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Abstract—A method for the joint determination of microphysical aerosol characteristics, namely, the com-
plex refractive index  and spherical-particle size distribution function U(r), from the data
of nighttime lidar sensing at wavelengths of 355–1064 nm is proposed. During their simultaneous estimations,
it is useful to directly minimize the discrepancy functional Φ(m) in the range of the physically justified m. The
principal limitations due to a wider region of the global minima of Φ(m) appear at  [0.01, 0.04] and

give rise to a potential shift of the resulting values of  and . A simultaneous use of several functionals
gives a better estimate of m due to different sets of the respective optical characteristics. The problem in retrieving
the size distribution function is caused by the information content of the coarse particle measurements. The sta-
tistical regularization method offers an unambiguous estimation of U(r) for the mean radius up to 3 μm and gives
an admissible estimate for larger radii. The algorithms are tested on eight values of absorption, when one value
corresponding to one  is associated with 50 empirical models of the distribution function.
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INTRODUCTION
Studying peculiarities of changes in the atmospheric

aerosol is a significant part of investigating the complex
of physical and chemical processes forming the Earth’s
climate. Different techniques for the determination of
the aerosol composition, as well as shapes and dimen-
sions of aerosol particles, were developed. Satellite sys-
tems make it possible to carry out the global monitoring
of aerosol: MODIS [1], POLDER/PARASOL [2], and
CALIOP [3]. Observations with the use of ground-
based instruments provide a more detailed and exact
information about aerosol characteristics at specific
geographical points. Study of the horizontal distribu-
tion of the aerosol microphysical characteristics—the
complex refractive index (CRI or )
and the particle size distribution function (SDF or
U(r))—has become possible since the development of
the monitoring networks for the atmosphere, in par-
ticular AERONET (Aerosol Robotic Network) [4],
and the methods for interpreting the observational
data [5, 6]. Regional lidar networks—EARLINET [7],
ADNET [8], and CIS-LiNet [9]—and the global
GALION network [10] are intended to complement
passive measurements with active ones, first of all by

those giving information about the vertical aerosol dis-
tribution in the troposphere.

Since March 2006, measurements in Tomsk (56° N,
85° E) have been carried out within the framework of
the CIS-LiNet project [9]. In daytime, the system
records signals caused by elastic scattering at three
wavelengths λ0i = 355, 532 (polarization measure-
ments), and 1064 nm. At night, there is an additional
option of detecting the Raman scattering for two
shifted wavelengths in the ultraviolet and visible
ranges, λRi = 387 and 607 nm. Such data collection
allows one to estimate three backscattering coefficients
β(λ0i, z) at λ0i = 355, 532, and 1064 nm and two extinc-
tion coefficients σ(λ0i, z) at λ0i = 355 and 532 nm. The
(3β + 2σ) system is accepted as standard for the
GALION world network [10]. In the nearest future, it is
planned to launch a similar system into the space [11].

Errors in determination of the optical coefficients
for lidar systems of (3β + 2σ) type are maximal in the
UV region and amount to ∼20% (σ) and ∼10% (β) in
the boundary layer of the atmosphere [12]. A well-
posed numerical differentiation algorithm we used
allows them to be decreased to ∼10% (σ) and ∼5% (β),
including for the free troposphere [13]. The spectral
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SIMULTANEOUS RECONSTRUCTION OF THE COMPLEX REFRACTIVE INDEX 629
set of the optical coefficients and the errors in their
estimation allow us to proceed to reconstruction of the
vertical distribution of the microphysical aerosol char-
acteristics.

Specialists in the field of solving inverse problems of
aerosol light scattering began to study possibilities of
retrieving the aerosol microstructure many years ago
[14–18]; the variety of the main directions of study and
results were presented in [19–24]. In particular, param-
eters of the bimodal SDF are correctly estimated for the
geometric mean radius of fine Rfine and coarse Rcoarse
particles within the range of 0.1 ≤ Ri ≤ 6 μm in
AERONET measurements; for more details, see [24].

From the mathematical point of view, the optical
coefficients of the aerosol layer located at a distance z
from the lidar are connected with microphysical char-
acteristics by the system of linear integral equations

(1)

where  specify the set of measured optical coef-

ficients for the corresponding wavelength,  are
the measurement errors, U(r, z) is the volume, bimodal
particle size distribution function, and Kj(m, r, z) are the
equation kernels depending on the refractive index
and particle shape. The variable z, not relevant in the
description of the methods, is omitted below to sim-
plify the formulas. In lidar sensing, first investigations
of inversion methods for (1) were based on the Mie
theory [25]; aerosol was modeled as a polydisperse
system of homogeneous spherical particles [26–32].
In [33–40], features of CRI + SDF were considered
for different types of aerosol, in particular, for spher-
oids according to [41–43].

Theoretical aspects of determining microphysical
characteristics of aerosol by sensing data were consid-
ered in [28, 30, 31, 37, 38, 44–46]. The analysis demon-
strates the presence of two serious problems in deter-
mining them: (i) a biased retrieval of the distribution
function for the coarse fraction even in the cases of a
known refractive index; (ii) an uncertainty in recon-
structing m even for a known U(r). The SDF is linearly
connected with optical coefficients; if the CRI is known
(or preliminarily estimated), its retrieval is reduced to
inversion of a system of linear algebraic equations. The
problem for coarse particles stems from the information
content of the measurements at r > 1 μm, and the biased
estimates of Ucoarse(r) are predetermined by the a priori
choice of the stabilizer order [28, 30, 44].

A reconstruction of the refractive index is a more
complicated problem in view of the absence of certain
commonly accepted methods working equally well for
any set of the measured characteristics. In the general
form, estimating the CRI is reduced to direct minimi-
zation of the discrepancy functional Φ(m) over all

{ }
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physically justified values of the m components. The
functional shows the difference between optical coeffi-
cients measured and calculated from the reconstructed
microphysical characteristics according to (1). If there
are no errors (experimental or mathematical, related
to special features of estimating U(r)), for any index
value there would be a single minimum Φ(m) ≡ 0 [45].
The presence of noises distorts the functional’s surface
and a false minimum could become the global one.
The differences in the CRI lead to incorrect calcula-
tions of kernels of (1) and to the deformation of the
SDF ([38, Table 2] or [46, Fig. 4]). For a polarization
nephelometer, a serious investigation of possibilities
for estimating m + U(r) was presented in [47, 48].

An alternative for the developed algorithms of inter-
preting nighttime lidar measurements are GARRLiC
(Generalized Aerosol Retrieval from Radiometer and
Lidar Combined data) [49] and a simplified version
LiRIC (Lidar/Radiometer Inversion Code) [50] (an
automated package was created). The algorithms are
based on the joint use of AERONET and EARLINET
(only 3β) data during daylight hours. A combined use
of the lidar and photometric measurements is an
advantage in the case of ‘dust’ or ‘volcanic’ aerosol
characterized by a larger contribution from the coarse
fraction. For the ‘urban pollution’ and ‘biomass burn-
ing’ models with the dominant contribution of the fine
fraction, there is no qualitative improvement of either
CRI part. Nighttime measurements allow one to
determine vertical profiles of CRI + SDF with the
optical thickness of the tropospheric aerosol ≤ 0.1 at a
wavelength of 532 nm; for more details, see [46, Sec-
tion 5 and Fig. 5].

In this work, the optical coefficients are calculated
by values of the sought quantities mtrue + U true(r)
according to (1); random noise is imposed on the
resulting (3β + 2σ) values, which is evenly distributed
in the range of  for every coeffi-

cient  (the direct problem). Then, a reconstruc-
tion of mest + Uest(r) is performed, taking into consid-
eration special features of estimating these two charac-
teristics (the inverse problem). For both problems, the
following approximations are used: (i) spherical par-
ticles, (ii) spectrum-averaged refractive index, and
(iii) CRI value common for different SDF fractions. In
Section 1, the method for retrieving the distribution
function at a known refractive index is justified. In
Subsection 1.2, features of the chosen method of statis-
tical regularization are described. The advantages of its
use are presented completely in [44]. Sections 2 and 3
give a detailed description of the algorithm for simul-
taneous determination of two microphysical charac-
teristics. Subsections 2.1 and 2.2 show the variations in
the CRI errors with increasing absorption and indicate
the region of its maximum errors for a lidar system.
Section 3 illustrates possibilities of a correct determi-
nation of CRI + SDF.

meas5% 5%j− ≤ ε ≤
meas
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630 SAMOILOVA
1. RETRIEVAL OF THE SIZE 
DISTRIBUTION FUNCTION

For a given (or already found) CRI, an expansion is
performed of the sought-for distribution function with
respect to the known system of basis functions Bk(r)
with unknown weighting coefficients uk:

(2)

According to [26‒29], a set of triangular basis
functions with f loating boundaries rmin, rmax is used.
The specific form of Bk(r) slightly affects the quality
with which the distribution function is retrieved and
their number can vary [28]. Taking into account
expansion (2), system of integral equations (1) is
reduced to the system of equations for the vector of the
weighting coefficients u = ufine + ucoarse:

(3)

where  is the sum of experimental

and mathematical errors, 
and the components of the matrix А are written in the
form  To invert Eq. (1), it
is expedient to use in the first approximation a loga-
rithmic scale of radii rk. This allows results of estima-
tion for fine and coarse particles to be considered in
one scale. If we set the single value of rmin = 0.04 μm
and 6 values of rmax = 7.5–10 μm (with a step of 0.5 μm),
the average values over the abscissa U(r) are as follows:
rfine, k = 0.067, 0.10, 0.16, 0.24, 0.36, and 0.56 for k =
1–6 and fine mode; rcoarse, k = 0.72, 1.08, 1.62, 2.42,
3.36, and 5.42 for k = 7–12 and coarse mode. More-
over, inversion of (3) provides positive definiteness of
the sought-for expansion coefficients uk [13], which is
a necessary condition for estimating the refractive
index [5].

In the first series of numerical experiments, errors
in estimating the SDF at a known CRI are studied.
The SDF models are the solutions obtained at the
Zvenigorod AERONET website (http://aeronet.gsfc.
nasa.gov) in 2011–2012 (totally, 462 empirical mod-
els). The models are associated with one of four values

 = 1.5, 1.55, 1.6, and 1.65; the imaginary part does
not vary, .

1.1. Tikhonov’s Regularization Method
A solution of Eq. (3), robust against the measure-

ment errors gj and based on the Tikhonov regularization
method [51], can be written in an explicit form [52]:

(4)
where Т denotes the transposition operation, α is the
regularization parameter, and Q is a square matrix.
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The quadratic form uTQu is (to within a constant) is
a finite difference approximation of the Tikhonov
stabilizer

where qi are given nonnegative quantities. In particu-
lar, if q0 ≠ 0 (other qi = 0), regularization of zero order
Q ≡ Q0 = I (the unit matrix) is used. At q0 ≠ 0 and q1 ≠ 0,
one can obtain from (4) a solution with the first order
stabilizer; the matrix  has the banded
form with a nonzero main diagonal and two nonzero
diagonals adjacent to it. Similarly, one can also obtain
the matrices for higher order derivatives. In the prob-
lem under consideration, basis functions in (2) are
chosen to provide a uniform expansion of U(r) on the
ln r axis. It is necessary to take into account that ele-
ments of the matrix Q in (4) depend on r. Otherwise,
the value of α can be overestimated in the region of
small values of the radius (which leads to smoothing of
Ufine(r)) and/or underestimated in the region of large
values (with possible oscillations of Ucoarse(r)).

Results of solving by Tikhonov’s regularization
method are presented in Fig. 1. The volume SDF was
retrieved for stabilizers of the zero (ТМ0), first (ТМ1),
and second (ТМ2) orders providing smoothness of the
function itself and its derivatives. In the top panel of
the figure, resolving possibilities of (4) are shown on
an example of estimating the volume concentration of
fine  (0.04 < r < 0.6 μm, the left

panel of Fig. 1) and coarse  (0.6 <
r < 10 μm, the right panel) particles; the calculations
involved retrieved U est(r), using a total of 462 models.
Each column of histograms indicates the number of
realizations (in percent of 462) in which the error in
estimating the parameter was within the indicated
limits. Since the accuracy of retrieving the fine aero-
sol mode is much higher, the step sizes for the histo-
grams are set as 1% and 5% for Vfine and Vcoarse,
respectively. The bottom part of the figure illustrates
the change in 2 of 462 profiles of U est(r) obtained
according to (4) and (2).

Analysis of the results demonstrates that, first, Ufine
is retrieved with a better quality using the logarithmic
derivative; the stabilizer order slightly affects the
determination errors [44, Fig. 1]. Second, the accu-
racy of estimating Ucoarse, on the contrary, is caused by

the stabilizer choice. For all retrieved , the
following quantities manifest themselves: (i)  <
2.5 μm for the zero order regularization (Q = Q0),

(ii)  ∈ [2.5, 4.0 μm] (Q = Q1), or (iii)  >
4.0 μm (Q = Q2). This feature leads to distortion both
of Vcoarse and Ucoarse(r). For fine particles, the relative
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SIMULTANEOUS RECONSTRUCTION OF THE COMPLEX REFRACTIVE INDEX 631

Fig. 1. Retrieval of the size distribution function by Tikhonov’s regularization method for a known refractive index. Errors in esti-
mating the particle concentration for the complete set of models (top), examples of SDF determination with different orders of
stabilizer (4) for 2 empirical models of 462 (bottom).
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error means (variances) ΔVfine are 1.86% (3.39), Q = Q0,
or 3.33% (2.92), Q = Q2; for coarse particles, they
replaced by −38.15% (17.77), Q = Q0, or 5.63% (37.62),
Q = Q2. Such pronounced bias of Rcoarse and high val-
ues of ΔVcoarse are caused by information insufficiency
of lidar measurements. Using (4) for a correct retrieval
of Ucoarse(r) is not optimal even if the refractive index is
known. The stabilizer requiring additional a priori
information can be obtained from the preliminary
estimate of Rcoarse.

1.2. Statistical Regularization Method

Under the assumption of a normal distribution and
independence of the vectors u and ε, the solution of
Eq. (3) obtained by the statistical regularization
method can also be written in an explicit form [52]:

(5)

Mathematical expectations μu and μg of vectors u and
g (under the assumption με = 0) and the covariance
(unnormalized correlation) matrices Wu, Wε, and Wg
must obey the equations

(6)

1 T 1 1 T 1 1( ) ( ).u u u
− − − − −

ε ε= + + μu W A W A A W g W

T, .u g u gεμ = μ + =A AW A W W
ATMOSPHERIC AND OCEANIC OPTICS  Vol. 32  No.
Let us assume that the signal error represents white
noise; after the substitution , solution Eq. (5)
is transformed:

(7)

where α = α(σε) is the regularization parameter. Rela-
tionship (7) coincides with the optimal linear filtration;
however, it is preferable, since the additional factor in
the second term on the right side of the equation gives
the asymptotic value for u = μu when .

The solution by Tikhonov’s method also can be
given by Eq. (7) if we use the stabilizer Ω[u − μu].
Obviously, in case of ill-posed initial Eq. (1), inversion
of (6) for μu and Wu is also an ill-posed problem; how-
ever, requirements for the accuracy of estimating these
parameters are much lower than for the accuracy of u
retrieval. In this regard, simplified approximations of
a priori moments can be used, and the less the number
of free parameters, the more stable is the obtained
solution.

Based on (7), one can construct algorithms invari-
ant in the retrieval both of random and determined
quantities. For the unique set of optical coefficients g
(during the current session of observations), it is for-

2
ε ε= σW I

T 1 1 T 1( ) ( ),u u u
− − −= + α + α μu A A W A g W

1
u
−α → ∞W
 6  2019



632 SAMOILOVA
mally (the unavailable components of the statistical
ensemble are replaced by zeros) valid that

(8)

where δ = δfine + δcoarse is an estimate of the unknown u.
Relationship (8) allows one to determine Wu without
any additional assumptions, to analyze stabilizer (7),
and to distinguish its key parameters. The determinant
det(Wu) ≡ 0; however, for calculating the inverse
matrix in (7), it is admissible to use Wu(γ) = Wu + γI,
γ ≈ 10−10. Analysis showed that first, an estimate of Wu
can make it possible to consider the data on the pres-
ence of the two aerosol modes (in fact, on the presence
of several extrema). Second, the elements located on
the main and adjacent diagonals  are sensitive
to variations in the fine-particle parameters. For the
parameters of coarse particle (Rcoarse primarily), the
sensitivity is manifested by the opposite elements, in
the second and fourth quadrants of the image of

 [44, Fig. 4]. Neglecting these elements would
again lead to the results shown in the bottom part of
Fig. 1, even if the values on the main diagonal and two
diagonals adjacent to it are set exactly. The obtained
result is an idealization because the matrix Wu is calcu-
lated from the known u. One of the possible ways of
correct determination of the coarse-particle parame-
ters is the replacement of the stabilizer by a simpler
algorithm, without regularization and with quantita-
tive estimation of the Rcoarse value necessary under
conditions of a priori uncertainty.

Let us represent the sought-for δ as a sum of two
sets, separately for fine δfine and coarse δcoarse particles.
The values δfine can be found by Tikhonov’s regular-
ization method (4)—the stabilizer order does not
influence the errors in Ufine(r) (see Fig. 1). For the esti-
mate of δcoarse, we approximate Ucoarse(r) by the poly-
nomial b0 + b1lnr + b2(lnr)2. Then, Eq. (3) is rewritten
in the form

(9)

where l0 = Acoarsee; l1 = Acoarse(lnr); l2 = Acoarse(lnr)2;
gcoarse = g − gfine = g − Afineδfine; e is a unit vector; and
r is constructed from samples of expansion (2) for
coarse particles. Solving (9) for the coefficients bi is
reduced to a solution of the system of three linear
equations Bb = d, where components of the matrix B
and the vector d can be represented in the form

  If the coefficients
bi are known, the estimate of the average radius is
determined from the formula

(10)

Estimate (10) is correct up to  = 3 μm (region I,

). However, it shifts toward higher val-
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ATMOSPHE
ues with increasing particle radius, increases uncontrol-
lably (region II,  > 3 μm, 3 ≤  ≤ 4.2 μm), and
fails to be observed at  = 4.2 μm. Then, its displace-
ment toward smaller values is observed (region III,

 < 0.6 μm,  > 4.2 μm) [44, Fig. 5]. The
instability of estimating  > 3 μm is caused by fea-
tures in the behavior of the efficiency factors (compo-
nents of the matrix Acoarse) and closeness of the coeffi-
cients b1 and b2. However, boundaries of the regions

 and  are stable and almost independent of vari-
ations of the refractive index and other SDF parame-
ters. Thus,  = 3 μm can be considered as the upper
boundary of the correct estimate of Rcoarse (and U(r)
itself) from lidar measurements. Below  (region I),
μu and Wu in (7) can be preliminarily determined from
the current set g according to (8). Since δfine is
retrieved uniquely, δ ≅ u, and the parabolic approxi-
mation of Ucoarse(r) yields correct estimates of Rcoarse and
δcoarse. Above  (ranges II and III), relationship (10)
allows one to determine only the variation range of the
geometric mean radius. It is acceptable to use first
moments of the ensemble of empirical models sepa-
rated by values of Rcoarse: 146 models of 462 at 3.36 μm
(region II) or 104 models at 5.42 μm (region III). The
sought-after function U(r) = Ufine(r) + Ucoarse(r) can be
obtained from relationships (7) and (2).

Results of solving (3) by the statistical regulariza-
tion method are presented in Fig. 2; the figure is sim-
ilar to Fig. 1. The retrieval of U(r) was carried out for
the same set of models with different matrices Wu: an
a priori given (the SRM0 method, ensemble of the
models with allowance for (10)), a known (SRM1,
current observations), and an a posteriori estimated
(SRM2, current observations/ensemble of models
with allowance for (10)). Using SRM0 partially helps
to reduce the bias of coarse-particle parameters. The
difference between ranges of ΔV for different modes is
preserved: for fine particles, the mean (variance) is
0.16% (2.39), and for coarse particles, 1.81% (27.20).
In SRM1, matrix Wu is supposed to be known and is
calculated by the known vector of the weight coeffi-
cients; for the matrix, the accuracies of estimating Vfine
and Vcoarse are comparable with the values of −0.16%
(1.37) and −5.77% (2.20), respectively. A slight shift of
profiles of Ucoarse(r) is caused by variations in rmax
within the range of 7.5–10.0 μm. Thus, the “ideal”
stabilizer does exist; in the next section it would allow
us to investigate the details of estimating the complex
refractive index. SRM2 is a result of using an approxi-
mate algorithm: Wu is a preliminarily retrieved for the
coarse mode, which provides a correct retrieval of
Ucoarse(r); the mean (variance) of ΔVcoarse is reduced to
2.75% (14.47). Two plausible sets μu and Wu represent
all quantitative a priori information used. As a result,
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Fig. 2. Retrieval of the size distribution function by the statistical regularization method for a known refractive index. Errors in
estimating the particle concentration for the complete set of models (top), examples of SDF determination with different covari-
ance matrices of the sought-for solution for 2 empirical models of 462 (bottom).

Si
ze

 d
is

tr
ib

ut
io

n,
 m

m
3  m

–
3

Radius, μm

0.04

0.02

0.06

0

mtrue = 1.50 + i 0

1010.1

Fine particles

Vo
lu

m
e 

co
nc

en
tr

at
io

n
fr

eq
ue

nc
y,

 %

Relative error, %

30

20

10

0
151050–5

SRM0, Q = (W mean)–1
u

SRM1, Q = (W true)–1
u

SRM2, Q = (W est)–1
u

31% for the error of 0%

Coarse particles

Relative error, %

30

20

10

0
50250–25–50–75

SRM1, Q = (W true)–1
u

74% for the error of –5%

Radius, μm
10

0.075

0.050

0.025

0.100

0

mtrue = 1.55 + i 0

10.1

Model
SRM1, Q = (W true)–1

u
SRM2, Q = (W est)–1

u

an unbiased estimate of the concentration of coarse
particles was obtained; due to the parabolic approxi-
mation to  < 3 μm it is even better than in the
case of using SRM0. The SRM2 method is used as
main in the next sections.

In the following sections we are going to demon-
strate that errors in estimating the refractive index
appear even in the case of an exactly determined dis-
tribution function. Also, we will show that the values
of m are always localized inside the region M of low val-
ues of the functional: ∀m Φ(m) ≤ E(εmeas + εmath) < εmeas,
and their location is due to absorption.

2. RECONSTRUCTION 
OF THE REFRACTIVE INDEX

The problem of determination the complex refrac-
tive index is reduced to direct minimization of the dis-
crepancy functional [29, 33, 37, 38, 45, 46]

(11)
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On the one hand, it depends on the measured optical
coefficients ; on the other hand, on the values of
these coefficients calculated from the reconstructed
microphysical characteristics, . The relative
error in (11) is quite useful, since the coefficients σ and
β have different dimensionalities.

In the case of lidar measurements, the information
content of optical coefficients is predefined by the char-
acteristics of their Mie efficiencies (e.g., see Fig. 1 [29]).
The extinction coefficients, depending on scattering
and absorption, ensure a correct estimation of SDF for
particles < 1 μm. The backscattering coefficients
determine its reconstruction above 1 μm. Moreover,
in the cases of fixed mreal and U(r) an increase in mimage
gives rise to an appreciable decrease in β, while it
hardly affects σ. The spectral variation of the lidar
ratio σ/β is sensitive to CRI. A concurrent use of opti-
cal characteristics offers a possibility of estimating m
and U(r) simultaneously.

Direct minimization of the functional (the lookup
table method) is based on searching for minimum val-
ues of Φ(m) on the plane (mreal, mimage) of all physically
justified values of refractive index components and
without any additional a priori assumptions. If errors

meas
jg

calc( )jg m
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are absent, there is a single minimum Φ(m) ≡ 0 for any
refractive index. The presence of noise distorts the sur-
face of the functional and leads to the appearance of
additional, so-called false, minima. Their position on
the plane is not random: the minima of Φ(m) are
localized inside the region M and any of the local min-
ima can turn out to be global. It is the case a probable
invalidity of the global minimum giving rise to a possi-
ble bias in the refractive index parts.

In the second series of numerical experiments,
errors in estimating the refractive index are studied for
the known (SRM1) or determined (SRM2) distribu-
tion function. When m and U(r) are reconstructed
simultaneously, the required expenditures of com-
puter time are larger approximately by NrealNimage
times, where Nreal = N(mreal) and Nimage = N(mimage) are
numbers of points in the ordinate and abscissa of the
CRI. Therefore, for each of eight values  = 0,

0.001, 0.006, 0.01, 0.02, 0.04, 0.06, and 0.1  is
calculated for first 50 empirical models U true(r) of
462 with the same varying values  = 1.50
(13 models), 1.55 (13), 1.60 (12), and 1.65 (12). Res-
olution possibilities of the determination of micro-
physical characteristics are considered on 400 mod-
els, .

2.1. Estimation of the Refractive Index
in the Absence of Absorption

The algorithm for determining the refractive index
components and simultaneous reconstruction of the
distribution function contains several stages. In every
point on (mreal, mimage), kernels of Eq. (1) are calcu-
lated, Uest(r) is estimated accordance with (7) or (4),
and the value of the discrepancy functional is deter-
mined from (11). On the entire plane there is only one
correct set of mest + Uest(r) out of N = NrealNimage; it
invariably falls within the region M of low values of
Φ1(m). The problem is thought to be solved correctly
if this set corresponds to the global minimum of the
functional. At the same time, one value of the first
component, either mreal or mimage, has a single corre-
sponding minimum in the entire range of the second
component, either mimage or mreal. Any of the local min-
ima (it is not improbable that it could be false) could
also be localized inside the region M. If one of the CRI
components can be determined correctly, the error in
estimating the second one is small, and the use of the
global minimum of Φ1(m) is quite appropriate. Fortu-
nately, the real part is retrieved correctly at weak
absorption. Moreover, it is suitable to analyze a devia-
tion of the model value from the reconstructed value,
δm = mest − mtrue. The criterion of relative errors is not
very effective since the variation range of mreal is several
percent and the imaginary part can be set equal to zero.

true
imagem
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The reconstruction of the refractive index compo-
nents for  is presented in Fig. 3. The CRI was
calculated from two grids using the logarithmic scale
for mimage:

Grid 1a, detailed real part, Figs. 3 (top) and 4 (left):
a set of mreal ∈ [1.35, 1.65] with the partition 0.01,
Nreal = 30 points for fixed mimage and mimage = 0.0001,
0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, Nimage = 7 points
for fixed mreal, N = NrealNimage = 210 points altogether.

Grid 1b, detailed imaginary part, Fig. 3 (bottom)
and 4 (right): a set of mreal ∈ [1.35, 1.65] with the par-
tition 0.05, Nreal = 7 points for fixed mimage and mimage =
0.0001, 0.0002, …, 0.001, 0.002, …, 0.01, 0.02, …, 0.1,
Nimage = 30 points for fixed mreal, N = NrealNimage =
210 points altogether.

Every column of the bar chart indicates for how
many implementations (in percentage relative to
50 models for one ) the error in estimating the
components of m falls within this range.

At , local minima of the functional are
located along the axis of mimage. The right panel of Fig. 3
illustrates the variation range of the imaginary part
itself, . The left panel
of Fig. 3 shows errors of estimating the real part,

. At the global minimum
, the real part is reconstructed correctly.

The mean deviation δm over 50 models (and mean rel-
ative error Δm) amounts to −0.0002 (−0.024%) for the
real component and +0.0015 (∞%, i.e., cannot be
determined) for the imaginary component. The devi-
ation δmreal is quite acceptable during determination of
the ‘true’ type in the course of identification of the
scattering aerosol at different altitudes [26, 28, 29].

The joint determination of the microphysical char-
acteristics has been performed using two algorithms
for the SDF retrieval. A comparison of the results,
obtained with the exact SRM1 (εmath = 0, εmeas ≠ 0)
and approximate SRM2 (εmath ≠ 0, εmeas ≠ 0), illus-
trates the influence of mathematical errors on the val-
ues of the discrepancy functional. Since the errors in
estimating the CRI components are close to each
other in both methods, one can argue that the global
minimum primarily shifts due to an ambiguity of
reconstruction of m. In what follows, only the SRM2
algorithm is used. In the next section, we will investi-
gate the influence of the aerosol absorption properties
on the correct estimation of the refractive index. Pos-
sible errors of determining U(r) will be presented at the
end of Section 3.
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Fig. 3. Errors of refractive index reconstruction in the absence of absorption (during a simultaneous determination of CRI + SDF).
Functional (11) is minimized using grids 1a (top) or 1b (bottom). At each point of the grid, U(r) is retrieved by the statistical regular-
ization method with different covariance matrices of the sought-for solution.
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2.2. Estimation of the Refractive Index
in the Presence of Absorption

According to [45], if εmath = 0 and εmeas ≠ 0 are sat-
isfied (in fact, the SRM1 method for the SDF), lidar
measurements allow one to correctly estimate m
within the absorption interval from 0.0001 to 0.1.
Close values of the functional at local minima can
also manifest themselves for average absorption; in
particular, it was shown in [38, p. 2191]. If εmath ≠ 0
and εmeas = 0 are used, the local minima

 (B), 
 (B.1), and  (B.2)

correspond to common values of the optical coeffi-
cients and region М with functional values <0.1.
However, both abovementioned versions of noise are
an idealization. Below, the behavior of local minima
is considered under conditions of real measurements,
at εmeas ≠ 0 and εmath ≠ 0. When  > 0.1, the
behavior of the kernels (1) gives rise to an incorrect
retrieval of the distribution function: the information on
coarse particles is lost and so is even the separation into
fractions. It is for this reason that we do not deal with
the values of mimage > 0.1 in the present work. Features
of the change in kernels of system (1) with an increase
in absorption for spherical particles were presented in
more detail in [28, Sections 2 and 3].
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The refractive index reconstruction for the eight
values of , i.e., for all 400 numerical models, is
given in the top part of Fig. 4. The left panel of Fig. 4
illustrates the errors in estimating the real part; the
right panel, for the imaginary part. A deviation of the
model value from the reconstructed value is assumed
to be correct at  < 0.025 and  < 0.0025.
The values  ≥ 0.025 and  ≥ 0.0025 illus-
trate the ranges of incorrect mest.

Analysis allows one to distinguish some features in
reconstructing the refractive index. The variation range
of absorption (due to the variation of CRI determina-
tion errors) can be conventionally divided into three
regions:  < 0.01 (weak absorption),  ∈ [0.01,

0.04] (middle absorption), and 0.04 <  ≤ 0.1
(strong absorption). For the first region, the validity of
using the global maximum (11) is justified, ,
similar to the case of weakly absorbing particles dis-
cussed in Subsection 2.1. With increasing absorption,
the domain of the minima is smoothed. This gives rise
to an uncertainty in estimating the refractive index,
which is quite conspicuous in a limited range  ∈
[0.01, 0.04]. Peculiarities of the kernel change in the
second region do not manifest themselves. The further
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Fig. 4. Variations in errors of the refractive index reconstruction with increasing absorption, CRI + SDF simultaneously, at a sin-

gle functional: differences between the model and retrieved m, each value of absorption  involves 50 models

 (top); detailed changes in δm at weak (center) or strong absorption (bottom).
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increasing absorption leads to a decrease in the differ-
ence between mtrue and mest and, in the third region,
using the global minimum of Φ1(m) is allowed,

The cause of CRI uncertainty in the second region
can be understood by interpreting results illustrated by
the middle and bottom panels of Fig. 4;  = 0.001,

0.006, 0.01 and  = 0.02, 0.04, 0.1, respectively.
The edge columns with values of ±0.06, ±0.09 (mreal)
or ±0.006, ±0.009 (mimage) in the abscissa demonstrate
“bad” estimates with errors 0.045 ≤  < 0.075,
0.0045 ≤  < 0.0075 (zones A) or “very bad”
ones,  > 0.075,  > 0.0075 (zones B). For

small absorption  = 0 (see Fig. 3) or 0.001 (cen-
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tral panel of Fig. 4), local minima Φ1(m) are next to
the sought-for mtrue. Errors in estimating the CRI are
comparable in the position of components (negative
δmreal and positive δmimage) and in their magnitudes.
With increasing absorption, the region М changes: for

 = 0.006, the deviation δm increases due to the
manifestation of a false global minimum for some

models with  = 1.50; zones A in the middle part of

Fig. 4 correspond to them. When  = 0.02, the

false minima for models with  = 1.50 disappear;
they are preserved for other three values and lead to

maximal errors of  (bottom panel of Fig. 4). If

 = 0.04, the false minimum can become global
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Fig. 5. Influence of used functionals on the reconstruction of the refractive index, CRI + SDF simultaneously. Detailed varia-
tions in δm for a one (top) or two (center) functionals, mean absorption; differences between the model and retrieved m at com-

bined Φ1(m) and Φ2(m), each value of absorption  involves 50 models  (bottom).
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only for  = 1.65, the results are presented mainly
in zones B. Absorptions at  = 0.006 or 0.04 are,
in some specified sense, synonymous; the means
δmreal = −0.028 or −0.024 coincide. A considerable
(almost by an order of magnitude) difference mani-
fests itself for the imaginary component, δmimage =
−0.0003 or −0.0028. Since the absorption values
themselves differ almost by an order of magnitude,
maybe the errors are due to inadequate decomposition
of the СRI in the logarithmic scale of mimage.

Reconstruction of the refractive index components
is also presented in Fig. 5. The CRI is calculated using
the linear scale for mimage; other parameters of grids 1a,
1b and 2a, 2b are comparable:

Grid 2a, detailed real part, Fig. 5 (left): a set of mreal ∈
[1.35, 1.65] with the partition of 0.02, Nreal = 16 points
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for fixed mimage; mimage ∈ [0, 0.05] with the partition of
0.005, Nimage = 11 points for fixed mreal; totally, N =
NrealNimage = 176 points altogether;

Grid 2b, detailed imaginary part, Fig. 5 (right): a set
of mreal ∈ [1.35, 1.65] with the partition of 0.05, Nreal =
7 points for fixed mimage; mimage ∈ [0, 0.05] with the
partition of 0.002, Nimage = 26 points for fixed mreal;
totally, N = NrealNimage = 182 points altogether.

The central and edge columns in the top panel of
Fig. 5 demonstrate good and bad estimates with errors

 < 0.045,  < 0.0045 or  ≥ 0.045,

 ≥ 0.0045. In the absorption region  ≤
0.015, it makes sense to use a linear scale of mimage,

since the values within 0.01 <  < 0.02 are not

taken into consideration. In particular, at  =
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0.01, average values δm over 50 models decrease by an
order of magnitude for the imaginary part and by a
factor of two for the real part. However, if  = 0.02
or 0.03, the choice of the scale or the grid does not
exert any influence, and the shift of both parts of mest

persists. Within the range 0.15 <  < 0.04 (so-called
mean absorption), the local minima Φ1(m) are weakly
discernible, which leads to maximal errors in recon-
structing the CRI from nighttime lidar measurements.

It is possible to modify the boundaries of the
sought-for refractive index or to select a step for its
imaginary part in grids of the 1a, 1b or 2a, 2b type.
However, another approach is more effective—con-
striction the range of allowable values of m by increas-
ing the number of used functionals.

3. SIMULTANEOUS DETERMINATION 
OF BOTH MICROPHYSICAL 

CHARACTERISTICS
It is expedient to compare different discrepancy

functionals, e.g., those depending on all optical coef-
ficients (11) (or on the spectral behavior of σ/β [45])
or only on Ångström exponent (A) for the backscatter-
ing coefficients:

(12)

In the global minimum, the functionals yield close val-
ues of one of the CRI components: 
(weak absorption) and  (strong
absorption). The absence of coinciding values of Φi(m)
is particularly evident for the mean absorption. The
region of minima (11) appears during a simultaneous
increase of the CRI parts, and in accordance with (12)—
in the course of decreasing mreal with increasing mimage.
Regions of localization of low values of both functionals
for real lidar measurements are presented in more detail
in [53, Fig. 2].

Reconstruction of CRI + SDF according to (11)
was described in Subsection 2.1; the algorithm for
minimizing Φ2(m) is similar, relationship (11) has
changed to (12). To compare the functional defined by
the same grid, it is sufficient to consider only the local
minima; its position on the plane of the CRI values
principally differs. Neglecting absolute values of
Φi(m)—in fact, the equal status of all minima—makes
it possible to distinguish the zone of their intersection
on the (mreal, mimage) plane and to narrow the domain
of the refractive index.

Features of the CRI determination are presented in
the top and middle panels of Fig. 5. The difference
between the Φ1(m) and Φ1(m) + Φ2(m) methods leads
to a noncoincidence of regions where mest is estimated
incorrectly. For  = 0.02 and 0.03, one functional
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yields an approximately equal volume of bad (0.045 ≤
 < 0.075, 0.0045 ≤  < 0.0075) and very

bad  > 0.075,  > 0.0075) errors. For two
functionals, the contribution of zones A decreases and
the contribution of zones B is almost completely anni-
hilated. As a result, values of δmimage averaged over
50 models decrease by a factor of three (from −0.0032
to −0.0010) for  = 0.02 and by a factor of seven

(from −0.0036 to −0.0006) for  = 0.03.
The options of using the functionals (11) + (12) are

presented in the bottom part of Fig. 5; the result is
comparable with the top panel of Fig. 4. Note that at

 ∈ [0.01, 0.04] ‘hitting’ the false minimum
decreases from 40% to 20%. Moreover, a combined,
simultaneous use of two Φ(m) would result in a more
correct estimation of m. A deviation of the model value
from the reconstructed value corresponds to 0.025 ≤

 < 0.150 and 0.0025 ≤  < 0.0150 for
Φ1(m) or 0.025 ≤  < 0.075 and 0.0025 ≤  <
0.0075 for Φ1(m) + Φ2(m).

Let us demonstrate the potential of estimating the size
distribution functions by the SRM2 algorithm under con-
ditions of an expected uncertainty. The top panel of Fig. 6
illustrates the errors of the volume concentrations of the
SDF modes. Its structure is similar to [44, Fig. 6], but for
the case of a concurrent estimation of the refractive index
for  models. In
view of the fact that the accuracy of determination of
the fine fraction is essentially higher, the step of the
histograms is 2% (Vfine) and 5% (Vcoarse). The deforma-
tion of the fine mode is consistent with the variation
range of incorrect mest. If m is known and only (7) +
(2) is used, the mean (variance) of ΔVfine amount to

−1.06% (2.86) for  = 0.02 and 50 models

. When m is estimated, ΔVfine increase
to 11.26% (10.60), (11) + (7) + (2), or to 9.18% (3.43),
(11) + (12) + (7) + (2). The joint use of Φ1(m) and
Φ2(m) decreases the difference between the model and
reconstructed m and leads to a lesser deformation of
U(r). For the coarse mode, ΔVcoarse change weakly and
amount either to −4.09% (22.1), (7) + (2), or to
−6.68% (26.7), (11) + (7) + (2), or to −6.80% (24.3),
(11) + (12) + (7) + (2). Correctness of Ucoarse(r) esti-
mation for the lidar is determined to a greater extent by
the choice of the stabilizer using (7) + (2) or (4) + (2).

The bottom panel of Fig. 6 demonstrates how the
shape of changes in the two models (for the given
m they are presented in Figs. 1 and 2) in the local min-
ima of the functional. The bottom left part of Fig. 6
illustrates a “simple” case, the global minimum of (11)
coincides with one of local minima of (11) and (12).
The bottom right part of Fig. 6 shows a “complicated”
case, mtrue and mest are noticeably different for (11).
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Fig. 6. Influence of used functionals on the retrieval of the size distribution function, CRI + SDF simultaneously. On the top,

errors in estimating the particle concentration, each value of absorption  involves 50 models ; on the bot-

tom, examples of SDF determination in local minima of different functionals for 2 empirical models of 50.
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The superposition of (11) and (12) yields a better
retrieval of U(r): the decrease of the CRI domain
restricts the range of allowable values of (3). Correct
kernels of (1) provide a physically justified variation
range of u and leads to the sought-for distribution
function. The statistical regularization method gives
an admissible estimate of U(r) for the mean radius

 ∉ [0.6, 3.0 μm] (see Subsection 1.2). Thus, the
simultaneous reconstruction of CRI + SDF provides
the plausible retrieval of the size distribution function
from nighttime lidar measurements. For the complex
refractive index, the inverse problem is more compli-
cated and is still not solved completely.

Theoretical aspects of interpreting AERONET
measurements were presented in [24, 54]. The main
input parameters of the inverse problem are the data
on the measured coefficients of directed light scatter-
ing in the angular range from 2° to 140° (including the
aureole part up to 10°). The errors of the refractive
index estimation differ. The real part can be retrieved
with a high accuracy, and we can discard its spectral
behavior. The imaginary part is estimated correctly if
it has: (i) weak spectral selectivity and (ii) does not
vary in the regions of low absolute values,  <
0.005. Large errors in estimating mimage are due to the

est
coarseR

true
imagem
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absence of the information in the rear hemisphere of
the scattering phase function, 140°–180°. The lower
boundary for the correct estimation of the imaginary
part with the use of lidar measurements is less by an
order of magnitude, as shown in Subsection 2.1. Recall
that we recommend experts on inverse problems com-
paring different discrepancy functionals.

CONCLUSIONS

The methodical specifics of combined, simultane-
ous determination of microphysical characteristics
from the lidar measurements of extinction (355 and
532 nm) and backscattering (355, 532, and 1064 nm)
coefficients have been discussed. The results demon-
strate that there are two serious obstacles to recon-
structing the microphysical characteristics: (i) biased
estimation of SDF parameters for the coarse particles
and (ii) ambiguity of determination of CRI proper.
Both problems are caused by the information content
of lidar measurements. Solution of the first problem
provides an adequate selection of the regularization
method for the SDF retrieval. The second problem
unfortunately does not allow determining the spectral
dynamics of the CRI but permits obtaining a recon-
struction of its average value.
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The lidar provides the determination of both com-
ponents of the refractive index related to kernels of the
Fredholm’s equations in a limited range at mreal ∈
[1.35, 1.65] and mimage ∈ [0.0001, 0.1]. The variation
range of absorption (or the imaginary part of m) can be
conventionally divided into three sections: mimage <
0.01, mimage ∈ [0.01, 0.04], and 0.04 < mimage ≤ 0.1. This
separation is due to the smoothing of the discrepancy
functional and broadening of its local minima on the
(mreal, mimage) plane, which gives rise to ambiguity of
determining the CRI—a false minimum could appear
to be global. For the first section, using the global
minimum is justified because the minima are situated
near the sought-for m. In the third section, on the
contrary, they go beyond the boundaries of physically
justified values of the refractive index and the problem
is solved uniquely. There is a challenge in the midsec-
tion: a probable invalidity of the global minimum gives
rise to a possible bias in the refractive index parts. It
should be underlined that a choice of a single Φ(m)
only is not sufficient for the second section. One more
functional based on another set of optical coefficients
and providing principally different positions of the
local minima on the (mreal, mimage) plane is necessary.
Superposition of two Φi(m) leads to a restriction of the
CRI domain and, correspondingly, to a more correct
estimate of m. Differently directed possibilities in the
determination of the complex refractive index call for
further considerations.
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