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Abstract—Results of modeling by the Monte Carlo method of signals from a scanning electron microscope
examining rectangular grooves in silicon are compared with experimental results obtained for a scanning elec-
tron microscope operating in the secondary slow electron collection mode. The comparison is performed for
the peaks of signals characterizing the primary electron beam near the walls of rectangular grooves: the widths
and amplitudes of the peaks, the integral contributions of the peaks, and the positions of the peaks relative to
the walls of the grooves. The parameters and their dependences on the primary electron energy are compared.
All dependences are very different in terms of the parameters of the peaks and their dependence on the pri-
mary electron energy. This proves that the traditional representation of the Monte Carlo method does not
work in scanning electron microscopy.
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INTRODUCTION
Scanning electron microscopy is widely used in

various areas of science, engineering, and technology
[1‒4]. However, the widest application of scanning
electron microscopy has been attained in microelec-
tronics and nanoelectronics [4‒6]. In [7, 8], it was
shown that measuring the linear sizes of elements of
microchips is an important stage of microchip tech-
nology, substantially reducing the costs of developing
the technology and producing microchips.

For this purpose, in Russia, a system for a scanning
electron microscope (SEM) was developed, which
converts the sizes from the Primary length standard
(meter) to the nanoscale and makes it possible to mea-
sure the linear sizes of elements of microchips up to
10 nm [9, 10].

To date, a method for measuring the linear sizes of
microchip elements up to 30 nm with a SEM has been
developed [11]. In order to justify the measurement of
such small sizes and theoretically develop new meth-
ods for measurements, a virtual scanning electron
microscope (VSEM) was created [12‒16]. Virtual
measuring devices, to which the VSEM belongs, can
be created by two methods: imitation of the operation
of a real device [13] or by the simulation of information
obtained on a real device [17].

For a VSEM, the operation of a real SEM is imi-
tated by statistical modeling known as the Monte

Carlo method. This method was developed in the
middle of the 20th century and has gained wide appli-
cation due to the simplicity of implementation and the
advent of high-performance personal computers. For
more than half a century, an uncountable number of
works concerning the Monte Carlo method have been
published, including works describing its application
to scanning electron microscopy. These works are rep-
resented most completely in review [18]. Here, we add
some works [19‒25] published both before and after
this review and lacking in [18] for different reasons.

In [13], it was shown that a VSEM cannot be cre-
ated by the Monte Carlo method (in [14‒16], it was
created on the basis of a simulator). However, the
application of the Monte Carlo method to scanning
electron microscopy continues to widen (see, e.g.,
[18‒23]).

It should be noted that, for the first time, the dis-
agreement of the results of modeling by the Monte
Carlo method [24] with the results of experiments with
a SEM was demonstrated in [25]. However, this work
was published a long time ago in a journal that is hard
to come by in Russian. In this context, it is necessary
to consider in detail the possibilities of application of
the Monte Carlo method to scanning electron micros-
copy, the advantages and drawbacks of the method,
and modeling results and to compare these results with
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real experiments with recent achievements in both
modeling and experiment taken into account.

This work is the first part of an analysis of applica-
tion of the Monte Carlo method to scanning electron
microscopy. It is devoted to comparing the results of
the modeling of rectangular relief structures with
experiments conducted on a SEM with such struc-
tures.

1. MONTE CARLO METHOD
Application of the Monte Carlo method to scan-

ning electron microscopy is based on imitation of the
work of a real SEM: the interaction of beam electrons
with the relief structure of a solid body. This interac-
tion is described by the elastic scattering of electrons in
the target substance and inelastic energy loss by pri-
mary electrons.

1.1. Description of the Method
The schematic of the Monte Carlo method imitat-

ing the operation of a SEM is shown in Fig. 1. The tra-
jectory of a primary electron in a substance is repre-
sented by a broken line (the arrows indicate the direc-
tion of electron motion). At each kink point, the
electron energy Ej at this point ( j is the index of the
kink in the trajectory ( j = 1, 2, 3, ……N) and N is the
number of kinks), the next free length λj, and the
angles of inclination, θj and ϕj, of the next part of the
trajectory relative to the current one are calculated by
the following expressions [26]:

(1)

(2)

(3)

(4)
where λ is the mean free length, β is the screening
parameter for a scattering nucleus, γk is a current ran-
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dom number, and k = 1, 2, 3, … is the index of a ran-
dom number.

The dynamics of the simulation is as follows. An
electron with the initial energy E0 enters the substance.
In this case, the angles θ0 and ϕ0 of inclination of the
electron trajectory in the substance are defined by the
angle at which the electron enters the sample (for the
perpendicular incidence, θ0 = 0 and ϕ0 = 0). Using a
random number generator and expression (1), the free
length λ0 is calculated and the electron energy E1 at the
end of the free length (the first kink in the trajectory)
is determined by expression (2). In this case, the spe-
cific energy loss is usually calculated for the interme-
diate energy:

(5)

Taking into account the small difference between Ej
and Ej – 1, other variants are also possible.

Then the electron is displaced to a new kink point
(Fig. 1), the new angles θ1 and ϕ1 are calculated by
expressions (3) and (4), the new free length λ1 by
expression (1), etc. In each such case, a new random
number is taken. This procedure is performed until
satisfaction of all criteria for the modeling of the elec-
tron trajectory, which are specific to each author.

There are two types of modeling of the real beam
size. In the first type, one or several trajectories are
modeling for each coordinate of entry of an electron
into the substance. The actual beam size in this case is
obtained by summing the modeling trajectories of
electrons incident into the entry zone bounded by the
beam size. This variant of the method strongly reduces
the modeling time, because the same trajectory is
taken repeatedly for different beam positions. The
drawback of this kind of modeling is the impossibility
of modeling converging or diverging beams. In a num-
ber of cases, this circumstance greatly restricts the
applicability of this method.

In the second variant, the beam position is fixed
and trajectories in which the coordinates and entry
angles vary according to the electron distribution in
the beam and its convergence or divergence are mod-
eling. Such modeling takes much more time, since, for
the same beam position, one has to simulate many tra-
jectories with different parameters. However, such
modeling is more correct from the physical point of
view and enables one to extend the applicability of the
modeling due to the possibility to modeling inclined,
converging, and diverging beams.

1( ) 2.j jE E E −= +

Fig. 1. Scheme of modeling of an electron trajectory in a
substance by the Monte Carlo method.
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1.2. Elastic Electron Scattering

Elastic electron scattering used in the modeling is
described by the electron mean free length λ (1) in a
complex substance and is defined by the expression

(6)

where NA is the Avogadro number, ρ is the density of
the substance, Ai is the atomic weight, Ci is the atomic
concentration, and σi is the total elastic scattering
cross section for atoms of the ith species.

The total elastic scattering cross section may have
different forms. It is defined [24‒26] by the expression
describing electron scattering at a screened atomic
nucleus:

(7)

obtained by integrating the differential scattering cross
section by the Rutherford formula with the screening
effect taken into account. This formula reads

(8)

where e is the elementary charge, E is the electron
energy, θ is the scattering angle, βi is the parameter of
screening, and Zi is the atomic number of the chemical
element of the ith species entering into the substance
[24‒26]. In this case, the parameter of screening is
calculated by the expression

(9)
where the electron energy E is expressed in eV.

In the range of energies of 0.1–30 keV, currently
used in scanning electron microscopy, the electron
mean free path in silicon lies in the range of 0.25–56 nm.
It should be noted that the distance between crystallo-
graphic planes in silicon is 0.3 nm. This means that
formulas (7)–(9) cannot be used at electron energies
below 100 eV.

1.3. Inelastic Energy Loss

The specific electron energy loss dE/dX is calcu-
lated in different works by different formulas. How-
ever, for high electron energies (E > 1 keV), the energy
loss, as a rule [24‒26], is calculated by the Bethe for-
mula, describing the mean energy loss to the ioniza-
tion of atoms in a complex substance:

(10)

where e is the elementary charge, ρ is the density of the
substance, E is the incident electron energy (in eV),
NA is the Avogadro number, Ai is the atomic weight,
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Zi is the atomic number, Ci is the specific concentra-
tion, and Ji is the mean ionization potential (in eV) of
atoms of the ith species, defined by the expression

(11)

The mean ionization potential for silicon is 161 eV. In
the range of energies 0.1–30 keV, employed in scan-
ning electron microscopy, the energy loss for silicon
lies in the range of 25–1.6 eV/nm.

It is noted that, if the primary electron energy is
lower than the mean ionization potential (11), formu-
las (10) and (11) cannot be used. Therefore, since
expressions (7)–(9) for elastic scattering in silicon
cannot be used for an electron energy below 100 eV,
the criterion chosen in [23] for terminating modeling
of the trajectory of a primary electron was the attain-
ment of the mean ionization potential by the electron
energy.

1.4. Random Number Generation

The main part in the Monte Carlo method is ran-
dom number generation. However, random numbers
do not exist in nature. A random number is a purely
mathematical abstraction. A random number must
have an infinite length. Any restriction on the length of
a random number (for storage and utilization) con-
verts a random number into a pseudorandom number.
Therefore, one has to know, understand, and take into
account the difference between random and pseudo-
random numbers.

The main specific feature (and drawback) of pseu-
dorandom numbers is their periodicity [13, 17]. The
reason is that all pseudorandom number generators
are generated by operations described by the expres-
sion

(12)

The next pseudorandom number γk + 1 is obtained by
some sequence of manipulations—the same for the
given generator and all numbers and denoted by —
with a current pseudorandom number γk. Since the
length of a pseudorandom number is finite, there
always exists a period after which the sequence of gen-
erated numbers repeats. Therefore, it is necessary to
check for the periodicity of pseudorandom number
generators employed for simulation. If the period of
the generator is smaller than the amount of pseudo-
random numbers required for modeling, the result of
modeling acquires periodic distortions, which are
impossible to detect and take into account.

In [15, 17], the pseudorandom number generator
from the mathematical library of FORTRAN was

11.5 .i iJ Z=

( )1
ˆ .k kP+γ = γ

P̂
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studied. This generator creates an array of numbers
described well by the Gaussian distribution

(13)

where M = 0 is the mean of the pseudorandom num-
bers, σ = 1 is the standard deviation, and I = 10 mil-
lion is the number of generated numbers. The period
of this generator is 30 million. This period is due not
only to the method of pseudorandom-number gener-
ation but also by the fact that the numbers are stored
and utilized in memory elements of a limited size
(usually, 4 or 8 bytes). It should be noted that the
period (3 × 107) of the generator is significantly
smaller than the capacity of four-byte (4 × 109) and,
moreover, eight-byte (18 × 1018) number types.

Thus, the period of a pseudorandom-number gen-
erator is always significantly smaller than the capacity
of the unit of memory used for the storage and utiliza-
tion of pseudorandom numbers. This property of
pseudorandom numbers should be taken into account
when dealing with the Monte Carlo method. Thirty
million pseudorandom numbers may be insufficient
for modeling a particular process. For modeling by the
Monte Carlo method of a 1000 × 1000-pix SEM
image (the minimum image size employed nowadays)
with 1000 trajectories at a point, with an electron
energy of 30 keV, and silicon as the target substance
requires at least 600 billion pseudorandom numbers
[15]. Therefore, the image created with this generator
will inevitably contain unknown periodic distortions.
One can increase the period of the pseudorandom-
number generator (e.g., by increasing the length of
such numbers), but this leads to a dramatic (tens- and
hundreds-fold) increase in the computation time,
which is very undesirable.

In [13, 17], the time of generating an image with the
aforementioned sizes on a personal computer with a
Pentium Dual processor with a speed of 2.2 GHz, a
motherboard-bus speed of 800 MHz, and control out-
put to the screen of each tenth trajectory was calcu-
lated. Using these data, we find that the time for gen-
erating one image of 1000 lines with a continuously
operating personal computer with such a processor
will range from 7 days for E = 1 keV to 34 days for E =
30 keV. If all trajectories are output to the screen, the
image generation time increases to a year and more.
Thus, on a personal computer, one can obtain one or
several signals rather than the entire image. For more
detail, see [13].

The use of a supercomputer greatly reduces the
modeling time. However, as was shown in [13], a
supercomputer does not solve the given problem,
because the Monte Carlo method usually takes into
account only primary electron scattering. Although
secondary electron scattering must be taken into
account, it is almost impossible to do [13] due to the
physics of the creation of secondary electrons and

( ) ( )2

2exp ,
2 2

MI
g

⎛ ⎞− γγ = −⎜ ⎟⎜ ⎟σ π σ⎝ ⎠

their scattering. The other reasons are the extremely
high computation time and the absence of the neces-
sary amount of pseudorandom numbers [13].

2. MODELING RESULTS
We might consider the modeling results presented

in different works, but we will restrict the consider-
ation to [24, 25], because the review of publications
[18‒23] showed an almost total lack of comparison
between modeling by the Monte Carlo method and
the experiment. Separate parts of the modeling were
compared. For example, in [27], modeling and exper-
imental backscattered electron spectra were compared
and, in [28], modeling and experimental signals were
compared. The sizes and shape of the experimental
structure were recovered from the image of a cleavage
of the structure. However, in [29], it was shown that
measurements of the sizes from a cleavage give a large
error. Therefore, the comparison in [28] was per-
formed incorrectly. Comparison for all model param-
eters between the results of modeling by the Monte
Carlo method [24] and the experiment was performed
only in [25].

It should be noted that the results of the modeling
of SEM signals by the Monte Carlo method, presented
in [24], were obtained more than 20 years ago. The
computer employed in that work had a much lower
capacity than the aforementioned one. Therefore, in
this work, we used various methods to reduce the
computation time, which, as was shown later on more
powerful computers, did not affect the modeling
results.

Figure 2 shows images of the trajectories of primary
electrons with an energy of 30 keV in silicon structures
having grooves of a rectangular profile with a width of
0.5 μm and depths of 1.0 μm (Fig. 2a) and 2.0 μm
(Fig. 2b), demonstrating the work of the modeling
program. The program presented in [23] could model-
ing both normal and oblique incidence of the electron
beam as well as convergence and divergence of the
beam. Figure 2b shows the image of modeling trajec-
tories of primary electrons near a rectangular groove in
silicon under irradiation with a beam inclined by an
angle of θ0 = 30°, a divergence–convergence angle of
α = 10° (a large angle α was chosen for clarity), and a
focal spot diameter of 30 nm.

As a result, signals for different energies of the elec-
tron beam were calculated (Fig. 3). For more detail of
this modeling, see [24]. Analysis of these signal and
signals obtained for other parameters was used in [25]
for comparison with the experiment.

3. EXPERIMENTAL RESULTS
For comparison with the modeling by the Monte

Carlo method, a series of experiments with relief rect-
angular structures (RRSs) in silicon were conducted
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[30, 31]. Sets of four grooves on the surface of n-type
(n-RRS) and p-type (p-RRS) silicon were created.
The widths of the grooves in these sets are presented in
Table 1. The widths were verified by the ellipsometry
method [32, 33]. The grooves were produced with
depths varying in the range of 0.1–12 μm, and the
groove walls were parallel to an accuracy of 1 nm.
However, in all experiments used for comparison with
the modeling, the groove depths were 850 nm. For
more detail on the technique of producing such struc-
tures, see [30, 31].

Figure 4 shows SEM images of grooves in n-RRS
with a width of 150.7 and 434.7 nm (Fig. 4a and 4b,
respectively), obtained using an S-4800 SEM in the
secondary slow electron (SSE) collection mode, and
Fig. 4c shows the SSE signals forming these images.

Figure 5 shows SEM images of grooves in n-RRS
with a width of 150.7 nm (Fig. 5a) and 434.7 nm
(Fig. 5b), obtained in the secondary slow electron col-
lection (SSEC) mode using S-806 and SEM 515,
respectively, and the signals forming these images.
Comparing the signals in Figs. 4 and 5, we can con-
clude that the shape of the experimental signal is inde-
pendent of the microscope using which the image is
taken. It is also independent of the groove width.

The shape of the SSE signal [25, 30, 31] can be rep-
resented by the scheme shown in Fig. 6. In this
scheme, control points A–D determining the shape of
the signal are highlighted. Points A and D characterize
the positions of the peaks of the signal, and point B
and C characterize the positions of the boundaries of
its bottom. Using these points, one can determine the
characteristics of the signal: the distance L between
peaks, the size G of the bottom, the peak amplitude Ia,
the full width W at half-maximum, and the depth I0 of
the signal. This scheme also describes the shape of the
model signal (Fig. 3).

4. COMPARISON BETWEEN MODEL
AND EXPERIMENTAL RESULTS

SEM SSE signals are characterized by their peaks;
therefore, the analysis of experimental signals and
their comparison with the parameters of model signals
(Fig. 6) were performed for the characteristics of the
signal peaks: the full width at half maximum (FWHM;
the height is measured from the zero level of the signal
far from the groove); the amplitude; an integral quan-
tity: the product of the FWHM by the amplitude; and
the shift of the peaks relative to the groove walls.

4.1. Full Widths at Half-Maximum

The experiments are conducted using different
electron microscopes with different magnifications,
and modeling is performed using its own coordinate
system. Therefore, to compare the model and experi-
mental results, we pass to the coordinate system of the
sample. In this case, the FWHM of the signal is deter-
mined by the reduced peak width:

(14)
where m is the pixel size in the image and M is the
magnification of the microscope. In this case, the
reduced width will be measured in nanometers.

,w mW W M= =

Fig. 2. Examples of electron trajectories near a groove in silicon with a width of 0.5 μm and depth of (a) 1.0 and (b) 2.0 μm for a
beam diameter of 30 nm, electron energy of 30 keV, and (a) normal and (b) oblique incidence.

(a) (b)

Table 1. Groove width in n- and p-RRSs and their valida-
tion error

i
li ± Δli, nm

n-RRS p-RRS

1
2
3
4

92.8 ± 0.4
128.5 ± 0.3
344.4 ± 0.8
486.2 ± 0.8

98.8 ± 0.4
150.7 ± 0.3
369.7 ± 0.8
434.7 ± 0.8
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Henceforth, the reduced width of a peak will be called
the peak width.

At first, let us visually compare the model signal
with a primary electron energy of 20 keV (signal 7 in
Fig. 3) and experimental signals 1 and 2 in Fig. 4c. The
peaks of the model signal have a width of 280 nm,
whereas the experimental signals have a peak width of

10 nm. The peaks of the experimental signal are
28 times (!) narrower than the peaks of the model sig-
nal. Table 2 [30] presents the peak widths w of signals
obtained using different SEMs with different beam
radii d. These results show [30] that the peak width of
the experimental signal is determined by half the beam
diameter. The beam diameters in modern micro-
scopes lie in the range of 10–50 nm and depend only
on the SEM design and beam focusing.

At the same time, the peak width of the model sig-
nal is determined by the width of the region of multiple
electron scattering (MES) in the target substance.
This width depends on both the substance and the pri-
mary-electron energy but is practically independent of
the beam diameter and SEM design.

This comparison is already sufficient to conclude
that modeling by the Monte Carlo method in scanning
electron microscopy does not give results consistent

Fig. 3. Model signals obtained by the Monte Carlo method
upon the scanning of a groove in silicon with a width of
0.5 μm and depth of 1.0 μm by an electron beam with a
diameter of 30 nm and different primary electron energies
for α = 0.2° and ϕ = 0° [23]. Signals 1–9 correspond to
E = 1, 3, 5, 7, 10, 15, 20, 25, and 30 keV. The zero abscissa
value corresponds to the groove wall. The zero signal level
is shown by horizontal dashed lines.
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Fig. 4. Image of n-RRS grooves with a width of (a) 150.7
and (b) 434.7 nm and (c) the shapes of SSE signals from
which these images consist: 1 and 2 signals.

(b)

(c)
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2

300 nm
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Table 2. Peak widths w of SSE signals obtained on the scan-
ning of RRSs by an electron beam with a diameter of d at
primary electron energies of 20‒25 keV

SEM w, nm d, nm

S-806 11.5 ± 0.3
25.8 ± 0.9

29.1 ± 0.8
43.3 ± 1.7

SEM 515
20.3 ± 1.2
26.7 ± 1.7
16.9 ± 0.7

39 ± 7
57 ± 8
69 ± 8
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with the experimental data. Let us continue the com-
parison.

The width of the MES region in a homogeneous
substance can be estimated in terms of the mean elec-
tron transport length Λ [25, 26 , 34, 35]:

(15)

where A is the atomic weight, Z is the atomic number,
ρ is the density of the irradiated substance in g/cm3,
and E is the electron energy in eV. In this case, Λ is
expressed in nanometers.

( )
4 2

1 2 1 32
5.12 10 ,
ln 0.725

E A

Z E Z

−×Λ =
ρ

According to [25, 26 , 34, 35], an electron beam
initially having the quadratic exponential distribution

(16)

of the radius r and having passed through a film of a
thickness p will also have a quadratic exponential dis-
tribution with a beam radius rp defined as

(17)

In [36, 37], a relationship was shown between the
parameter r of a quadratic exponential beam and the
effective beam diameter d

(18)

As a result, we obtain the beam diameter dp after pass-
ing through a film with a thickness of p:

(19)

Thus, the quantity dp characterizes the width of the
MES region at the depth p.

The mean electron ranges in a substance is almost
completely determined by the energy loss. Due to the
complex character of electron motion, the mean elec-
tron ranges cannot be determined unambiguously. In
[38], an empirical formula was obtained for the elec-
tron distribution over depth:

(20)
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Fig. 5. Images of grooves and shapes of SSE signals from
them obtained in the SSEC mode using different SEMs:
(a) groove width of 150.7 nm, SEM S-806 and (b) groove
width of 434.7 nm, SEM 515. For clarity, the signals are
shifted with respect to its true position. The signals in
image (a) correspond to different lines in the image.

(b)

(a)
Fig. 6. Scheme of a SSE signal obtained upon the scanning
of a rectangular groove by an electron beam with the axis
parallel to the groove walls with control points and mea-
sured signal parameters.
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Here, Γ is the gamma function, m ~ 1.9, ρ is the den-
sity of the substance (in g/cm3), and E is the electron
energy (in eV). In this case, z0 is measured in nanome-
ters.

Distribution (20) has a maximum at the depth zm:

(22)

At the primary electron energy E = 15 keV in silicon,
we have zm = 995 nm, which agrees well with the
groove depth h = 1 μm used in the modeling. This
indicates the presence of two regions in the depen-
dence of the peak width on the primary electron
energy. In the first region (E < 15 keV), the groove
depth is greater than the maximum zm (22) of the elec-
tron distribution (20) over depth. In the second region
(E > 15 keV), the groove depth h is smaller than zm.
Therefore, in the first region, the quantity p in formula (19)
must be determined by zm and, in the second region,
by the groove depth h.

Let us compare the peak widths on the primary
electron energy. Figure 7 shows these dependences for
model (Fig. 7a) and experimental (Fig. 7b) signals. We
see total disagreement not only between the peak
widths but also between the dependences on the pri-
mary electron energy.

In the model dependence (Fig. 7a), with a decrease
in the primary electron energy, the peak widths gradu-
ally increase and reach the maximum at an energy of
15 keV. With a further reduction in the energy, the peak
widths of separate signals sharply decrease, approach-
ing zero.

( )1

0
1 .

m

m

m
z z

m

−=

The model dependence (Fig. 7a) is divided into two
energy regions, as shown above. At low energies
(below 15 keV), the dependence

(23)

is described well by expression (19) under the condi-
tion p = zm/2 (curve 1 in Fig. 7a). In the region of high
energies (above 15 keV), dependence (23) is described
sufficiently well (curve 2 in Fig. 7a) by expression (19)
under the condition p = h/2.

Thus, the peak widths of model signals are deter-
mined by the part of the MES region that interacts
with the groove. The dependence of the peak widths of
the experimental signals (Fig. 7b) is also divided into
two regions: below and above 10 keV. Above 10 keV, the
peak widths of the experimental signals are very small
(10–30 times smaller than those of the model signals)
and are independent of the primary electron energy.
This independence is represented by the horizontal
line in Fig. 7b. Below 10 keV, the peak widths of the
experimental signals sharply increase and become
comparable with those of the model signals (Fig. 7a).
Such behavior indicates [25] the existence of different
mechanisms of image (signal) formation at different
primary electron energies.

Thus, comparison between the peak widths of
model and experimental signals has demonstrated that
modeling by the Monte Carlo method is not applica-
ble to scanning electron microscopy.

4.2. Peak Amplitudes of Signals

The amplitude analysis of SEM signals is almost
never used. The reason is the use of the self-contrast
mode for imaging, in which the parameters of the
electron amplifier are unknown and can vary from

pw d=

Fig. 7. Peak widths w of SSE signals (a) modeling by the Monte Carlo method and (b) experimental for different primary electron
energies E.
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image to image. This difficulty can be overcome rather
easily [39, 40].

The signal amplitude V at a specific image point is
related to the amount v of emitted secondary electrons
by a functional dependence represented by a Taylor
series in powers of v:

(24)

The electronic devices of a SEM operate in the linear
mode. Then we impose on the expansion coefficients
an the conditions an = 0 for n ≥ 2. Thus, the signal V
can be represented as

(25)
where a0 is the drift of zero of the amplifier and a1 is
the gain factor. It should be noted that the values of a0
and a1 in modern scanning microscopes are never
actually known. Therefore, amplitude analysis is usu-
ally not performed.

This difficulty can be removed [38, 39] if, in the
experiment, we measure in a given image the differ-
ence between the signal amplitudes,

(26)
and represent the results as the ratio of the differences:

(27)

Thus, the representation of results in the form of the
ratio of differences (27) makes them independent of the
unknown parameters a0 and a1 and enables one to com-
pare the data on (27) obtained by processing different
images of the same structure on different SEMs.

The amplitude characteristics of signals can change
in the process of measurements; therefore, they should
be represented in form (27) if the peak amplitude Ia

(Fig. 6) is defined as the distance on the ordinate axis
between the signal levels at the peak and at the back-
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ground, and the background amplitude I0 is defined as
the difference between the background and bottom
levels (Fig. 6). Then, the quantity Im (normalized peak
amplitude) defined as

(28)

will satisfy condition (27) and can be compared with
both model and experimental values obtained on dif-
ferent images. Henceforth, the normalized peak
amplitude of the signals will be called the peak ampli-
tude.

Figure 8 shows the dependences of the peak ampli-
tudes of model and experimental signals on the pri-
mary electron energy (we see different dependences).
For model signals (Fig. 8a), with a decrease in the
electron energy, the peak amplitude first slowly
increases and then, at an energy of 5 keV, sharply
decreases. At the same time, for experimental signals
(Fig. 8b), the amplitude steadily (linearly) decreases as
the primary electron energy decreases to 10 keV. The
linearity is represented in Fig. 8b by a straight line.
Below 10 keV, the peak amplitude of experimental sig-
nals is practically independent of the primary electron
energy.

Thus, the comparison between the peak ampli-
tudes of the model and experimental signals also
shows that modeling by the Monte Carlo method is
not applicable to scanning electron microscopy.

4.3. Integral Characteristics of Signal Peaks

The deviations between the characteristics of the
peaks of model and experimental signals is probably
related to a correlation between these characteristics
(the peak widths and peak amplitudes of signals),
since the presence of a correlation reduces its ampli-
tude and leaves invariable the integral characteristics
of the peaks. Therefore, a comparison between the
integral characteristics of the peaks of model and
experimental signals was performed. Such a character-

0 ,m aI I I=

Fig. 8. Peak amplitudes Im of (a) model and (b) experimental SSE signals vs. the primary electron energy E.
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istic was the product of the peak width w by the peak
amplitude Im, i.e., wIm.

Figure 9 shows the dependences of the integral
quantity wIm on the primary electron energy for the
model and experimental signals. We see that the inte-
gral quantity for the signal modeling by the Monte
Carlo method exceeds tens of times that for experi-
mental signals. Moreover, the dependences on the pri-
mary electron energy are also very different.

The modeling dependence (Fig. 9a) smoothly
increases with a decrease in energy, attains a maxi-
mum at 15 keV, and then tends to zero. At the same
time, the experimental dependence (Fig. 9b) linearly
decreases. The linear dependence is represented in
Fig. 9b by a straight line. Below an energy of 10 keV,
the dependence on the energy sharply increases and
remains constant within error. Such a dependence
proves the absence of correlations between the peak
width and peak amplitude but indicates the existence
of different image-formation mechanisms [25] at dif-
ferent primary electron energies.

Thus, a comparison between the integral charac-
teristics of model and experimental signals shows that
the modeling by the Monte Carlo method is not appli-
cable to scanning electron microscopy.

4.4. Signal Peak Positions

The signal peak positions will be determined with
respect to the walls of a rectangular structure. The
position of the wall is known in the modeling and
unknown in the experiment. Therefore, we will use the
relationship between the parameters L and G of the
signal (Fig. 6), which relate the distance between
peaks and the size of the signal bottom to the groove
width l [30, 31]:

(29)

(30)

Here, δ is the shift of the signal peak with respect to
the corresponding wall of a rectangular groove, d is the

( 2 ) ( 2 ) ,L M l l m= + δ = + δ

( ) ( ) .G M l d l d m= − = −

effective diameter of the SEM electron beam [35, 36]
(henceforth, the beam diameter), M is the SEM mag-
nification, and m is the pixel size in the image.

Using expressions (29) and (30), we can write two
systems of equations:

(31)

(32)

where i, j = 1, 2, 3, 4; i ≠ j. Solving this system, we
obtain

(33)

(34)

(35)

Here, ML and mL are parameters of the SEM and
the image, determined using the distances between the
peaks, and MG and mG are the parameters determined
from the size of the signal bottom. The sets of rectan-
gular structures (Table 1) have four grooves with dif-
ferent widths; therefore, one can not only determine d
and δ but also establish that these parameters are inde-
pendent of the groove width. For more details, see [25,
30, 31].

If  and, correspondingly, , and,
if the beam diameters determined from different
groove widths (34) coincide, then the mean values of
δij obtained by expression (33) will give the shift δ of
the peak with respect to the edge of the groove.

Figure 10 shows the shift δ of the peaks of the
model (Fig. 10a) and experimental (Fig. 10b) signals
as a function of the primary electron energy. Again we
observe significant deviations between the depen-
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Fig. 9. Integral quantity wIm of (a) model and (b) experimental SSE signals vs. the primary electron energy E.
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dences of the shift on the primary electron energy in
absolute value and even sign. For the model signals,
we always have δ > 0 (the peak positions lie beyond the
groove) and, for experimental signals, all variants: δ >
0, δ < 0, and δ = 0 (the peak positions lie beyond the
groove, inside the groove, and can coincide with the
groove walls, respectively) are possible. Table 3 [25]
presents the values of δ obtained for a long time in dif-
ferent experiments on different microscopes, which
confirm the above assertion. It turned out [25, 39, 40]
that the sign of δ is determined by beam focusing in the
SEM. If the groove is scanned with a converging part
of the beam, then δ > 0; if it is scanned with a diverging
part of the beam, then δ < 0; and, if the groove is
scanned with a focused part of the beam, then δ = 0.

Although the experimental value of δ can have an
arbitrary sign and its absolute value can be zero, the
sign and the absolute value of δ are retained in the
range of primary electron energies above 10 keV. At
energies below 10 keV, δ becomes positive and compa-
rable with the model value.

There are no values of the beam parameters (con-
vergence, divergence, parallelism of electron motion,
the angle of incidence) at which the modeling of sig-
nals by the Monte Carlo method gives negative or zero
values of δ. It is for this comparison that the modeling
of the converging and diverging beam electrons pre-
sented in [24] was required.

Thus, the signal peak positions are not obtained by
modeling by the Monte Carlo method.

CONCLUSIONS

The results of modeling by the Monte Carlo
method of SEM signals obtained in the SSEC mode
on scanning of rectangular grooves in silicon were
compared with the experimental results obtained
using a SEM with similar structures. It has been shown
that all characteristics of the peaks of the model and
experimental signals significantly differ in terms of the
values of these characteristics and in their depen-
dences on the primary electron energy. This proves
that the traditional representation of the Monte Carlo
method does not work in scanning electron micros-
copy.

In the next paper of this cycle, we will consider the
reasons for the disagreement of the Monte Carlo
method with the experiment and possibilities of cor-
recting this method.
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Fig. 10. (a) Model and (b) experimental shifts of the peaks of SSE signals for different primary electron energies E. The straight
line in (b) corresponds to the mean value of δ in the range of energies above 10 keV. Dashed lines show the error range.
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Table 3. Value of parameter δ obtained on S-806 and SEM
515 microscopes over 3 years

SEM Type of RRS δ ± Δδ, nm

S-806

p

–5.9 ± 1.1
–2.8 ± 0.4
–3.8 ± 0.7

1.6 ± 0.9
0 ± 4

–4 ± 4

n

–0.3 ± 1.1
–0.4 ± 0.3
–0.1 ± 0.4

1.1 ± 1.7
3.8 ± 0.8

5 ± 3

SEM 515 p

–1.5 ± 1.8
–3.5 ± 2.3

–4 ± 4
–9 ± 4

0 ± 3
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