can be achieved in
scanning electron microscopes with field or autoemis-
sion cathodes.

CONCLUSIONS

A two-dimensional function allowing a trivial ana-
lytical description of the spatial distribution of energy
losses by an electron beam over depth ϕ(z) and the in-
plane lateral distribution ψ(x) in the context of multi-
ple scattering was found.

The validity of the obtained distributions was veri-
fied by the comparison of simulation results with
experimental data from classical works in a wide range
of elements and energies of primary electrons. The
dependences calculated using the above function were
established to coincide with the experimental ones.
Examples of successful application of the function in

QXRSMA and for description of the IC signal were
shown, also.
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