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INTRODUCTION

Short�range order and short�range phase separa�
tion, as well as long�range order, characterize the fine
structure of solid solutions [1–3]. To find their param�
eters, X�ray and neutron diffraction methods are used.
Solid solutions with a face�centered cubic (FCC) lat�
tice are the most studied; a close connection between
their fine structure and physical properties has been
established. However, there are hardly any studies
devoted to investigating short�range order in alloys
with a body�centered cubic (BCC) lattice. The exist�
ence of short�range order in solid solutions with the
BCC structure has been determined by diffuse X�ray
scattering only in some binary alloys, for example,
Fe–Al [4–8], Fe–3.1 at % Mo [9], Fe–2 at % W [10],
Fe–2.5 at % Rh [11], and Fe–5 at % Re [12]. A char�
acteristic feature of the short�range order in Fe–Al
alloys is the negative value of its parameters for the first
two coordination spheres, indicating short�range
order of the Fe3Al type. In solid solutions of Fe–Mo,
negative values of the short�range order parameters
appear only starting at the fourteenth coordination
sphere. The study of short�range order in alloys of iron
with tungsten, rhodium, and rhenium is fragmentary
in nature. In BCC alloys, there is a significant size
effect, considerably affecting the formation of diffuse
scattering. In particular, it may lead to a lack of intense
diffuse maxima discernible in the presence of short�
range order. The procedure applied in this paper
accounts for the size effect more precisely than in early
radiographic studies and thus improves the accuracy of
determining the short�range order parameters. Deter�

mination of the ordering energy by means of the short�
range order parameters was previously carried out only
for alloys with the FCC structure [13–16]; for BCC
alloys such data are not available.

The goal of the present work is experimental deter�
mination of the concentration dependences of the
short�range order parameters and the ordering energy
of Fe–Re alloys containing 3, 5, and 7 at % of Re by
diffuse X�ray scattering (DXS) and calculation of the
hypothetical critical temperature of the order—disor�
der�type phase transition in these alloys in order to
identify the type of ordering. According to the state
diagram of the Fe–Re system [17], the maximum sol�
ubility of rhenium at a temperature of 500°C is
approximately 10 at % (Fig. 1). This is taken into
account when selecting the compositions for the study
of the concentration dependences of the characteris�
tics under consideration. It is seen from Fig. 1 that in
the investigated concentration range, there is no
ordered structure at temperatures above 400°C.

EXPERIMENTAL PROCEDURE 
AND CALCULATION OF THE SHORT�RANGE 

ORDER PARAMETERS AND ELASTIC 
CONSTANTS

Alloys were prepared from pure charge materials in
an atmosphere of pure argon and subjected to repeated
melting upon stirring with a magnetic field. The sam�
ples were sanded using emery paper with a gradual
decrease in the size of abrasive grains and polished
with diamond paste to produce a mirror surface. All
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samples were annealed for 3 h at 500°C and quenched
in water. After heat treatment, the samples were
ground and polished.

The DXS intensity was measured using an X�ray
diffractometer with FeK

α
 radiation and equipped with

a flat monochromator Si(111). A BDS�6 scintillation
counter with an accuracy of 3–4% was used to record
the signals. The intensity of the radiation scattered by
the sample was reduced to electronic units by normal�
izing them to the intensity scattered by fused silica.
Then, we subtracted the intensity of scattering in air
and Compton and double Bragg scattering from the

DXS intensity according to the procedure in [18].
Thereafter, the DXS intensity, minus side effects, is
written in the form

 (1)

where n is the number of atoms in the unit cell; CA and
CB are the concentrations of alloy components; fA and
fB are the form�factors of the component atoms,
adjusted for anomalous dispersion; xj = aqj/(2π); qj =
4πsinθj/λ; a is the lattice parameter; λ is the X�ray
wavelength; θj is the scattering angle for the jth data
point; αi and Ci are the short�range order parameter
and the coordination number on the ith coordination
sphere; and Ei(xj) and Fi(xj) are the modulating linear
and quadratic functions of the size effect. Modulating
functions Ei(xj) and Fi(xj) depend on the ratio of elastic
moduli C12/C11 and C44/C11 and the derivative of the

concentration β =  as follows:

(2)

where V is the volume of the unit cell; 〈f(xj)〉 =
CA fA + CB fB. Function I1(i, xj) and I2(i, xj) are tabulated
for different sets of ratios C12/C11 and C44/C11 [19].

The values of the elastic constants of iron alloys
containing 3, 5, and 7 at % of rhenium are calculated using
a model potential [20] through derivation of the pair inter�
atomic potential V(r) according to procedure [21]

 (3)

(4)

where Ω0 is the atomic volume; Ri is the radius of the
ith coordination sphere; and indices α and β can be 1,
2, or 3: a value of 1 corresponds to the x axis, a value of
2 corresponds to the y axis, and a value of 3 corre�
sponds to the z axis. The projection of an α atom
located at the ith coordination sphere on the axis cor�

responds to the designation . The prime mark near
the summation sign means that the term with i = 0 is
excluded. To calculate the value of elastic constant C44,
the following ratio was used [21]:

 (5)

where  is the second moment of the phonon fre�
quencies, a is the lattice parameter, and M is the
atomic weight. The second moment of the phonon fre�

=

= −

⎡ ⎤
× α + +⎢ ⎥

⎣ ⎦
∑

A B A B

max

2

0

( ) ( )

sin
( ) ( ) ,

j

i
j i

i i i j i j
j ii

J x nC C f f

q r
C E x F x

q r

B

1 V
V C

∂

∂

A B A B

A B

1

2 2
2

( ) 2[ ( ) ( )] ( ) ( , ),

( ) ( ) ( , ),

i j j j j j

i j j j

E x f x f x f x nC C I i x

F x f x nC C I i x

= − − β

= β

2
1 4

11 0 , 2
1'(6 ) ( ) ,

i

l
R R

d V dVc x i
R dRdR

−

α α

=

⎡ ⎤
= Ω Σ −⎢ ⎥⎣ ⎦

2
1 2 2

12 0 , 2
1'(6 ) ( ) ( ) ,

i

l
R R

d V dVc x i x l
R dRdR

−
α≠β α β

=

⎡ ⎤
= Ω Σ −⎢ ⎥⎣ ⎦

( )x i
α

2 44 11(2 )
,

C C
a

M

+
ω =

2
ω

1100

1000

900

800

600

700

500

1200

30

60504030100 20

2010

1300

1400

1500

1600

1700

0

400

T, °C

Liquid

ReFe3

1540°

(δ Fe)

221394°
1375°

51

1205°(γ Fe)

912°
895°

Re, at %

Re, wt %

27

800°Magnetic
transition

(α Fe) ReFe2

Fe

1538

770

Fig. 1. Phase diagram of the Fe–Re system [17]; there is no
ordered structure at temperatures above 400°C in the con�
centration range of the alloys.
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quencies is expressed in terms of derivatives of the pair
potential V(r) as follows [21]:

 (6)

Here, Ni is the number of atoms at the ith coordination
sphere of radius Ri.

Equations (3), (4), and (6) include the first and
second derivatives of the pair interatomic potential
V(r), using which we can determine the radial and tan�
gential force constants [22]

 (7)

When calculating the elastic constants of Fe–Re alloys
containing 3, 5, and 7 at % of Re, the force constants
for rhenium are calculated in the matrix of α�iron.
The calculated values of the force constants of α�iron
and rhenium are presented in Table 1. The force con�
stants of the alloys are found by averaging the force
constants of the components by the concentration

 (8)

where n is the number of alloy components, cj is the
atomic concentration of the jth component, and αi j

and βi j are the radial and tangential force constants of
the jth component of the multicomponent alloy for the
ith coordination sphere.

The calculated elastic constants of α�Fe and Fe–
Re alloys containing 3, 5, and 7 at % of Re are given in
Table 2. In the same table, the experimental values of
the elastic constants of α�Fe [23] are shown for com�
parison.

EXPERIMENTAL

The experimental DXS intensity values for the
alloys containing 3, 5, and 7 at % of rhenium,
expressed in electronic units, are presented in Fig. 2
by, respectively, circles, squares, and triangles. It is evi�
dent that the dependences of the scattering intensity of
alloys on angle 2θ have no obvious diffuse peaks char�
acteristic of solid solutions of the Cu–Au type. For
example, for alloys containing 3 and 5 at % of rhe�
nium, a drop in intensity is observed in the range of
angles of 10°–16°, and with angles increasing from 16°
to 48°, the intensity values increase. In the second
range of angles up to 68°, the intensity values fall for all
three alloys. We also note that in the alloy with 3 at %
of rhenium, the DXS modulation is weaker than in the
alloys of other compositions.

Numerical calculations of the short�range order
parameters were conducted using the least�squares
method. Since the short�range order parameters
determined from DXS depend on the concentrations
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of the components, the Debye temperature TD, and
the statistical shift parameter β, we varied these
parameters by the procedure described in [11] for each
alloy in order to identify the amount of the minimum
sum of the mean square deviations of the theoretical
curve from the experimental data (Fig. 2). The calcu�
lated values of the short�range order parameters for
the first four coordination spheres of iron alloys con�
taining 3, 5, and 7 at % of rhenium, are listed in Table 3.
It is seen that for all three alloys, the short�range order
parameters for the first coordination sphere are nega�
tive. This suggests the existence of short�range order in
solid solutions of iron–rhenium. It should be noted

Table 1. Power constant of α�iron and rhenium in a matrix
of iron, 10–3 N/m–3

α�Fe Re

α1 63274.0 β1 –6956.0 α1 461452.7 β1 –67507.0

α2 15090.0 β2 –1608.0 α2 240034.5 β2 –13643.5

α3 –2234.0 β3 237.5 α3 23131.7 β3 –1505.6

α4 –5.4 β4 –62.8 α4 –19863.3 β4 824.9

α5 894.4 β5 –38.8 α5 –21092.0 β5 –158.0

α6 –541.1 β6 31.0 α6 8872.0 β6 367.9

α7 –299.2 β7 –22.5 α7 –10709.9 β7 –49.8

α8 71.5 β8 –24.4 α8 –5329.2 β8 –264.1

α9 278.6 β9 10.3 α9 5191.8 β9 152.2

α10 –295.9 β10 7.8 α10 –6296.8 β10 53.9

Table 2. Elastic constants of α�Fe and Fe–Re alloys con�
taining 3, 5, and 7 at % of Re, calculated according to [21],
and the experimental data of α�Fe [23]

Alloy
Elastic constants, 1010 N/m2

C11 C12 C44

a�Fe 24.8 15.2 12.9

α�Fe (exp.) 24.4 13.8 12.2

Fe–3 at % Re 24.9 15.2 12.8

Fe–5 at % Re 24.1 14.7 12.2

Fe–7 at % Re 23.3 14.1 12.1
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that with the rhenium concentration increasing from 3
to 7 at %, parameter α1 increases more than twofold.
The values of parameter α2 also grow. It is also seen
that for the alloys containing 3 and 5 at % of rhenium,
the values of parameter α3 are negative, and at 7 at %
of rhenium, this parameter changes its sign. For all the
alloys, the values of parameter α4 are positive. In the
alloys with 3 and 5 at % of rhenium, there is the alter�
nation of signs of the parameters of short�range order,
and in the alloy with 7 at % of rhenium, the short�
range order parameters for the second, third, and
fourth coordination spheres are positive. All of this
suggests the strong concentration dependence of the
short�range order parameters in solid solutions of
iron–rhenium. 

The reliability of the results is verified by the data of
Fig. 2: the curves of the DXS intensity plotted using

the calculated values of the short�range order parame�
ters well describe the experimental data.

CALCULATION OF THE ORDERING ENERGY 
AND THE CRITICAL TEMPERATURE 
OF THE ORDER–DISORDER PHASE 

TRANSITION

Within statistical theory of short�range order by the
method of a self�consistent Cowley field [14], we
obtained an expression relating the short�range order
parameters with the ordering energy

 (9)

where αn is the short�range order parameter at the nth
lattice site with respect to the central atom; αn' is the
short�range order parameter at the n'th lattice counted

from the nth site;  is the
ordering energy at the n'th lattice site also counted

from the nth site;    are the pair energies
of the interactions of atoms A and B; kB is the Boltz�
mann constant, сА and сВ are the atomic concentra�
tions of the alloy components; and Т is the absolute
temperature.

The calculation of the energy of alloy ordering was
carried out using Eqs. (9), which were recorded for the
first four coordination spheres as
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Fig. 2. Experimental values and calculated DXS�intensity
curves for Fe–Re alloys: (�) Fe–3 at % Re, (�) Fe–5 at %
Re, and (�) Fe–7 at % Re.

Table 3. Radii of coordination spheres, short�range order parameters, and ordering energy of Fe–Re alloys

No. of coord. 
sphere

Fe–3 at % Re Fe–5 at % Re Fe–7 at % Re

r, Å αi V, kB r, Å αi V, kB r, Å αi V, kB

1 2.491 –0.014 228.4 2.495 –0.022 208.6 2.499 –0.039 264.9

2 2.877 0.025 –261.5 2.881 0.028 –187.0 2.886 0.044 –185.1

3 4.068 –0.007 120.6 4.074 –0.005 54.1 4.081 0.000 29.6

4 4.770 0.006 –70.0 4.778 0.008 –62.3 4.785 0.003 –30.6
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(10)

The system of linear equations was solved with the
experimentally determined parameters of short�range
order for the first four coordination spheres by the
least�squares method according to the procedure in
[16]. The calculated spectra of the ordering energy of
the alloys are given in units of the Boltzmann constant
kB in Table 3. It can be concluded from the table that
for all the alloys, the values of the ordering energy
alternately change sign with increasing number of the
coordination sphere. Moreover, for the alloys contain�
ing 3 and 5 at % of rhenium, alternation of the sign of
the ordering energy coincides with alternating sign of
the short�range order parameters. The unit value of
the ordering energy for the second, third, and fourth
spheres decreases with increasing concentration of
rhenium. For the Fe–3 at % Re alloy, the value of the
ordering energy for the second coordination sphere
exceeds in absolute magnitude the value for the first
sphere. For the Fe–7 at % Re alloy, the module of the
ordering energy decreases with increasing number of
the coordination sphere. For this alloy, the value of the
ordering energy under the first field is higher than that
for alloys Fe–3 and 5 at % Re by 16 and 27%, respec�
tively. The ordering energies of the iron alloys contain�
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the dependences of the ordering energy on the inter�
atomic distances using third�degree polynomials. The
graphs are shown in Fig. 3; it is seen that the depen�
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Using the values of the ordering energy and the
short�range order parameters, the energy of the short�
range order for each alloy was calculated by equation

(11)

where ci is the coordination number for the ith coordi�
nation sphere, αi is the short�range order parameter,
and Wi is the ordering energy for the ith coordination
sphere. The values of the short�range order energy for
the alloys containing 3, 5, and 7 at % of rhenium are
respectively –85.4, –77.3, and –133.7 kB, which leads
to the conclusion that in the alloy of Fe–7 at % Re,
short�range ordering plays the most stabilizing role. In
order to confirm this fact, we calculated the hypothet�
ical critical temperature of the order–disorder�type
phase transition for the alloys.

According to Cowley [13], the expression for the
critical temperature can be deduced from the second
equation of system (10) with limiting values of the
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Fig. 3. Dependence of the ordering energy of alloys Fe–3,
5, and 7 at % Re on the interatomic distance: (�) Fe–3 at %
Re, (�) Fe–5 at % Re, and (�) Fe–7 at % Re.

Table 4. Limiting values of parameters αi for some super�
structures

i B2 DO3 B32

1  –1 –1/3 0

2  1 –1/3 –1

3  1 1 1

4  –1 –1/3 0

5  1 –1/3 –1

6  1 1 1

7  –1 –1/3 0

8  1 –1/3 –1
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short�range order parameters corresponding to a spe�
cific superstructure. These limiting values for BCC
superstructures B2 and DO3 are given in Table 4
according to [1]. By substituting the limiting values for
the short�range order parameters for a B2 superstruc�
ture in the second equation of system (10) and by per�
forming subsequent transformations, we obtain an
expression for the critical temperature

 (12)

We can obtain the same equation, according to
[24], from the expression relating the Fourier trans�
form of the spectrum of short�range order parameter
α(k) and the Fourier transform of the spectrum of
ordering energy W(k)

(13)

where T is the temperature of alloy quenching, and C
is the normalization constant. According to [24], the
absolute minimum of W(k) is achieved at points of
reciprocal space, where α(k) has the maximum value
for a disordered phase. The critical point can be
defined as the temperature, at which the denominator
of Eq. (13) approaches zero at the corresponding point
of the reciprocal lattice. Therefore, critical tempera�
ture Tc is determined from equation

 (14)

where W(km) is the value of W(k) at the point on the
reciprocal lattice, where it has the absolute minimum.
For a B2 superstructure, there is a minimum of W(k)
at points km(1,0,0) and km(1,1,1).

The expression for the Fourier transform of W(k)
is [24]

 (15)

wherein k = h1b1 + h3b2 + h3b3, (h1, h2, h3) are the
coordinates of a point on the reciprocal lattice; b1, b2,
and b3 are the reciprocal�lattice vectors; (l, m, n) are
the coordinates of the lattice selected in such a way
that the radius vector of the site is designated as
r(lmn) = (la1 + ma2 + na3)/2. Thus, a1, a2, and a3 are
the fundamental translations of a cubic lattice, and
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integers l, m, and n for the BCC lattice are numbers of
the same parity. At the points of reciprocal space
km(1,0,0) and km(1,1,1), the Fourier transform
(Eq. (15)) is

 (16)

From Eqs. (14) and (16), we can derive expression (12).
Using the calculated values of the ordering energy

for the first four coordination spheres and the limiting
parameters for short�range order for a B2 superstruc�
ture, listed in Table 4, we calculated the hypothetical
values of the critical temperature Tc of the order–dis�
order phase transition for the alloys under study
according to Eq. (12); the results are presented in
Table 5.

Another possible BCC superstructure is DO3, the
limiting short�range order parameters for which are
shown in Table 4 [1]. For this superstructure, an equa�
tion for the critical temperature Tc was obtained from
Eq. (11), that is,

(17)

The results of calculations in accordance with Eq. (17)
are presented in Table 5; it is seen that the highest
hypothetical temperature of a phase transition of the
order–disorder type is observed for the Fe–7 at % Re
alloy.

According to [24], a B32 superstructure is included
in the BCC lattice, for which there is a minimum of
W(km) at point km(1/2, 1/2, 1/2),

 

Therefore, the expression for the critical temperature
with respect to the B32 superstructure is

 (18)

Meanwhile, we can obtain the following equation
from the Cowley formula:

(19)

From comparison of Eqs. (18) and (19) for specific
crystalline structures, the limiting values for the short�
range order parameters were derived for a B32 super�
structure, which are given in Table 4. The results of
calculation of the hypothetical critical temperature of
the alloys under study for a B32 superstructure are
shown in Table 5; it is demonstrated that for the B32
and DO3 superstructures, the hypothetical critical
temperature in the iron alloys containing 3, 5, and 7 at %
of rhenium increases with increasing concentration of
rhenium. For all considered structures, the hypotheti�
cal temperature is below room temperature, which is

1 2 3 4( ) 8 6 12 24 .W W W W W= − + + −mk

A B
c

B
1 2 3 4

2 8 6 4 8 .
3

c c
T W W W W

k
⎡ ⎤= − − + − −
⎢ ⎥⎣ ⎦

2 3( ) 6 12 .W W W= − +mk

[ ]A B
c

B
2 3

2
6 12 .

c c
T W W

k
= − − +

= − α + α + + α + α

+ α + α + α

+ α + α + α + α

A B
c

B
1 4 1 3 6 2

2 5 8 3

1 4 7 11 4

2
{(4 4 ) (1 4 )

(4 4 4 )

(4 8 8 4 ) }.

c c
T W W

k

W

W

Table 5. Hypothetical critical temperature of the Fe–Re
alloys for three types of superstructures

Alloy
Type of superstructure 

B2 DO3 B32

Fe–3 at % Re 11.5 K 120.0 K 175.5 K

Fe–5 at % Re 61.4 K 132.6 K 168.3 K

Fe–7 at % Re 278.9 K 220.1 K 194.8 K
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due to weak short�range order in the alloys and is con�
sistent with the phase diagram of the Fe–Re system
(Fig. 1). The highest hypothetical critical temperature
is obtained for the Fe–7 at % Re alloy, which is consis�
tent with the above results of calculation of the short�
range order energy. For this alloy, according to the
range of the experimental values of the parameters of
short�range order for the first four coordination
spheres and the data of Table 4, it can be concluded
that the short�range ordering tends to the B3 super�
structure. For all three alloys, the critical temperature
calculated for the B3 superstructure exceeds the tem�
perature values corresponding to the other two types of
superstructures. 

CONCLUSIONS

Based on data on the DXS intensity, the concentra�
tion dependence of the short�range order parameters
of Fe–Re alloys is experimentally found. Using spec�
tra of the short�range order parameter obtained by the
Cowley equations, written for the first four coordina�
tion spheres of a BCC lattice, we calculated the values
of the ordering energy for the first four coordination
spheres of iron alloys containing 3, 5, and 7 at % of
rhenium and found an oscillating dependence of the
ordering energy on the interatomic distance for all
these alloys. We derived expressions for calculation of
the critical temperature for the order–disorder transi�
tion for BCC superstructures B3, B32, and DO3, using
which we established the tendency of the Fe–7 at %
Re alloy to ordering according to the B3 type. For this
alloy, the short�range order energy exceeds in absolute
value the energies of short�range order, corresponding
to alloys containing 3 and 5 at % of rhenium.
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